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Abstract 

 

In this paper, we propose two improved algorithms 

for exact string matching problem, which aims to find 

all the positions i's in a given text where a given 

pattern occurs. Our algorithms find the optimal 

selective comparing order of the pattern so that we 

could have a better performance in the searching 

phase. To find the optimal comparing order, we adopt 

the branch and bound approach. Moreover, our 

proposed algorithm can be combined with other 

existing exact string matching algorithms to improve 

the searching efficiency. The experimental results 

show that our algorithms indeed have the smallest 

number of character comparisons when comparing 

with the other algorithms using different comparing 

order. Besides, our algorithms are also efficient in 

the running time as compared with other existing 

exact string matching algorithms. 

 

 

1 Introduction 
 

In this paper, we are concerned with the exact 

string matching problem in which given a pattern 

m
pppP ...

21
  and a text 

n
tttT ...

21
 , mn  , we are 

asked to find all occurrences of P  in T . Much 

research has been done for this problem [1-27]. The 

most remarkable algorithms, KMP [17] and BM [3], 

have linear searching time in the worst case. Many 

algorithms [3,11,12,16,19] perform efficiently for 

large alphabet size, but few algorithms [4,19] 

preform efficiently for small alphabet size. Since 

many applications, such as anti-virus and DNA 

searching, are of small alphabet size, it is also 

important to design efficient algorithms for these 

cases. However, it is more difficult to design an 

efficient algorithm for small alphabet size. Therefore, 

in this paper, we concentrate on the efficiency of 

string matching algorithms for small alphabet size. In 

this paper, we assume that the size of the alphabet is 

known when we are given P  and T . For example, 

considering the DNA sequence analysis, the size of 

alphabet is 4. 

Considering the brute-force algorithm, we first 

open the window 
m

tttmTW ...),1(
21

  in T  with 

size m  and try to see whether P  exactly matches 

with this window. It compares the window with P  

character by character from left to right. If a 

mismatch is found, slide the window one step to the 

right and then compare the window )1,2(  mTW  

with P . It repeats the processes till the right-most 

window of T  being compared. This approach is an 

exhaustive search approach because every substring 

of length m  in T  is compared, and the time 

complexity in worst case is )(mnO . Nearly all exact 

string matching algorithms try to avoid such kind of 

exhaustively searching. In the following, we shall 

introduce the Sunday algorithm [24] which allows us 

to avoid an exhaustive search. 

 

The Sunday’s Algorithm 

 

In the Sunday algorithm [24], it compares 

characters of the window with P  by using a 

specified order for every different P . Given a string 

m
pppmP 

21
),1(  , )(iD  for mi 1 , is the 

distance between 
i

p  and the right most character 

equal to 
i

p  to the left of location i  if such a 

character exists in )1,1( iP ; otherwise, iiD )( .  

For example, suppose that gtactagtgctaP  . Then 

its )(iD ’s are also shown in the following table. 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 

P a c t a g t g c t a g t 

)(iD  1 2 3 3 5 3 2 6 3 6 4 3 

 

Having )(iD ’s, we may now determine the order 

of character comparisons. The location with the 

largest )(iD  will be the first one and that with the 

second largest )(iD  will be the second and so on. 

Let I  be an integer array that is a permutation of 

},,2,1{ m , and ][ jI  be the location of the j-th 

character in P to be compared. That is, for a window 

m
wwwW 

21
 , we compare 

]1[I
p  against 

]1[I
w  

first, and then 
]2[I

p  against 
]2[I

w  and so on. We 

denote the values of 
1

]1[ iI  , 
2

]2[ iI  , …, 

m
imI ][  by ],,,[

21 m
iiiI  . The table below gives 

the order of the pattern in the above table. 
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j 1 2 3 4 5 6 7 8 9 10 11 12 

][ jI  10 8 5 11 12 9 6 4 3 7 2 1 

 

Next, we need to compute the number of steps to 

slide the window to the right when the first mismatch 

is found. Suppose that we find the first mismatch at 

][ jI
p . This means that 

][iI
p  matches with 

][iI
w  for 

11  ji . If we slide the window x  steps to the 

right, then 
)][( xiI

p


 will be aligned with 
][iI

w  for 

each 11  ji  if 0][  xiI . Note that if 

0][  xiI , then 
][iI

w  will not be aligned with any 

character in P . Since 
][][ iIiI

pw   for all 

11  ji  and 
][][ jIjI

pw  , we have 

)][(][][ xiIiIiI
ppw


  for all 11  ji  if 

0][  xiI  and 
)][(][][ xjIjIjI

ppw


  if 

0][  xjI . Therefore, we can decide the value of 

x  by satisfying 
)][(][ xiIiI

pp


  for all 11  ji  

if 0][  xiI  and 
)][(][ xjIjI

pp


  if 0][  xjI .  

