
An O∗(1.4658n)-time exact algorithm for the maximum

bounded-degree-1 set problem∗

Maw-Shang Chang1, Li-Hsuan Chen2, Ling-Ju Hung1†, Yi-Zhi Liu2,
Peter Rossmanith3, Somnath Sikdar3

1Department of Computer Science and Information Engineering
HungKuang University

43302 Sha Lu, Taichung, Taiwan
{mschang,ljhung}@sunrise.hk.edu.tw

2Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi 62102, Taiwan

{clh100p,lyichih100m}@cs.ccu.edu.tw
3Department of Computer Science, RWTH Aachen University

52056 Aachen, Germany
{rossmani,sikdar}@cs.rwth-aachen.de

Abstract

A bounded-degree-1 set S in an undirected
graph G = (V,E) is a vertex subset such that the
maximum degree of G[S] is at most one. Given
a graph G, the Maximum Bounded-Degree-
1 Set problem is to find a bounded-degree-1 set
S of maximum size in G. A notion related to
bounded-degree sets is that of an s-plex used to
define the cohesiveness of subgraphs in social net-
works. An s-plex S in a graph G = (V,E) is a ver-
tex subset such that for each v ∈ S, degG[S](v) ≥
|S| − s. One can easily show that a graph G
has a 2-plex of size k iff the complement graph
of G has a bounded-degree-1 set of size k. Both
the Maximum 2-Plex problem and the Maxi-
mum Bounded-Degree-1 Set problem are NP-
hard. We give a simple branch-and-reduce algo-
rithm using branching strategies with at most three
branches for the Maximum Bounded-Degree-
1 Set problem. We analyze the running time
of the algorithm using measure-and-conquer and
show that it runs in time O∗(1.4658n) which is
faster than previous exact algorithms.

∗This research is partially supported by the National
Science Council of Taiwan under grants NSC 101–2221–E–
241–019–MY3 and NSC 102–2221–E–241–007–MY3.

†Ling-Ju Hung (corresponding author) is supported
by the National Science Council of Taiwan under grant
NSC 102–2811–E–241–001.

1 Introduction

A bounded-degree-d set S in an undirected
graph G = (V,E) is a vertex subset such that
the maximum degree of G[S] is at most d. The
Maximum Bounded-Degree-d Set problem is
to find a bounded-degree-d set S of maximum size
in the input graph G = (V,E). An s-plex S in a
graph G = (V,E) is a vertex subset such that for
each v ∈ S, degG[S](v) ≥ |S| − s.

Maximum Bounded-Degree-d Set
(Max d-bds)
Input: A graph G = (V,E).
Output: A vertex set S ⊆ V of maximum cardi-

nality such that S is a bounded-degree-
d set.

Maximum s-Plex (Max s-plex)
Input: A graph G = (V,E).
Output: A vertex set S ⊆ V of maximum cardi-

nality such that S is a s-plex.

Note that a vertex subset S is an s-plex in G if
and only if it is a bounded-degree-(s − 1) set in
the complement graph Ḡ.

The Maximum Bounded-Degree-d Set
(Max d-bds) problem is NP-complete because
its equivalent problem, the Maximum (d +
1)-plex (Max (d + 1)-plex) problem is NP-
complete [3]. The dual of the Max d-bds prob-
lem isMinimum Bounded-Degree-d Deletion
Set (Min d-bdd) where one is required to find

The 31st Workshop on Combinatorial Mathematics and Computation Theory

9

a vertex subset D of minimum size in the input
graph G = (V,E) such that V \D is a bounded-
degree-d set. This dual problem has received some
attention from the parameterized complexity com-
munity. A series of fixed-parameter tractable al-
gorithms were developed for Min d-bdd prob-
lem, with |D| as parameter [24, 21, 12, 9, 15, 23].
Betzler et al. [5] showed that when parameter-
ized by the treewidth of the input graph, Min
d-bdd problem is W[1]-hard. In the same paper,
they showed that the problem is fixed-parameter
tractable for the following parameters: (1) the
combined parameter treewidth and the number of
vertices to delete; (2) the feedback edge set num-
ber. Chang et al. [9] gave a O∗(1.5171n)-time
branch-and-reduce algorithm for the Max 1-bds
problem. By applying measure-and-conquer anal-
ysis, this algorithm runs in time O∗(1.4834n) [10].
Chang and Hung [11] showed that the Max 1-bds
problem cannot be approximated to a ratio greater
than nǫ−1 in polynomial time for all ǫ > 0 unless
P = NP. Some moderately exponential time ap-
proximation algorithms were given for the Max
1-bds problem in [11].

The notion of s-plexes is a degree relaxed vari-
ant of cliques and was defined to study the cohe-
siveness of subgroups in social networks [26]. The
Max s-plex problem can be formulated as a 0/1
integer program [1, 3] and was shown to be W[1]-
hard with respect to the size of s-plexes as pa-
rameter [21]. Some branch-and-bound algorithms
were given for solving the Max s-plex problem
based on different upper bounds and lower bounds
found by heuristic algorithms [27, 22]. Some graph
editing problems are studied on finding a disjoint
union of s-plexes [20, 6]. Balasundaram et al. [2]
referred the Max d-bds problem as the problem
of finding maximum-cardinality co-(d+ 1)-plexes.
Wu and Pei [28] gave an algorithm to enumerate
all maximal s-plexes.

