
A kernelization algorithm for the min-max p-cluster editing
problem

Li-Hsuan Chen and Bang Ye Wu
Department of Computer Science and Information Engineering
National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.

{clh100p,bangye}@cs.ccu.edu.tw

Abstract

A p-cluster graph is an undirected graph with at
most p connected component and each component
is a clique. Given a graph G and an integer p, the
Min-Max p-cluster editing problem asks for
the minimum t such that G can be edited into a
p-cluster graph by inserting or deleting edges and
the maximum number of the editing edges incident
to any vertex is at most t. In this paper, we design
a kernelization algorithm to reduce the problem in-
stances to kernels of size at most 3pt.
Key words: parameterized algorithm, kerneliza-
tion, cluster graph, graph modification

1 Introduction

Graph clustering is an important issue in com-
puter science. In general, we are given a graph
with edges between similar objects, and the goal
is to group the similar objects into clusters. Due
to the wide applications, there are many formu-
lated problem definitions [22]. A graph-theoretic
formulation of one of the clustering problems is the
following graph modification problem [23]. A clus-
ter graph is an undirected graph consisting of dis-
joint maximal cliques and the maximal cliques in
a cluster graph are called clusters. The Cluster
Editing problem looks for the minimum number
of edge insertions and deletions to modify the in-
put graph to a cluster graph. For an integer p,
a cluster graph is a p-cluster graph if the number
of clusters is no more than p, and the p-Cluster
Editing problem asks for a modification to a p-
cluster graph. While p-Cluster Editing looks
for the min-sum of insertions and deletions, it is
natural to consider its min-max version, namely
Min-Max p-cluster editing [8]: modifying a
graph into p-cluster graph such that the maximum
number of editing edges incident to any vertex is

minimized.
In this paper, we focus on the decision version of

Min-Max p-Cluster Editing. Let G = (V,E)
be the input graph and π = (S1, S2, . . . , Sp) be a
p-partition of V . Each Si is called a cluster in the
p-partition. For u, v ∈ V , {u, v} is a conflict if the
two vertices are in the same cluster but (u, v) /∈
E or they are in different clusters but (u, v) ∈
E. Let Cπ(v) denote the set of vertices conflicting
with v in π and cπ(v) = |Cπ(v)| be the conflict
number of v. Clearly u ∈ Cπ(v) if and only if
v ∈ Cπ(u). As shown in [25], the set of conflicting
pairs corresponds to an editing set, i.e.,

∪
u{(u, v) |

v ∈ Cπ(u)} is the corresponding editing set. Thus,
we shall call cπ(v) the editing number of v in π.

Definition 1: A graph is max t-editable to p-
cluster graph if there is a p-partition π of V such
that maxv∈V cπ(v) ≤ t. For simplicity, we call
such a graph (p, t)-editable in the remaining paper.

The problem is formally defined as follows.

Problem: (p, t)-Editable
Instance: A graph G = (V,E) and in-
tegers p and t.
Question: Is the input graph (p, t)-
editable?

The (p, t)-Editable is the decision version
of Min-Max p-Cluster Editing and the NP-
completeness of the problem is proved in [8]. An
instance of a parameterized problem consists of
(I, k), where k is the parameter. A problem is
fixed-parameter tractable (FPT) if it can be solved
in time complexity O(f(k) · q(|I|)), where f is
an arbitrary computable function of k and q is
a polynomial in the input size. For more details
about parameterized complexity, we refer to the
book of Downey and Fellows [11]. Kernelization
is a widely-used technique for parameterized al-
gorithms. In polynomial time, a kernelization al-
gorithm converts an instance (I, k) to a reduced

The 31st Workshop on Combinatorial Mathematics and Computation Theory

73

instance (I ′, k′), called a kernel such that the an-
swer is not changed, k′ ≤ k and |I ′| is bounded by
a computable function of k.

In this paper, using the parameter (p, t), we
design a O(n3)-time kernelization algorithm to re-
duce the problem instances to problem kernels
with size at most 3pt. In [21], the authors stud-
ied the p-Cluster editing problem with locally
bounded modifications t and showed a 4pt kernel.
Our kernelization algorithm can be also applied to
the problem and improve their result to 3pt.