This can be done in preprocessing. Note that we 

should have a minimum number of steps to slide the 

window to satisfy the above condition so that we will 

not miss any solution. The sliding distance   used 

in Sunday algorithm [24] is defined as follows. For 

all mj 1 , ][ j  is the minimum mshift , where 

mshift  is a positive integer, such that the following 

two conditions are satisfied: 

Condition (1) Either 1)][( mshiftiI  or 

)][(][ mshiftiIiI pp   for all 11  ji . 

Condition (2) Either 1)][( mshiftjI  or 

)][(][ mshiftjIjI pp  .   

For 1 mj , ][ j  is the minimum value of 

mshift  such that either 1)][( mshiftiI  or 

)][(][ mshiftiIiI
pp


  for all 11  ji . We denote the 

values of 
1

]1[ d , 
2

]2[ d , …, 
1

]1[



m

dm  

by ],,,[
121 


m

ddd  . 

For the example of agccaP   and 

]1,4,2,3,5[I , it can be verified that 

]4,4,4,4,4,1[ . Note that if the comparing order is 

from left to right, i.e. ],,2,1[ mI  ,   is equal to 

the sliding function used in KMP algorithm. If the 

comparing order is from right to left, i.e. 

]1,,1,[ mmI ,   is equal to one of the sliding 

functions used in BM algorithm. Sunday proposed 

two algorithms [24] which used different comparing 

orders, and both of them are better than KMP and 

BM algorithms. Note that the values of   can be 

computed in preprocessing. The algorithm for 

finding the sliding distance   will not be described 

in this paper. We refer the readers to [24] for the 

algorithm. In the following section, we present our 

algorithm [20] which improved the Sunday 

algorithm. 

 

 

2 Our Improved Algorithm 
 

Consider the example with aaaaataP   and the 

alphabet  tgca ,,, . The Sunday algorithm will 

first compare tp 
6

 with 
6

w  of the window. If 

66
wp  , it then compares 

7
p  with 

7
w . Suppose 

that the first mismatch is found at the second 

comparison, i.e. 
77

wp  . We then slide the window 

seven steps to the right. If the first mismatch occurs 

at the first comparison, i.e. 
66

wp  , we can slide the 

window only one step to the right because 
65

pp  . 

However, in this example, suppose that we compare 

5
p  with 

5
w  first and then 

6
p  with 

6
w . If 

55
wp   and 

66
wp  , we can slide the window only 

one step to the right because app 
54

 and 

65
pp  . If 

55
wp  , we then can slide the window 

five steps to the right because the characters in 

)5,1(P  are all equal to ''a . In this example, the 

alphabet size is 4. Then for two random characters 

x  and y  from the alphabet, the probability of 

yx   is 41  and that of yx   is 43 . Therefore, 

if we compare 
6

p  with 
6

w  first and then 
7

p  with 

7
w , we have 43  probability to slide the window 

one step to the right, and 163)43()41(   

probability to slide the window seven steps to the 

right. However, if we compare 
5

p  with 
5

w  first 

and then 
6

p  with 
6

w , we have 43  probability to 

slide the window with five steps, and 

163)43()41(   probability to slide the window 

with one step. If we only consider the cases where 

the first mismatch occurs at the first and the second 

comparisons, the expected number of steps to slide a 

window for Sunday algorithm is 1)43(  

16337)163(  , and that for comparing 
5

p  with 

5
w  first and then 

6
p  with 

6
w  is 5)43(  

16631)163(  . It can be realized that the latter 

comparing order is better than the former used in 

Sunday algorithm. 