In this paper, we give an O∗(1.4658n)-time al-
gorithm for the Max 1-bds problem. This algo-
rithm is faster than the previous best due to Chang
et al. [10] and can be used to solved the Max 2-
plex problem in time O∗(1.4658∆(G)) where ∆(G)
is the maximum degree of the input graph.

2 Preliminaries

For functions f and g we write f(n) = O∗(g(n))
if f(n) = O(g(n)poly(n)), where poly(n) is a poly-
nomial.

A branch-and-reduce algorithm is a recur-

sive procedure consisting of reduction rules and
branching rules. The reduction rules are used
to reduce the problem size, and the branching
rules are used to branch the original problem into
smaller subproblems. The measure-and-conquer
approach is used to analyze the running time of
branch-and-reduce algorithms [13, 4, 16, 14, 17,
18, 7, 19]. In a usual analysis of a branch-and-
reduce algorithm, the input size n is the number
of vertices in the input graph. The branching step
is written as a recurrence in terms of n and the
running time is obtained by standard techniques
of solving recurrences. In a measure-and-conquer
analysis, each vertex is assigned a weight in the
range [0, 1] and the size of the problem is mea-
sured by the total weight wG of all vertices. The
key issue in a measure-and-conquer analysis is how
to assign weights to the vertices to obtain a tighter
bound on the running time of the algorithm.

In [9, 10, 23], the branch-and-reduce algorithms
designed for solving the Max 1-bds problem use a
standard branching rule: for a vertex v, it branches
into deg(v) + 2 subproblems that either (i) v is
not in the solution set, or (ii) v is in the solution
set but none of its neighbors is in the solution set,
or (iii) v and one of its neighbors are in the solu-
tion set where deg(v) = |N(v)|. Since the number
of branches is unbounded, this branching strategy
makes the algorithm and the time analysis more
complicated than algorithms applying branching
strategies with bounded number of branches. In
this paper, we give a simple branch-and-reduce
algorithm for the Max 1-bds problem that ap-
plies the branching strategies having at most three
branches. It also uses a 2-coloring strategy to
record those vertices in the graph having a neigh-
bor being selected in the solution set. By ap-
plying the measure-and-conquer approach that as-
signs an appropriate weight to vertices having the
same color, we obtain that our simple branch-and-
reduce algorithm runs in time O∗(1.4658n).

We close this section with some notation. All
graphs in this paper are undirected and simple.
Given a graph G = (V,E), we use n to denote the
number of vertices in G. For a vertex v ∈ V , we
let NG(v) be the open neighborhood of v in G and
NG[v] = NG(v) ∪ {v} be the closed neighborhood
of v in G. Let deg(v) be the number of vertices
in N(v). A vertex v is called a degree-d vertex if
deg(v) = d. Let ∆(G) = maxv∈V {deg(v)} denote
the maximum degree of G. For sets A and B, we
use A ⊎B to denote A ∪B and A ∩B = ∅.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

10

3 An O∗(1.4658n)-time algorithm

In this section, we define two problems related
to Max 1-bds and show that it can be reduced to
them and solved in time O∗(1.4658n).

Max Constrained Bounded-Degree-1 Set
(Max 1-cbds)
Input: A graph G = (V,E) and a bounded-

degree-1 set S′ ⊆ V .
Output: A bounded-degree-1 set S of maximum

size such that S′ ⊆ S.

It is easy to see that if S′ = ∅, the Max 1-
cbds problem is the Max 1-bds problem. Given
a graph G = (V,E) with V = {v1, v2, . . . , vn},
let Gi = G[Vi] where Vi = {v1, v2, . . . , vi}. Let
bds(G) denote the size of a maximum bounded-
degree-1 set in G and cbds(G,S′) be the size of a
maximum bounded-degree-1 set that contains S′.
Then

bds(G) = max
1≤i≤n

{cbds(Gi, {vi})}.

Thus, the Max 1-bds problem can be solved by
solving the Max 1-cbds problem.

Next, we define another problem related to
Max 1-bds called Max Partially Indepen-
dent Bounded-Degree-1 Set (Max 1-pibds).

Max 1-pibds
Input: A graph G = (V,E) whose vertices are

colored either white or orange; V =
W ⊎O, where W and O are the sets of
white vertices and orange vertices, re-
spectively.

Output: A bounded-degree-1 set S ⊆ V of maxi-
mum size in G such that every v ∈ S∩O
is of degree-0 in G[S].

Notice that if all vertices inG are white, it is equiv-
alent to theMax 1-bds problem. If all vertices are
orange, the Max 1-pibds problem is equivalent to
the Maximum Independent Set problem.

Lemma 1. If the Max 1-pibds problem can be
solved in time O∗(cn), then the Max 1-cbds prob-
lem can be solved in time O∗(cn).