Previous related works

Due to the wide applications, several related
problems and variants of the clustering problem
have been studied, such as Consensus Cluster-
ing [13, 6, 5], Correlation Clustering [2, 1,
15, 19, 24] and Cluster Editing [23]. Shamir et
al. [23] studied the computational complexities of
three edge modification problems. While Clus-
ter Editing asks for the minimum total number
of edge insertions and deletions, Cluster Dele-
tion (respectively, Cluster Completion) only
allows edge deletions (respectively, insertions).
They showed that Cluster Editing is NP-hard,
Cluster Deletion is Max SNP-hard but when
the number of clusters is constrained by two it
becomes polynomial time solvable, and Cluster
Completion is polynomial-time solvable. There
are several results on the fixed-parameter time
complexities for Cluster Editing and Cluster
Deletion, for example [3, 7, 9, 10, 16, 17, 18],
and the most recent result can be referred to [4].
A variant with vertex (rather than edge) dele-
tions was considered in [20], and another variant in
which overlapping clusters are allowed was stud-
ied in [12]. For p-Cluster Editing, the currently
best parameterized algorithm is due to Formin et
el [14]. For the special case p = 2, the best time
complexity of determining whether a graph can
be modified into a 2-cluster graph by editing at
most 2k edges is O(n · 2.619r/(1−4r/n) + n3) [25],
where n is the number of vertices and r = k/n.
Particularly, the time complexity is O∗(2.619k/n)
for k ∈ o(n2) and polynomial for k ∈ O(n log n),
which implies that the problem can be solved in
subexponential time when k ∈ o(n2).

2 The kernelization algorithm

In this paper, a graph is an undirected simple
graph. For a graph G, the vertex set and the edge

set are denoted by V (G) and E(G), respectively.
For any v ∈ V , the closed neighborhood in graph
G is denoted by NG[v] or N [v] when there is no
ambiguity. For two sets S1 and S2, the set differ-
ence is denoted by S1 \S2, and the symmetric dif-
ference is denoted by S1⊖S2 = (S1\S2)∪(S2\S1).
For simplicity, S1 ⊖ v = S1 ⊖ {v}.

The editing number cπ(v) of a vertex v in π has
been defined in the introduction. Suppose that
π is a p-partition of V such that cπ(v) ≤ t for
all v ∈ V . Let S be a cluster in π. We have
the following lemmas. For simplicity we omit the
subscript π.

Lemma 1: If u ∈ S, then |S| − t ≤ |N [u]| ≤
|S|+ t.

Proof: Since the editing number of u is at most
t, we have

c(u) ≤ t

⇒ |S ⊖N [u]| ≤ t.

Therefore, we have |S\N [u]| ≤ t and |N [u]\S| ≤ t,
which imply |S| − t ≤ |N [u]| ≤ |S|+ t.

Lemma 2: If u and v are in the same cluster,
then |N [u]⊖N [v]| ≤ 2t.

Proof: Since the editing numbers of both u and
v are at most t, we have

|S ⊖N [u]| ≤ t,

and

|S ⊖N [v]| ≤ t.

Since the symmetric difference ⊖ is commutative
and associative, we have that

N [u]⊖N [v] = (N [u]⊖ S)⊖ (N [v]⊖ S).

In addition,

|(N [u]⊖S)⊖ (N [v]⊖S)| ≤ |N [u]⊖S|+ |N [v]⊖S|.

We obtain that |N [u]⊖N [v]| ≤ |S ⊖N [u]|+ |S ⊖
N [v]| ≤ 2t.

Lemma 3: If |N [u] ∩ N [v]| > 2t, then u and v
must be in the same cluster.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

74

Proof: Suppose that u ∈ S and v ∈ S′, where
S ̸= S′ are two clusters. Since the editing number
of u, v are at most t, we have

|N [u] \ S| ≤ c(u) ≤ t

⇒ |(N [u] ∩N [v]) \ S| ≤ t,

and

|N [v] \ S′| ≤ c(v) ≤ t

⇒ |(N [u] ∩N [v]) \ S′| ≤ t,

Since S ̸= S′, we have |S ∩ S′| = 0 and
|N [u]∩N [v]| ≤ 2t, a contradiction to the assump-
tion that |N [u]∩N [v]| > 2t. Thus, the the lemma
is correct.

Let α(u, v) = max{|N [u]|, |N [v]|} for vertices u
and v.

Lemma 4: Suppose that u ∈ S and |S| > 3t. If
|N [u] ∩N [v]| ≥ α(u, v)/2, then v ∈ S.

Proof: First, if α > 4t, the result follows from
the previous lemma. So we assume that α ≤ 4t
in the remaining proof. By the definition of α, we
have both |N [u]| and |N [v]| at most 4t.

We show that if v /∈ S, then |N [u]∩N [v]| < α/2.
Suppose that v belongs to another cluster S′. Let
X = S∩ (N [u]∩N [v]) and Y = S′∩ (N [u]∩N [v]).
Let x = |X|, y = |Y |, and r = |N [u]∩N [v]|. Since
c(v) ≤ t and S ∩ S′ = ∅, we have

x = |S ∩ (N [u] ∩N [v])|
≤ |(N [u] ∩N [v]) \ S′|
≤ |N [v]⊖ S′|
= c(v) ≤ t. (1)

Consider c(u) = |S ⊖N [u]| = |N [u] \ S| + |S \
N [u]|. For the first term, we have |N [u]\S| ≥ r−x.
For the second term, since |S ∩ N [u]| ≤ |N [u]| −
(r−x), we have |S \N [u]| ≥ |S|− (|N [u]|− r+x).
By the assumption c(u) ≤ t, we obtain

(r − x) + (|S| − (|N [u]| − r + x)) ≤ t.