For a comparing order I , we can compute its 

sliding distance  . Assume that the first mismatch 

occurs at the position ][iI . This means that  

][][ jIjI
wp   for )1(1  ij  and 

][][ iIiI
wp  . 

Then we can slide the window ][i  steps to the 

right. Let   be the alphabet size. The probability of 

][][ jIjI
wp   for all )1(1  ij  and 

][][ iIiI
wp   is 

).)1(()1( 1  i  Therefore, the probability of 

sliding the window by ][i  steps is 

).)1(()1( 1  i  To measure the goodness of a 

comparing order and its sliding distance  , we 

define a function AVGS  to compute the expected 

number of steps to slide a window as follows.  

 

].1[)1(][))1(()1()(
1

1 









 



 miAVGS m
m

i

i 

 

For example, let aaaaataP  . Consider the 

comparing order 
1

I  and its sliding distance, denoted 

by 
1

 , which are shown in the following table. 
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i=1.
j=1

low
AVGSAVGS

I







75.1)(

]4,4,4,4,1[

.1]1[

1,1

1,1

.75.1
low

AVGS

j=2 j=3 j=4

j=1 j=3 j=4

To be branched

i=2.

j=1 j=3
i=3.

Set AVGSlow=1.94.

i=4.

P=aatc

low
AVGSAVGS

I







5.2)(

]4,4,4,4,2[

.2]1[

2,1

2,1

low
AVGSAVGS

I







75.1)(

]4,4,4,4,1[

.3]1[

3,1

3,1

low
AVGSAVGS

I







75.1)(

]4,4,4,4,1[

.4]1[

4,1

4,1

Be terminated Be terminated Be terminated

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.1]2[

1,2

1,2

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.3]2[

3,2

3,2

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.4]2[

4,2

4,2

To be branched

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.1]3[

1,3

1,3

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.3]3[

3,3

3,3

To be branched

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.1]4[

1,4

1,4

j=1

 

Fig. 1. An iteration of our branch and bound approach to find the optimal comparing order. 

 

j 1 2 3 4 5 6 7 8 

][1 jI  5 6 7 4 3 2 1  

][1 j  5 1 7 6 6 6 6 6 

 

Then, by the definition, we have  )(
1

AVGS  

5)43(  + 1)43()41(  + 7)43()41( 2  +…+   

.36.46)41(6)43()41( 76   Let us consider 

another comparing order 
S

I  and its sliding distance, 

denoted by 
S

 , used in Sunday algorithm as shown 

in the following table. 

 

j 1 2 3 4 5 6 7 8 

][ jI
S

 6 7 5 4 3 2 1  

][ j
S

  1 7 6 6 6 6 6 6 

 

Then we have  1)43()(
S

AVGS  

.44.26)41(...6)43()41(7)43()41( 72 

By comparing )(
1

AVGS  with )(
S

AVGS  , we 

may conclude that the comparing order 
1

I  is better 

than 
S

I  because )()(
1 S

AVGSAVGS  . 

If we can find the optimal comparing order 
OPT

I  

such that its sliding distance, denoted by 
OPT

 , has 

the maximal value of 
OPT

AVGS  where 

)(
OPTOPT

AVGSAVGS  , we would have the best 

performance in searching phase. However, the 

number of possible comparing orders is the factorial 

of m . It is not practical to perform an exhaustive 

search to find the optimal comparing order. In the 

following, we give a branch and bound algorithm to 

efficiently find the optimal comparing order. 

Consider the example where aatcP  . The 

comparing order of Sunday algorithm is 

]1,2,3,4[
S

I  and its sliding distance is 

]4,4,4,4,1[
S

 . If we use this comparing order, we 

have .75.1)( 
S

AVGS  Then we can use it as a 

lower bound of 
OPT

AVGS , denoted by 
low

AVGS , 

that is, 75.1)( 
Slow

AVGSAVGS . Next, we use a 

branch and bound strategy for finding the optimal 

comparing order as illustrated in Fig. 1. 

In our branch and bound approach, we adopt the 

depth first branching strategy. The nodes at level i  

of our branch and bound tree represent all the 

possible values ][iI . Therefore, if we reach level i , 

the values of ][ jI  for all ij 1  have been 

determined. Let 
ji ,

  denote the sliding distance   

for setting jiI ][  at level i , ][][
,

kk
ji

  for 

ik 1 , and mk
ji

 ][
,

 for 1 mki . Note 
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that for each level i  of the branch and bound tree, 

every node is related to a possible value of ][iI . 