Proof. Let G = (V,E) and S′ ⊆ V be an in-
put of the Max 1-cbds problem. Let S1 be the
set of vertices of degree one in G[S′] and let D
be the set of vertices in NG(S

′) adjacent to at
least two vertices in S′. Let S∗ be an optimal
solution of the Max 1-cbds problem. Notice
that S′ ⊆ S∗ and both S′ and S∗ are bounded-
degree-1 sets. If v ∈ S′ is a degree-one vertex

in G[S′], then all vertices in NG(v) \ S′ are not
in S∗. If there is a vertex x in V \ S′ having at
least two neighbors in S′ then x is not in S∗. We
then construct G′ = (V ′ = W ⊎ O,E′) as the in-
put of the Max 1-pibds problem according to G
and S′ by letting V ′ = V \ (S′ ∪ D ∪ NG(S1)),
O = NG(S

′) \ (NG(S1)∪D), W = V ′ \O. We see
that in G every vertex in O has exactly a neigh-
bor in S′ and every vertex in W has no neighbor
in S′. For x, y ∈ O, if in G they have common
neighbors in S′, add an edge between them in G′.
Let E′ = {(u, v) | u, v ∈ V ′, (u, v) ∈ E} ∪ {(x, y) |
x, y ∈ O,NG(x) ∩ NG(y) ∩ S′ 6= ∅}. Let X be
an optimal solution of the Max 1-pibds prob-
lem in G′. Since X ∩ O is an independent set,
X ∪ S′ is a bounded-degree-1 set, |X ∪ S′| ≤ |S∗|
where S∗ is an optimal solution of the Max 1-
cbds problem in G. Since S∗ and S′ are both
bounded-degree-1 sets in G, S∗ \ S′ is bounded-
degree-1 in G. Notice that every v ∈ S∗ ∩NG(S

′)
is orange and |NG(v) ∩ S′| = 1. If S∗ ∩ NG(S

′)
is not an independent set in G′, then S∗ is not
bounded-degree-1, a contradiction. Thus S∗ \S is
a feasible solution of Max 1-pibds problem in G′,
|S∗ \S′| ≤ |X |. Thus X∪S′ is an optimal solution
of the Max 1-cbds problem. Suppose that there
exists an algorithm that solves the Max 1-pibds
problem in time O∗(cn). Let G = (V,E) and S′

be an input of the Max 1-cbds problem. It takes
polynomial time to construct G′ = (V ′, E′) and
it takes O∗(c|V

′|), |V ′| ≤ |V |, to find an optimal
solution X of the Max 1-pibds problem in G′.
Since X ∪S′ is an optimal solution of the Max 1-
cbds problem, this shows that the Max 1-cbds
problem can be solved in time O∗(cn) where n is
the number of vertices in G.

3.1 Some Observations

Let G = (W ⊎O,E) be an input of the Max 1-
pibds problem and S be an optimal solution of the
Max 1-pibds problem in G. A vertex v ∈ W ∪O
is called selected if v ∈ S and is called discarded
if v 6∈ S. We give some observations of the Max
1-pibds problem.

Lemma 2 (Degree-1 Rule). If there exists a vertex
v ∈ W ∪O having degree one, then there exists an
optimal solution that v is selected.

Proof. Let u be the only neighbor of v. Assume
that S be an optimal solution of the Max 1-pibds
problem in G. If u is not selected, then S ∪ {v} is
a solution of larger size, a contradiction. Suppose
that u ∈ S and v 6∈ S. We see that S \ {u} ∪

The 31st Workshop on Combinatorial Mathematics and Computation Theory

11

{v} is an optimal solution of the same size. This
completes the proof.

Lemma 3 (Domination Rule). If there exist v ∈
W ∪ O and u ∈ O satisfying N [v] ⊆ N [u], then
there exists an optimal solution that u is discarded.

Proof. Suppose that S is an optimal solution of
the Max 1-pibds problem and u ∈ S. By def-
inition all vertices in N(u) are not in S. Since
N [v] ⊆ N [u], we obtain that S ∪ {v} \ {u} is also
an optimal solution of the Max 1-pibds problem.
Thus, u can be always discarded. This completes
the proof.

Lemma 4 (Disconnected Rule). If G is discon-
nected and C is a connected component in G, then
SC∪S′ is an optimal solution of the Max 1-pibds
problem in G where SC and S′ are optimal solu-
tions of the Max 1-pibds problem in G[C] and
G[V \ C] respectively.

Proof. Let S be an optimal solution of the Max
1-pibds problem in G. It is easy to see that SC∪S′

is a feasible solution of the Max 1-pibds problem
in G, |SC ∪ S′| ≤ |S|. Notice that S ∩ C and
S ∩ (V \ C) are feasible solutions of the Max 1-
pibds problem in G[C] and G[V \C], respectively.
Since SC and S′ are optimal solutions of the Max
1-pibds problem in G[C] and G[V \ C], |SC | ≥
|S ∩ C| and |S′| ≥ |S ∩ (V \ C)|. This shows that
S = SC ∪ S′.

Lemma 5 (Degree-2 Rule). If there exists a vertex
v ∈ W ∪O of degree two, N(v) = {x, y}, satisfying
one of the following conditions

1. both x and y are white, or

2. at least one of x and y is orange and (x, y) 6∈
E,

then either v is selected or v is discarded and both
x, y are selected.

Proof. We show that if v is discarded then both
x, y must be selected. Let S be an optimal solution
of the Max 1-pibds problem and v 6∈ S. Notice
that if none of x, y is selected in S, then S∪{v} is a
solution of larger size, a contradiction. If only one
of x, y is selected in S, say x, then S ∪ {v} \ {x}
is also an optimal solution. This completes the
proof.