Since |S| > 3t and |N [u]| ≤ α, we have

2(r − x) ≤ t+ |N [u]| − |S| < α− 2t. (2)

By (1) and (2), we have |N [u] ∩ N [v]| = r <
(α − 2t)/2 + x ≤ α/2, a contradiction to the
assumption that |N [u] ∩N [v]| ≥ α(u, v)/2. Thus,
the the lemma is correct.

Lemma 5: Suppose that u ∈ S and |S| > 3t. For
any vertex v with |N [v]| > 2t, if |N [u] ∩ N [v]| ≤
α(u, v)/2, then v /∈ S.

Proof: Since u ∈ S with |S| > 3t, we have
|N [u]| > 2t. Since

|N [u]⊖N [v]|
= |N [u]|+ |N [v]| − 2|N [u] ∩N [v]|,

if 2|N [u] ∩N [v]| ≤ max{|N [u]|, |N [v]|}, then

|N [u]⊖N [v]| ≥ min{|N [u]|, |N [v]|} > 2t.

By Lemma 2, u and v are not in the same cluster.

By Lemma 1, Lemma 4 and Lemma 5, we have
the next necessary and sufficient condition.

Corollary 6 : Suppose that u ∈ S and |S| > 3t.
Then, for any vertex v, we have that v ∈ S if and
only if |N [v]| > 2t and |N [u] ∩N [v]| > α(u, v)/2.

The kernelization algorithm is shown in Algo-
rithm 1, and the result is given in the next theo-
rem.

Theorem 7: In O(n3) time, we can determine
all clusters with size at least 3t. Therefore, the
problem admits a kernel of size at most 3pt.

Proof: First we find the set V ′ of vertices with
closed neighborhood size at least 2t. The remain-
ing vertices are put in R. In each iteration of the
while-loop, we find the cluster which u belongs to.
If u is in a cluster of size at least 3t, by Corollary 6,
S must be exactly the cluster. Otherwise, u is not
at any cluster of size at least 3t and is moved to
R. When the while-loop terminates, there should
be no clusters of size at least 3t. Therefore, if
|R| > 3p′t, then the algorithm return that there is
no feasible solutions.

Since the while-loop can be done in O(n2)
time, the total time complexity is O(n3).

3 Concluding remarks

In this paper we design an O(n3) time kernel-
ization algorithm for Min-Max p-cluster edit-
ing to obtain kernels of size at most 3pt. By
a naive branching algorithm, the problem can
be solved in O(p3pt) time, which is independent
of the original problem size n. In other words,

The 31st Workshop on Combinatorial Mathematics and Computation Theory

75

Algorithm 1 :Kernelization

Input: a graph G = (V,E) and integers p, t.
Output: a set R ⊆ V and integers p′ or report“False”.

1: construct N [v] for all vertices v;
2: V ′ ← {v ∈ V | |N [v]| > 2t}, R← V − V ′ and p′ ← p;
3: while V ′ ̸= ∅ and p′ > 0 do
4: pick a vertex u ∈ V ′;
5: S ← {v ∈ V ′ | |N [u] ∩N [v]| > 2t} ∪ {u};
6: if |S| > 3t and |N [v]⊖ S| ≤ t, ∀v ∈ S then
7: V ′ ← V ′ \ S; p′ ← p′ − 1;
8: else
9: V ′ ← V ′ \ {u} and R← R ∪ {u};

10: end if
11: end while
12: if |R| > 3p′t then
13: report False;
14: end if
15: return R and p′.

Min-Max p-cluster editing is FPT(Fixed-
Parameter Tractable). Both further reducing the
kernel size and designing branching rules to im-
prove the total time complexity are interesting fu-
ture work.

Furthermore, our kernelization algorithm can
be applied to any cluster editing problem with con-
straints that the local modification and the num-
ber of clusters are upper bounded by t and p, re-
spectively, no matter what the objective function
is. For example, our result improves the kerneliza-
tion in [21], in which the author showed a kernel
of size 4pt for the problem asking for the mini-
mum total number of editing edges with such a
constraint.

References

[1] N. Ailon, M. Charikar, and A. Newman.
Aggregating inconsistent information: Rank-
ing and clustering. Journal of the ACM,
55(5):23:1–23:27, Nov. 2008.