Consider the first level of the tree in the Fig. 1, i.e., 

1i . Any character of P  can be the first one to be 

compared in a window. We compute the s
j
'

,1
  for 

41  j . Consider the case where 
2

p  is the first 

character to be compared. If 
2

p  mismatches with its 

corresponding character in a window, we can slide 

the window 2 steps to the right because app 
21

. 

Therefore, we set 2]1[
2,1

 . As for the values of 

sk]'[
2,1

  for 51  k , we set all of them as 4m  

so that )(
2,1

AVGS  is a upper bound of the 

AVGS ’s in this branch. That is, if )(
2,1

AVGS  is 

smaller than or equal to 75.1
low

AVGS , we then 

can terminate this branch. In this example, only the 

branch 2]1[  jI  will be branched. 

In the second level, 2i , under the situation that 

2
p  is the first compared character, there are three 

possibilities to choose one of 
1

p , 
3

p , and 
4

p  as 

the next compared character. For each possibility, we 

compute the values of 
1,2

 , 
3,2

 , and 
4,2

  and 

branch the node whose AVGS  value is the largest. 

We repeat the processes and if it can be branched to 

the level mi  , we then compute the sliding 

distance  . If 
low

AVGSAVGS )( , we then set 

)( AVGSAVGS
low

 and record this better 

comparing order I . In this example, we reach the 

level mi  , and the value of )(AVGS  is 1.94 

which is larger than 75.1
low

AVGS . Thus, we set 

94.1
low

AVGS  and record the comparing order 

]1,3,4,2[I  which is better than that of Sunday 

algorithm. Note that there are still three nodes to be 

branched. However, all of the branches will be 

terminated immediately because their AVGS  

values are smaller than or equal to 94.1
low

AVGS . 

Note that for the very long patterns, it may still 

take long time to search the optimal comparing order. 

However, the effectiveness of the higher levels, say 

level 5i , would not be significant. By the 

definition of AVGS , the value do not have 

significant differences for the different comparing 

orders of 5i . Therefore, in practice, we may use a 

level bound LvBound  to serve as a termination 

condition, that is, if the branch and bound procedure 

reaches the level LvBound , we terminate it. Our 

algorithm to find the optimal scanning order is 

described in Preprocessing of Algorithm 1. 

 
 

Preprocessing of Algorithm 1 ( P , , LvBound ): A branch and bound algorithm to find the optimal scanning 

order  

 
Input: A pattern P , alphabet size   and an integer LvBound . 

Output: The optimal scanning order OPTI  and OPT . 

 
1: Compute the scanning order I  and its shifting function   used in Sunday’s Algorithm. Set 

)( AVGSAVGSOPT . 
2: Set 0][ jCheckPos  for all mj 1 . 

3:  ),( OPTOPTI FindOpt_branch_and_bound(1, I , OPTAVGS ,  , LvBound , CheckPos ). 

4: Return OPTI  and its shifting function OPT . 
 

 

 

FindOpt_branch_and_bound ( i , I , OPTAVGS ,  , LvBound , CheckPos ). 

 

Input: An integer i , an integer array I , an integer OPTAVGS , alphabet size  , an integer LvBound , and 

an integer array CheckPos . 

Output: The optimal scanning order OPTI  and its shifting function OPT . 

 

1: if LvBoundi   then          /* Termination conditions */ 

2: for mj   to 1j  do 

3:    If 0][ jCheckPos , set jiI ][ , 1][ jCheckPos , and 1 ii . 

4: end for 

5: Compute the shifting function   of I . 
6: If OPTAVGSAVGS )( , set )( AVGSAVGSOPT , IIOPT  , and OPT . 

7: Return ),( OPTOPTI  . 

8: end if 

9: if mi   then 

10: For every j , where mj 1 , such that 0][ jCheckPos , set jiI j ][  and compute the shifting 

function ]1[ ij  . Set the values of mmij  ]11[  . 
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11: while ( )( jAVGS  OPTAVGS  for some j ) do          /* bound */ 

12: Find the maxj  such that )( maxj
AVGS   is the largest among all mjmax 1  and maxj  is the 

largest.  