Lemma 6 (White-orange Edge Rule 1). If there
exist a vertex v ∈ W of degree three and a vertex
u ∈ O of degree at least three, N(v) = {u, x, y},
satisfying N(v) ∩ N(u) = {x}, then either v is

selected and u is discarded or v is discarded and y
is selected.

Proof. Let S be an optimal solution of the Max
1-pibds problem. Since u ∈ O, if v is selected,
then u must be discarded. Now we show that if
v is discarded then y must be selected. Suppose
that v 6∈ S and y 6∈ S. Notice that one of u and
x must be discarded since u ∈ O and (u, x) ∈ E.
If none of u, x, y is selected in S, then S ∪ {v} is
a solution of larger size, a contradiction. If u ∈ S
and x, y 6∈ S, then S ∪ {v} \ {u} is also a optimal
solution. If x ∈ S and u, y 6∈ S, then S ∪{v} \ {x}
is also an optimal solution. Thus if v 6∈ S, either
y ∈ S or y, x ∈ S, or y, u ∈ S. This completes the
proof.

Lemma 7 (White-orange Edge Rule 2). If there
exist a vertex v ∈ W of degree three and a vertex
u ∈ O of degree three, N(v) = {u, x, y}, N(u) =
{v, z, w}, and {x, y} ∩ {z, w} = ∅, then either v
is selected and u is discarded, or u is selected and
v, z, w are discarded, or both u, v are discarded and
x, y, z, w are selected.

Proof. Let S be an optimal solution of the Max
1-pibds problem. Since u ∈ O and (u, v) ∈ E, by
definition at least one of u, v must be discarded.
Either u is discard and v is selected, or v is dis-
carded and u is selected, or both u, v are discarded.
Notice that if u is selected in S, then v, z, w must
be discarded. Claim that if u, v 6∈ S then x, y, z, w
are in S. If x, y, z, w 6∈ S, then S ∪ {v} is an op-
timal solution of larger size, a contradiction. If
only one of x, y, z, w is selected in S, say x, then
S ∪ {v} \ {x} is an optimal solution of the same
size. If only one of x, y, z, w is selected in S, say
z, then S ∪ {v} is an optimal solution of larger
size. Suppose that two of x, y, z, w are selected in
S. If x, y ∈ S and z, w 6∈ S, then S ∪ {u} is a
solution of larger size. If z, w ∈ S and x, y 6∈ S,
then S∪{v} is a solution of larger size. If x, z ∈ S
and y, w 6∈ S, then S∪{v}\{x} is also an optimal
solution. Suppose that only one of x, y, z, w is not
in S. If x 6∈ S and y, z, w ∈ S, then S∪{v}\{y} is
also an optimal solution. If z 6∈ S and x, y, w ∈ S,
then S∪{u}\{w} is also an optimal solution. Thus
if both u, v 6∈ S, all x, y, z, w must be selected in
S. This completes the proof.

Lemma 8 (White-orange Edge Rule 3). If there
exist a vertex v ∈ W of degree three and a vertex
u ∈ O of degree at least four, N(v) = {u, x, y},
satisfying N(v) ∩ N(u) = ∅, then either v is se-
lected and u is discarded, or u is selected and all

The 31st Workshop on Combinatorial Mathematics and Computation Theory

12

vertices in N(u) are discarded, or both u, v are dis-
carded and x, y are selected.

Proof. Let S be an optimal solution of the Max
1-pibds problem. Since u ∈ O and (u, v) ∈ E, by
definition at least one of u, v must be discarded.
Either u is discard and v is selected, or v is dis-
carded and u is selected, or both u, v are discarded.
Notice that if u is selected in S, then all vertices
in N(u) must be discarded. Claim that if u, v 6∈ S
then x, y are in S. If x, y 6∈ S, then S ∪ {v} is
an optimal solution of larger size, a contradiction.
If only one of x, y is selected in S, say x, then
S ∪ {v} \ {x} is an optimal solution of the same
size. Thus if both u, v 6∈ S, both x, y must be
selected in S. This completes the proof.

3.2 The algorithm for Max 1-pibds

We give a branch-and-reduce algorithm for the
Max 1-pibds problem. The algorithm consists
of a series of reduction rules and branching rules.
The description of the algorithm consists of a se-
quence of cases and subcases. To avoid a confusing
nesting of if-then-else statements let us use the fol-
lowing convention: The first case which applies is
used in the algorithm. Thus, inside a given case,
the hypotheses of all previous cases are assumed
to be false. Given an input graph G = (W ⊎O,E)
of the Max 1-pibds problem, the following algo-
rithm computes a bounded-degree-1 set S of max-
imum size such that all vertices in S ∩ O are of
degree-0 in G[S].

Note that the algorithm removes v from G after
it decides to discard v. If the algorithm selects an
orange vertex v in S, then the algorithm obtains a
new input graph G′ = G[V \N [v]] of the Max 1-
pibds problem after selecting v. If the algorithm
selects a white vertex v in S, then the algorithm
executes the following four steps, called selecting
white steps, to obtain a new input graph G′ of the
Max 1-pibds problem after selecting v.

1. Remove all orange neighbors of v from G.

2. Add edges between any two x, y ∈ N(v)∩W .

3. Recolor all vertices in N(v) ∩W orange.

4. Remove v from G.

Boundary condition: If all vertices in G are
orange, then by definition the optimal solution of
the Max pi-1-bds problem in G is a maximum
independent set inG. The algorithm calls an exact
algorithm for the Maximum Independent Set
problem to solve the remaining problem.