[2] N. Bansal, A. Blum, and S. Chawla. Correla-
tion clustering. Machine Learning, 56:89–113,
2004.

[3] S. Böcker, S. Briesemeister, Q. Bui, and
A. Truss. Going weighted: Parameterized al-
gorithms for cluster editing. Theoretical Com-
puter Science, 410(52):5467–5480, 2009.

[4] S. Böcker and P. Damaschke. Even faster
parameterized cluster deletion and cluster

editing. Information Processing Letters,
111(14):717–721, 2011.

[5] P. Bonizzoni, G. D. Vedova, and R. Dondi.
A PTAS for the minimum consensus cluster-
ing problem with a fixed number of clusters.
In Eleventh Italian Conference on Theoretical
Computer Science. 2009.

[6] P. Bonizzoni, G. D. Vedova, R. Dondi, and
T. Jiang. On the approximation of correlation
clustering and consensus clustering. Journal
of Computer and System Sciences, 74(5):671–
696, 2008.

[7] J. Chen and J. Meng. A 2k kernel for the
cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

[8] L.-H. Chen, M.-S. Chang, C.-C. Wang, and
B. Y. Wu. On the min-max 2-cluster editing
problem. Journal of Information Science and
Engineering, 29:1109–1120, 2013.

[9] P. Damaschke. Bounded-degree techniques
accelerate some parameterized graph algo-
rithms. In J. Chen and F. Fomin, editors,
Parameterized and Exact Computation, vol-
ume 5917 of Lecture Notes in Computer Sci-
ence, pages 98–109. Springer Berlin Heidel-
berg, 2009.

[10] P. Damaschke. Fixed-parameter enumerabil-
ity of cluster editing and related problems.
Theory of Computing Systems, 46:261–283,
2010.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

76

[11] R. G. Downey and M. R. Fellows. Parame-
terized Complexity. Springer-Verlag, 1999.

[12] M. R. Fellows, J. Guo, C. Komusiewicz,
R. Niedermeier, and J. Uhlmann. Graph-
based data clustering with overlaps. Discrete
Optimization, 8(1):2–17, 2011.

[13] V. Filkov and S. Skiena. Integrating microar-
ray data by consensus clustering. Interna-
tional Journal on Artificial Intelligence Tools,
13(04):863–880, 2004.

[14] F. V. Fomin, S. Kratsch, M. Pilipczuk,
M. Pilipczuk, and Y. Villanger. Tight bounds
for Parameterized Complexity of Cluster
Editing. In N. Portier and T. Wilke, editors,
30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013),
volume 20 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 32–43,
Dagstuhl, Germany, 2013. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[15] I. Giotis and V. Guruswami. Correlation clus-
tering with a fixed number of clusters. Theory
of Computing, 2(13):249–266, 2006.

[16] J. Gramm, J. Guo, F. Hüffner, and R. Nie-
dermeier. Graph-modeled data clustering:
Fixed-parameter algorithms for clique gen-
eration. In R. Petreschi, G. Persiano, and
R. Silvestri, editors, Algorithms and Com-
plexity, volume 2653 of Lecture Notes in Com-
puter Science, pages 108–119. Springer Berlin
Heidelberg, 2003.

[17] J. Gramm, J. Guo, F. Hüffner, and R. Nieder-
meier. Automated generation of search tree
algorithms for hard graph modification prob-
lems. Algorithmica, 39:321–347, 2004.

[18] J. Guo. A more effective linear kernelization
for cluster editing. Theoretical Computer Sci-
ence, 410(810):718–726, 2009.

[19] F. Harary. On the notion of balance of a
signed graph. The Michigan Mathematical
Journal, 2(2):143–146, 1953.

[20] F. Hüffner, C. Komusiewicz, H. Moser, and
R. Niedermeier. Fixed-parameter algorithms
for cluster vertex deletion. Theory of Com-
puting Systems, 47:196–217, 2010.

[21] C. Komusiewicz and J. Uhlmann. Cluster
editing with locally bounded modifications.
Discrete Applied Mathematics, 160(15):2259–
2270, 2012.

[22] S. E. Schaeffer. Graph clustering. Computer
Science Review, 1(1):27–64, 2007.

[23] R. Shamir, R. Sharan, and D. Tsur. Cluster
graph modification problems. Discrete Ap-
plied Mathematics, 144(12):173–182, 2004.

[24] S. Wasserman and K. Faust. Social network
analysis: Methods and applications, volume 8.
Cambridge university press, 1994.

[25] B. Y. Wu and L.-H. Chen. Parameterized
algorithms for the 2-clustering problem with
minimum sum and minimum sum of squares
objective functions. Algorithmica, in print,
on-line available, 2014.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

77