13: Set 0)( max 
j

AVGS  and 1][ max jCheckPos .  /* branch */ 

14: OPTI =FindOpt_branch_and_bound( ,1i  ,maxj
I  ,OPTAVGS  ,  ,LvBound  CheckPos ).                       

15: Set 0][ max jCheckPos . 

16: end while 

17: end if 

18: else        /* i=m+1 */ 

19: Compute the shifting function   of I . 
20: If OPTAVGSAVGS )( , set )( AVGSAVGSOPT , IIOPT  , and OPT . 

21: Return ),( OPTOPTI  . 

22: end else 

 

 

Our complete algorithm using optimal scanning order for the exact string matching problem is described in 

Algorithm 1. 

 

 

Algorithm 1 ( P , T ,  , LvBound ) 

 

Input: A pattern P , a text string T , alphabet size  , and an integer LvBound . 

Output: All the occurrences of P  in T . 

 

1: Compute ),(I  Preprocessing of Algorithm 1 ( P , , LvBound ). 

2: Set 1i . 

3: while 1 mni  do 

4: Set 1j . 

5: while mj   do 

6: if 1][][  jIijI tp  then exit the inner loop. 

7: else set 1 jj . 

8: end while 

9: if 1mj  then report the position i . 

10: Set ][ jii  . 

11: end while 

 

 

 

3 A Combined Algorithm of Algorithm 
1 and HASHq Algorithm 

 

The most recent survey [13] shows that HASHq 

algorithm [19] is very efficient for small alphabet. In 

this section, we combine the HASHq algorithm with 

our algorithm proposed in the previous section. As 

can be seen from our experimental results, the 

combined algorithm is more efficient than our 

proposed Algoriehm 1 and the HASHq algorithm. 

The HASHq algorithm is similar to the Horspool 

algorithm. Given a window, it checks whether a 

suffix of the window is equal to a suffix of the 

pattern. If it is not, it slides the window; otherwise, it 

uses a very simple left-to-right comparison method to 

determine whether there is an exact match. To check 

whether a suffix of the window is equal to a suffix of 

the pattern, the HASHq algorithm uses a simple 

hashing function h  to transform a substring with 

length q  into an integer value within 0 and 255. 

Therefore, if two strings A  and B  are equal, then 

)()( BhAh  . But if )()( BhAh  , then it does not 

imply BA  . Thus, if  )),1(( mqmWh  

)),1(( mqmPh  , we start to determine whether 

there is an exact match. 

The hashing function is to serve as a filtering 

mechanism. It also can help us to decide the number 

of steps to slide the window. Suppose that the length 

of the suffix is q  and that i  is the largest integer 

such that mi   and  )),1(( mqmWh       

)),1(( iqiPh  . Then we slide the window to the 

right by im  steps. The algorithm performs a 

pre-processing on the pattern P  to derive the 

sliding table. The sliding table is of length 256. For 

all 2550  x , the preprocessing constructs a 

sliding table shift  with imxshift ][  if there 

exists 
iqiqi

ppp 
21 

 which is the rightmost 

substring of P  such that xppph
iqiqi



)(

21
  

and qmxshift ][ , otherwise, where miq  .  

For miq  , we compute )(
21 iqiqi

ppph 


. For 
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mi  , we let )(
21 mqmqmm

ppphx 


 . Then 

0][  mmxshift
m

. In addition, the preprocessing 

uses another variable 1sh  with 1sh  

)]([
21 jqjqj

ppphshift 


 if 
jqjqj

ppp 
21 

 is the 

second rightmost substring of P  such that 

mjqjqj
xppph 


)(

21
  and qmsh 1 , otherwise, 

where mjq  . 

For a window ),1( mW  in the searching phase, 

the HASHq first checks if )]([
21 mqmqm

wwwhshift 


 

is equal to 0 or not. That is, it checks if the hashing 

value of the suffix with length q  of W  is equal to 

the hashing value of the suffix with length q  of P . 

If )]([
21 mqmqm

wwwhshift 


 is not equal to 0, then 

the HASHq algorithm slides the window 

)]([
21 mqmqm

wwwhshift 


 steps to the right. 