Reduction rules:

R1. Degree-1 Rule. If there exists a vertex v ∈
W ∪ O having degree one, N(v) = {u} then
according Lemma 2, the algorithm selects v.

R2. Domination Rule. If there exist v ∈ W ∪O
and u ∈ O satisfying N [v] ⊆ N [u], then
according to Lemma 3, the algorithm dis-
cards u.

R3. Disconnected Rule. If G is disconnected
and C be a connected component in G, ac-
cording to Lemma 4 the algorithm solves the
problem recursively in G[C] and G[V \ C].

Branching rules:

B1. Degree-2 Rule. If there exists a vertex v ∈
W∪O of degree two,N(v) = {x, y}, satisfying
one of the following conditions

(a) both x and y are white, or

(b) at least one of x and y is orange and
(x, y) 6∈ E,

and the degree-sum deg(x)+deg(y) of the two
neighbors of v is maximum among all degree
two vertices in G, then according Lemma 5
the algorithm either (i) selects v or (ii) dis-
cards v and selects both x, y.

B2. White Vertex Rule. If there exists a vertex
v ∈ W of degree at least four, then the algo-
rithm either (i) selects v or (ii) discards v.

B3. White-orange Edge Rule 1. If there exist
a vertex v ∈ W of degree three and a ver-
tex u ∈ O of degree at least three, N(v) =
{u, x, y}, satisfying N(v) ∩N(u) = {x}, then
according to Lemma 6 the algorithm either
(i) selects v and discards u or (ii) discards v
and selects y.

B4. White-orange Edge Rule 2. If there exist
a vertex v ∈ W of degree three and a vertex
u ∈ O of degree three, N(v) = {u, x, y} and
N(u) = {v, z, w}, satisfying N(v)∩N(u) = ∅,
then according to Lemma 7 the algorithm ei-
ther (i) selects v and discards u, or (ii) selects
u and discards v, z, w, or (iii) discards both
u, v and selects x, y, z, w.

B5. White-orange Edge Rule 3. If there exist
a vertex v ∈ W of degree three and a ver-
tex u ∈ O of degree at least four, N(v) =
{u, x, y}, satisfying N(v) ∩ N(u) = ∅, then
according to Lemma 8 the algorithm either

The 31st Workshop on Combinatorial Mathematics and Computation Theory

13

(i) selects v and discards u, or (ii) selects u
and discards all vertices in N(u), or (iii) dis-
cards both u, v and selects x, y.

B6. 3-Regular Rule. G is a 3-regular graph and
all vertices are white. Let v be a vertex in G.
The algorithm either (i) selects v or (ii) dis-
cards v.

If we use simple analysis to see the running time
of the above algorithm, due to the White Vertex
Rule and the 3-Regular Rule, one would say that
the running time of the algorithm is O∗(2n). In the
next section, by using the measure-and-conquer
approach, we analyze the running time of the al-
gorithm is O∗(1.4658n).

3.3 The analysis of the exact algo-
rithm

Let every orange vertex have the same weight
wo, 0 < wo ≤ 1 and let every white vertex have
the same weight one. The total weight of graph
G = (W ⊎O,E) is wG = wo ·|O|+|W |. Let ∆wo =
1 − wo. The size of the input is the weight wG of
the input graph. When branching rule b is applied,
the current instance is branched into r ≥ 2 in-
stances of size at most wG−t1, wG−t2, . . . , wG−tr.
Note that wG ≥ ti for i = 1, 2, . . . , r. We call
b = (t1, t2, . . . , tr) the branching vector of branch-
ing rule b. This can be formulated in a linear re-
currence

T (wG) = T (wG−t1)+T (wG−t2)+· · ·+T (wG−tr).

By using well-known standard techniques to solve
linear recurrence, the base solution of above linear
recurrence is of the form αwG for some complex
number α. We call α is the branching number of
rule b and O∗(αwG) = O∗(αn) is the worst case
running time of this rule since wG ≤ n.
Boundary Condition: Since all vertices in G are
orange, we apply Robson’s algorithm [25] to find a
maximum independent set in G. The running time

for graphs applying this rule is O∗(20.276×
wG
wo) =

O∗(20.276×
n
wo).

All reduction rules are done in polynomial time.
Hence we can focus on branching rules in the anal-
ysis. We will analyze all branching rules one by
one.
Degree-2 Rule. If there exists a vertex v ∈ W ∪
O of degree two, N(v) = {x, y}, satisfying one of
the following conditions

1. both x and y are white, or

2. at least one of x and y is orange and (x, y) 6∈
E,

and the degree-sum deg(x) + deg(y) of the two
neighbors of v is maximum among all degree two
vertices in G, then the algorithm either (i) selects
v or (ii) discards v and selects both x, y. We have

T (wG) = T (wG − t1) + T (wG − t2).

There are six cases listed in Fig 1.