Otherwise, it compares the characters of the window 

against those of P  from left to right. After it, the 

HASHq slides the window 1sh  steps to the right. 

Basically, the HASHq algorithm can be considered as 

a filtering algorithm. It only checks the windows 

with the value .0)]([
21


 mqmqm

wwwhshift   

Therefore, it would be very efficient if most of the 

windows are filtered out. 

The HASHq algorithm is very good at filtering. 

But it uses a straightforward algorithm to determine 

whether PW  . It does not consider the order of 

character comparisons. The value of 1sh  may be 

small for some patterns and this makes the sliding of 

the window inefficient. For example, consider 

gcataaaaP   and 3q . The value of 1sh  is 1 

because )(
11  mqmqm

ppph  = )(aaah = 

)(
21 mqmqm

ppph 


, where 8m  in this example. 

Consider the window gcgtaaaaW  , the HASHq 

algorithm will compare the characters 
1

w , 
2

w  and 

3
w  with 

1
p , 

2
p  and 

3
p , respectively. It finds a 

mismatch when comparing gw 
3

 with ap 
3

 

and then slides the window to the right by one step 

since 11sh . If we use the idea of our proposed 

algorithm in the previous section to find a good 

comparing order, we may slide the window more 

steps in this case. 

Below, we try to find a good comparing order I  

as well as a sliding distance to replace the checking 

step of HASHq algorithm. Suppose that 

)),1(()),1(( mqmWhmqmPh  . We first 

define a new sliding distance 
q

 . This sliding 

distance is similar to the sliding distance   

introduced in the previous section. For all mj 1 , 

][ j
q

  is the minimum value of mshift  with 

satisfying the following three conditions: 

 

(1) Either 1)][( mshiftiI  or )][(][ mshiftiIiI pp   

for all 11  ji . 

(2) Either 1)][( mshiftjI  or )][(][ mshiftjIjI pp  . 

We now add another rule: 

(3) Either qmshiftm  )(  or mshiftqmph  1(   

 )mshiftmp )( 1 mqm pph  . 

 

For 1 mj , ][ jq  is the minimum value of 

mshift  that satisfies the following conditions.  

 

(1) Either 1)][( mshiftiI  or )][(][ mshiftiIiI pp   

for all 11  ji . 

(2) Either qmshiftm  )(  or mshiftqmph  1(  
)() 1 mqmmshiftm pphp   . 

 

Consider the example that gcataaaaP   and 

3q .  A comparing order I  and the sliding 

distance q  are shown in the following. 

 

j 1 2 3 4 5 6 7 8 9 

][ jI  5 1 2 3 4 6 7 8  

][ jq  1 6 6 6 6 6 6 7 8 

 

In this example, 6]2[ 
q

 because 6mshift  

is the minimum value to satisfy the required three 

conditions, as shown as follows. 

(1) 1656]1[ I . 

(2) 1616]2[ I . 

(3) 3686  qm . 

 

It can be verified that 2]2[   since it does not 

need to meet the condition 3 required by 
q

 . Note 

that it is not hard to see that ][][ ii
q

  for all 

mi 1 . 

In this combined algorithm, we do not have to use 

the branch and bound algorithm introduced in the 

previous section to find the optimal comparing order 

OPT
I  with the largest )(

q
AVGS   for the entire 

pattern. Suppose that 


)(
21 mqmqm

ppph   
)(

21 mqmqm
wwwh 


. It means that the substring 

mqmqm
ppp 

21 
 may have very high probability to 

be equal to 
mqmqm

www 
21 

. If we compare the 

characters of 
mqmqm

www 
21 

 in the very 

beginning, we would need to compare more 

characters to find a mismatch if it exists. Note that 

this is also the reason that the HASHq algorithm 

compares the characters of the window from left to 

right. Thus, in our combined algorithm, we set 

iiI ][  for miqm  1  and find the optimal 

comparing order ][iI  for qmi 1  such that 

)(
q

AVGS   is the maximal. 

Consider the example with gcataaaaP   and 

3q . The optimal comparing order I  and the 

sliding distance 
q

  used in our combined algorithm 

are shown in the following. 

 

j 1 2 3 4 5 6 7 8 9 

][ jI  5 1 2 3 4 6 7 8  

][ jq  1 6 6 6 6 6 6 7 8 

 

In this example, we first set 6]6[ I , 7]7[ I , 

8]8[ I  because 3q , and then find the optimal 

comparing order for the positions 1 to 5. In the 
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searching phase, we first compare 
5

p  with 
5

w  

first. If 
55

wp  , we then compare 
1

p  with 
1

w  and 

so on. Suppose that the mismatch occurs at the 

second comparison, i.e., 
11

wp  . Then we can slide 

the window to the right by 6]2[ 
q

 steps. Suppose 

that the window gcgtaaaaW  . Then, we can find 

the first mismatch occurring at 
3

w  and hence we 

can slide the window 6]4[ 
q

 steps to the right. 

Note that 6]4[ 
q

 is larger than the shift value 

11sh  which is used in the original HASHq 

algorithm. 

For the patterns with )2/(1 msh  , we use the 

original HASHq algorithm for the searching phase. 

For the patterns with )2/(1 msh  , we use our 

optimal comparing order to improve the efficiency 

for sliding the window. 

The following Algorithm 2 is the combination of 

Algorithm 1 and the HASHq algorithm, where 

preprocessing_step_of_HASHq is a subroutine used 

in the HASHq algorithm to find the sliding table 

shift  and 1sh , and searching_step_of_HASHq is a 

subroutine of the HASHq algorithm to perform the 

searching phase. 

The Preprocessing of Algorithm 2 is obtained from 

Preprocessing of Algorithm 1 by the following 

modifications. 

Line 1: Set iiI ][  for miqm  1  and 

then compute the comparing order ][iI  for 

qmi 1  by using the Sunday’s algorithm.  

Compute 
q

  for ][iI . Set 
low

AVGS )(
q

AVGS  . 

Line 2: Set 0][ jCheckPos  for qmi 1  

and 1][ iCheckPos  for miqm  1 . 

Substitute   by 
q

  in the functions 

Preprocessing of Algorithm 1 and FindOpt_branch_ 

and_bound. 

 
 

 

Algorithm 2 ( P , T ,  , LvBound , q ) 

 

Input: A pattern P , a text string T , alphabet size  , an integer LvBound  and an integer q . 

Output: All the occurrences of P  in T . 

 

1: ),(___)1,( qPHASHofstepingpreprocessshshift q .  

2: if )2/(1 msh   then do )1,,,,(___ shshiftqTPHASHofstepsearching q  and exit.  

3: Compute  ),( qI  Preprocessing of Algorithm 2 ( P , , LvBound , q ). 

4: Set 1i . 

5: while 1 mni  do 

6: Set 1sh . 

7: while 0sh  and 1 mni  do 

8: Set )]([ 11  miqmiqmi wwwhshiftsh  . 

9: Set shii  . 

10: end while 

11: Set 1j . 

12: while mj   do 

13: if 1][][  jIijI tp  then exit the inner loop. 

14: else set 1 jj . 

15: end while 

16: if 1mj  then report the position i . 

17: Set ][ jii q . 

18: end while 

 

 

 

4 Experiments 

 
In our experiments, we randomly generated a text 

T  of size n 1G and patterns of size 

}40,3530,5,2,20,15,10,5{m  by using different 

alphabet sizes with }26,8,4,2{ . We tested the 

performances of Algorithm 1 (Alg1 for short) and 

Algorithm 2 with 3q  (Alg2_H3 for short) by 

using 4LvBound . We first tested the performance 

our Algorithm 1 by comparing the number of its 

character comparison and the total running time 

(including the pattern preprocessing time and the text 

searching time) with those obtained by the other 

algorithms which use the different comparing orders: 

(1) KMP algorithm [17] (KMP) with left-to-right 

comparing order. (2) Boyer-Moore algorithm [3] 

without the bad character rule (BM-bc) that uses 

right-to-left comparing order. (3) The Sunday’s 

maximal shift algorithm [24] (MS). The experimental 

results are shown in Table 1. Next, we compared the 

total running times of our algorithms with those of 
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other algorithms which perform efficiently in 

practice. The tested algorithms are listed follows.  