1. If v, x, y ∈ W as Fig. 1 (a), then t1 = 1 + 2 ·
∆wo and t2 ≥ 3.

2. If v ∈ W and one of x, y is orange as Fig. 1 (b),
then t1 = 1+wo +∆wo = 2 and t2 ≥ 2+wo.

3. If v ∈ W and both x, y are orange as
Fig. 1 (c), then t1 = 1+2·wo and t2 ≥ 1+2·wo.

4. If v ∈ O and both x, y are white as Fig. 1 (d),
then t1 = 2 + wo and t2 ≥ 2 + wo.

5. If v ∈ O and one of x, y is white as Fig. 1 (e),
then t1 = 1 + 2 · wo and t2 ≥ 1 + 2 · wo.

6. If v, x, y ∈ O as Fig. 1 (f), then t1 = 3 · wo

and t2 ≥ 5 · wo. Since the degree-sum
deg(x)+deg(y) is maximum among all degree-
2 vertices, the number of vertices of distance
two from v is at least two. Otherwise, we ob-
tain a cycle consisting of all orange vertices
such that either the Disconnected Rule can
be applied or it satisfies the Boundary Con-

dition.

White Vertex Rule. There exists a vertex v ∈
W of degree at least four. The algorithm either
(i) selects v or (ii) discards v. Suppose that v has
p white neighbors and q orange neighbors. We
have

T (wG) = T (wG − t1) + T (wG − t2)

where t1 = 1 and t2 = 1 + q · wo + p · ∆wo. It
is easy to see that the worst case happens when
the degree of v is four as Fig. 2. Suppose that
deg(v) = 4, we have the following cases.

1. All vertices in N(v) are white. Then t2 =
1 + 4 ·∆wo.

2. There is only an orange vertex in N(v). Then
t2 = 1 + wo + 3 ·∆wo.

3. There are two orange vertices in N(v). Then
t2 = 1 + 2 · wo + 2 ·∆wo.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

14

v v v v v v

(a) (b) (c) (d) (e) (f)

Figure 1: Cases of Degree-2 Rule. We use circles and triangles to denote white vertices and orange
vertices, respectively. A dotted line denotes two vertices are possibly adjacent or possibly not adjacent.

v

Figure 2: Cases of White Vertex Rule. We use a square to denote that the vertex is a white vertex or
an orange vertex.

4. There is only a white vertex in N(v). Then
t2 = 1 + 3 · wo +∆wo.

5. All vertices in N(v) are orange. Then t2 =
1 + 4 · wo.

Notice that if all reduction rules, Degree-2

Rule, and White Vertex Rule can not be ap-
plied, then all orange vertices have degree at least
three and all white vertices have degree three.
White-orange Edge Rule 1. There exist a ver-
tex v ∈ W of degree three and a vertex u ∈ O of
degree at least three, N(v) = {u, x, y}, satisfying
N(v)∩N(u) = {x} as Fig. 3(a), then the algorithm
either (i) selects v and discards u or (ii) discards
v and selects y. Since there are two branches, we
see that

T (wG) = T (wG − t1) + T (wG − t2).

There are four cases.

1. If x, y ∈ W , then t1 = 1 + wo + 2 ·∆wo and
t2 ≥ 2 + 2 ·min{wo,∆wo}.

2. If x ∈ W and y ∈ O, then t1 = 2 + wo and
t2 ≥ 1 + 3 · wo.

3. If x ∈ O and y ∈ W , then t1 = 2 + wo and
t2 ≥ 2 + 2 ·min{wo,∆wo}.

4. If x, y ∈ O, then t1 = 1 + 3 · wo and t2 ≥
1 + 3 · wo.

White-orange Edge Rule 2. There exist a ver-
tex v ∈ W of degree three and a vertex u ∈ O
of degree three, N(v) = {u, x, y} and N(u) =

{v, z, w} as Fig. 3 (b). The algorithm either (i) se-
lects v and discards u, or (ii) selects u and dis-
cards v, z, w, or (iii) discards both u, v and selects
x, y, z, w. Since there are three branches, we see
that

T (wG) = T (wG − t1) + T (wG − t2) + T (wG − t3).

Notice that N({x, y, z, w}) \ {u, v} 6= ∅, other-
wise G is a small component having only six ver-
tices. There are 9 cases.

1. If x, y, z, w ∈ W , then t1 = 2 + ∆wo, t2 =
3 + wo, and t3 ≥ 5 + wo.

2. If one of x, y is orange and z, w ∈ W , then
t1 = 2+wo, t2 = 3+wo, and t3 ≥ 4+2 ·wo+
min{wo,∆wo}.

3. If x, y ∈ O and z, w ∈ W , then t1 = 1+3 ·wo,
t2 = 3+wo, and t3 ≥ 3+3·wo+min{wo,∆wo}.

4. If x, y ∈ W and one of z, w is orange, t1 =
2+∆wo, t2 = 2+2 ·wo, and t3 ≥ 4+ 2 ·wo+
min{wo,∆wo}.

5. If one of x, y is orange and one of z, w is
orange, t1 = 2 + wo, t2 = 2 + 2 · wo, and
t3 ≥ 3 + 3 · wo +min{wo,∆wo}.

6. If x, y ∈ O and one of z, w is orange, t1 =
1+3 ·wo, t2 = 2+2 ·wo, and t3 ≥ 2+4 ·wo+
min{wo,∆wo}.

7. If x, y ∈ W and z, w ∈ O, t1 = 2+∆wo, t2 =
1+3 ·wo, and t3 ≥ 3+3 ·wo+min{wo,∆wo}.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

15

v u

x y z w

v u

x y

(b) (c)

v u

xy

(a)

Figure 3: (a) Cases ofWhite-orange Edge Rule 1 (b) Cases ofWhite-orange Edge Rule 2 (c) Cases
of White-orange Edge Rule 3. A circle denotes a white vertex, a triangle denotes an orange vertex,
and a square denotes the vertex possibly white or orange.

8. If one of x, y is orange and z, w ∈ O, t1 =
2 + wo, t2 = 1 + 3 · wo, and t3 ≥ 2 + 4 · wo +
min{wo,∆wo}.

9. If x, y, z, w ∈ O, t1 = 1+3 ·wo, t2 = 1+3 ·wo,
and t3 ≥ 1 + 6 · wo.

White-orange Edge Rule 3. There exist a ver-
tex v ∈ W of degree three and a vertex u ∈ O of
degree at least four, N(v) = {u, x, y}, satisfying
N(v) ∩N(u) = ∅ as Fig. 3 (c). The algorithm ei-
ther (i) selects v and discards u, or (ii) selects u
and discards all vertices in N(u), or (iii) discards
both u, v and selects x, y.

Since there are three branches, we see that

T (wG) = T (wG − t1) + T (wG − t2) + T (wG − t3).

Notice that if all orange vertices adjacent to v
have degree at least four. There are three cases.

1. If x, y ∈ W , then t1 = 2+∆wo, t2 ≥ 1+4 ·wo,
t3 ≥ 3 + wo +min{wo,∆wo}.

2. If one of x, y is orange, then t1 = 2 + wo,
t2 ≥ 1+4 ·wo, t3 ≥ 2+2 ·wo+min{wo,∆wo}.

3. If x, y ∈ O, then t1 = 1+3 ·wo, t2 ≥ 1+4 ·wo,
t3 ≥ 1 + 6 · wo.

Notice that there is at most one 3-regular graph
that contains only white vertices assigned to a
node of the search tree from the root to a leaf
since every instance having no orange vertices gen-
erated by the algorithm is an induced subgraph of
the original problem. Thus the 3-Regular Rule

applied to those instances can only increase the
number of leaves by a multiplicative constant. We
may neglect the time analysis of the 3-Regular

Rule.
With the best choice of weight wo = 0.50035,

we obtain that the worst branching rule is the
White Vertex Rule. The worst case happens
when the White Vertex Rule is applied on a
degree-4 white vertex having no orange neigh-
bors. Its corresponding branching vector is (1, 1+

4 · ∆wo) = (1, 2.9986) and branching number is
1.4658. For an instance satisfying the boundary
condition, the algorithm applies Robson’s algo-
rithm [25] to find a maximum independent set and
it takes

O∗(20.276×
wG
wo) = O∗(20.276×

n
wo)

= O∗(20.276×
n

0.50035)

= O∗(1.4658n)

time to solve the problem. Thus, the running time
of the algorithm is O∗(1.4658n).

Theorem 1. The Max 1-pibds problem can be
solved in time O∗(1.4658n).

Corollary 1. The Max 1-bds problem can be
solved in time O∗(1.4658n).

Remark 1. Chang and Hung [11] showed that
if the Max 1-bds problem can be solved in time
O∗(cn), then the Max 2-plex problem can be
solved in time O∗(c∆(G)) where G is the input
graph of the Max 2-plex problem. Since the Max
1-bds problem can be solved in time O∗(1.4658n),
the Max 2-plex problem can be solved in time
O∗(1.4658∆(G)).

Remark 2. It was shown in [8, 11] that if the
Max 1-bds problem can be solved in time O∗(γn)
time, then there exists an p/q-approximation al-

gorithm that runs in time O∗(γ
p

q
·n) for the Max

1-bds problem for any two positive integers p <
q. Since the Max 1-bds problem can be solved
in time O∗(1.4658n), we see that there exists an
p/q-approaximation algorithm that runs in time

O∗(1.4658
p

q
·n) for the Max 1-bds problem for any

two positive integers p < q.

4 Conclusions

In this paper, we use simple branching strate-
gies having at most three branches and a 2-
coloring approach to design a branch-and-reduce

The 31st Workshop on Combinatorial Mathematics and Computation Theory

16

algorithm for the Max 1-bds problem. By apply-
ing measure-and-conquer analysis, we obtain that
the running time of our branch-and-reduce algo-
rithm is O∗(1.4658n). Chen et al. [12] gave a fixed-
parameter algorithm running in time O∗(3.24k) for
the Min 2-BDD problem where k is the the in-
put parameter that indicates the number of ver-
tices being deleted to obtain a bounded-degree-2
set. The open problem is whether the idea in this
paper can be extended to solve the Min 2-bdd
problem in time O∗(ck), c < 3.24.

References

[1] B. Balasundaram, Cohesive subgroup model
for graph-based text mining, Proceedings of
the 2008 IEEE Conference on Automation
Science and Engineering, pp. 989–994, 2008.

[2] B. Balasundaram, S. Chandramouli, and
S. Trukhanov, Approximation algorithms for
finding and partitioning unit-disk graphs into
co-k-plexes, Optimization Letters 4 (2010),
pp. 311–320.

[3] B. Balasundaram, S. Butenko, and
I. V. Hicks, Clique relaxations in social
network analysis: The maximum k-plex
problem, Operations Research 59 (2011),
pp. 133–142.