Boyer-Moore algorithm [3] (BM), shift-and 

algorithm [4] (SA), TVSBS algorithm [27] (TVSBS), 

EBOM algorithm [12] (EBOM), Horspool algorithm 

[16] (H80), tuning BNDM algorithm with 2-Grams 

[11] (SBNDMq2), FJS algorithm [10] (FJS), and 

HASHq algorithm with 3q  [19] (HASH3). The 

results are shown in Tables 2-3. Note that for these 

algorithms, we used the C codes which were 

implemented and used in [13]. The running time was 

measured by using hardware cycle counter and 

averaged over 100 random patterns in each 

experiment. 

 

Table 1. The number of character comparisons (million)/the total running time (sec) for the 

algorithms with different scanning orders. 

Alphabet size m KMP BM-bc MS Alg1 

2 

5 1338/1121 860/755 877/796 795/717 

15 1329/1107 510/450 492/476 374/359 

25 1320/1107 411/366 404/397 260/262 

35 1331/1106 356/319 349/351 216/222 

4 

5 1196/905 732/553 747/565 650/507 

15 1198/907 531/402 423/320 336/267 

25 1197/905 443/337 319/243 243/195 

35 1200/908 421/321 297/227 199/163 

8 

5 1108/562 781/397 795/405 686/359 

15 1107/561 610/313 479/248 417/221 

25 1109/561 534/274 358/188 308/167 

35 1111/562 498/257 293/155 245/135 

26 

5 1037/360 898/313 905/315 839/295 

15 1038/360 752/264 694/244 616/218 

25 1038/359 653/229 553/197 519/185 

35 1037/360 624/221 465/167 435/156 

 

 

Table 2. The comparison of total running time (sec) for 2||  . 

m 5 10 15 20 25 30 35 40 

BM 918 678 548 495 445 412 387 377 

SA 366 359 349 353 365 374 220 210 

TVSBS 765 791 807 772 796 835 821 797 

EBOM 707 425 305 236 194 166 144 128 

H80 970 992 1059 1017 1020 1005 1023 1021 

SBNDMq2 641 334 222 166 133 114 106 106 

FJS 914 1102 1142 1090 1134 1151 1132 1127 

HASH3 468 269 215 209 195 196 193 198 

Alg1 706 465 356 298 258 235 219 211 

Alg2_H3 464 254 198 171 155 147 138 132 
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Table 3. The comparison of total running time (sec) for 4||  . 

m 5 10 15 20 25 30 35 40 

BM 545 403 379 327 328 316 320 303 

SA 374 374 374 373 373 373 224 224 

TVSBS 386 261 214 188 176 164 165 160 

EBOM 244 179 141 115 96 83 74 66 

H80 483 351 340 312 322 318 340 328 

SBNDMq2 240 168 124 97 79 67 64 64 

FJS 595 522 525 491 515 506 514 514 

HASH3 288 132 99 84 74 70 69 66 

Alg1 492 329 260 221 191 171 159 151 

Alg2_H3 287 131 98 83 74 68 65 62 

 

 

The experimental results can be summarized as 

follows: 

 

(1) According to Table 1, our proposed algorithm 

Alg1, improves the Sunday’s maximal shift 

algorithm (MS) in all cases and is also better than the 

other algorithms using different comparing orders, 

such as KMP and BM-bc algorithms.  

(2) Our algorithm Alg2_H3 improves the HASH3 

algorithm in all cases. 

(3) Comparing to other algorithms, our algorithm 

Alg2_H3 is most efficient for 5m  to 15 when 

2||   and for 10m  to 25 when 4||  . Note 

that the cases with 5m  to 15 and 2||   are the 

most time-consuming. 

 

 

5 Conclusion and Future Research 

 

In this paper, we proposed a branch and bound 

algorithm to find the optimal comparing order to 

minimize the number of character comparisons. Our 

experimental results have shown that this algorithm 

indeed has the smallest number of character 

comparison in all experimental cases, especially 

when the size of alphabet is small. In addition, we 

proposed another algorithm by combining our 

approach of computing an optimal comparing order 

with the HASHq algorithm and showed that this 

algorithm is most efficient among all of the tested 

algorithms for some cases. It will be interesting 

future work to analyze the time complexity of our 

branch and bound algorithm or to find a polynomial 

algorithm for finding the optimal comparing order. It 

would also be interesting to analyze the average-case 

time complexity of the string matching algorithm 

using the optimal comparing order. 
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