[4] R. Beigel and D. Eppstein, 3-coloring in
time O(1.3289n), Journal of Algorithms, 54
(2005), pp. 168–204.

[5] N. Betzler, R. Bredereck, R. Niedermeier,
and J. Uhlmann, On bounded-degree vertex
deletion parameterized by treewidth, Discrete
Applied Mathematics 160 (2012), pp. 53–60.

[6] R. van Bevern, H. Moser, and R. Niedermeier,
Approximation and tidying–a problem kernel
for s-plex cluster vertex deletion, Algorith-
mica 62 (2012), pp. 930–950.

[7] D. Binkele-Raible, Amortized Analysis of Ex-
ponential Time- and Parameterized Algo-
rithms: Measure & Conquer and Reference
Search Trees, PhD Thesis, Trier University,
2010.

[8] N. Bourgeois, B. Escoffier, V. Th. Paschos,
Approximation of max independent set, min
vertex cover and related problems by mod-
erately exponential algorithms, Discrete Ap-
plied Mathematics 159 (2011), pp. 1954–
1970.

[9] M.-S. Chang, L.-J. Hung, and P.-C. Su, Exact
and fixed-parameter algorithms for problems
related to 2-plex, Proceedings of ICSEC 2011,
pp. 203–208, 2011.

[10] M.-S. Chang, L.-J. Hung, and P.-C. Su, Mea-
sure and conquer: analysis of a branch-and-
reduce algorithm for the maximum bounded-
degree-1 set problem, Proceedings of the
29th Workshop on Combinatorial Mathemat-
ics and Computation Theory, pp. 136–145,
2012.

[11] M.-S. Chang and L.-J. Hung, Moderately
exponential time approximation algorithms
for the maximum bounded-degree-1 set prob-
lem, in Proceedings of the 30th Workshop on
on Combinatorial Mathematics and Compu-
tation Theory, pp. 23–30, 2013.

[12] Z. Z. Chen, M. Fellows, B. Fu, H. Jiang,
Y. Liu, L. Wand, and B. Zhu, A linear ker-
nel for co-path/cycle packing, Proceedings of
AAIM 2010, LNCS 6124, pp. 90–102.

[13] D. Eppstein, Quasiconvex analysis of
backtracking algorithms, Proceedings of
SODA 2004, pp. 781–790, 2004.

[14] D. Eppstein, Quasiconvex analysis of mul-
tivariate recurrence equations for backtrack-
ing algorithms, ACM Transactions on Algo-
rithms 2 (2006), pp. 492–509.

[15] M. R. Fellows, J. Guo, H. Moser, and R. Nie-
dermeier, A generalization of Nemhauser and
Trotter’s local optimization theorem, Journal
of Computer and System Sciences 77 (2011),
pp. 1141–1158.

[16] F. V. Fomin, F. Grandoni, and D. Kratsch,
Measure and conquer: domination – a
case study, Proceedings of ICALP 2005,
LNCS 3580 (2005), pp. 191–203.

[17] F. V. Fomin, F. Grandoni, and D. Kratsch,
Measure and conquer: a simple O(20.288n)
independent set algorithm, Proceedings of
SODA 2006, pp. 18–25, 2006.

[18] F. V. Fomin, F. Grandoni, and D. Kratsch, A
measure & conquer approach for the analysis
of exact algorithms, Journal of the ACM 56

(2009) Article No. 25.

[19] F. Fomin and D. Kratsch, Exact Exponential
Algorithms, Springer, 2010.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

17

[20] J. Guo, C. Komusiewicz, R. Niedermeier, and
J. Uhlmann, A more relaxed model for graph-
based data clustering: s-plex cluster editing,
SIAM Journal on Discrete Mathematics 24

(2010), pp. 1662–1683.

[21] C. Komusiewicz, F. Hüffner, H. Moser,
and R. Niedermeier, Isolation concepts
for efficiently enumerating dense subgraphs,
Theoretical Computer Science 410 (2009),
pp. 3640–3654.

[22] B. McClosky and I.V. Hicks, Combinatorial
algorithms for the maximum k-plex problem,
Journal of Combinatorial Optimization 23

(2012), pp. 29–49.

[23] H. Moser, R. Niedermeier, and M. Sorge,
Exact combinatorial algorithms and experi-
ments for finding maximum k-plexes, Jour-
nal of Combinatorial Optimization 24 (2012),
pp. 347–373.

[24] N. Nishmura, P. Ragde, and D. M. Thi-
likos, Fast fixed-parameter tractable algo-
rithms for nontrivial generalizations of ver-
tex cover, Discrete Applied Mathematics 152
(2005), pp. 229–245.

[25] J. M. Robson, Algorithms for maximum inde-
pendent sets, Journal of Algorithms 7 (1986),
pp. 425–440.

[26] S. B. Seidman and B. L. Foster, A graph-
theoretic generalization of the clique con-
cept, The Journal of Mathematical Sociology
6 (1978), pp. 139–154.

[27] S. Trukhannov, Novel approaches for solving
large-scale optimization problems on graphs,
PhD Thesis, A&M University, Texas, 2008.

[28] B. Wu and X. Pei, A parallel algorithm for
enumerating all the maximal k-plexes, Pro-
ceedings of PAKDD 2007, LNAI 4819 (2007),
pp. 476–483.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

18

