
Improved Exact String Matching Algorithms Based upon Selective

Matching Order and Branch and Bound Approach

Chia Wei Lu
1
, Chin Lung Lu

1
 and R. C. T. Lee

1, *

1
Department of Computer Science

National Tsing Hua University, Hsinchu City, Taiwan, ROC

d9762807@oz.nthu.edu.tw, cllu@cs.nthu.edu.tw, rctlee@rctlee.cyberhood.net.tw

Abstract

In this paper, we propose two improved algorithms

for exact string matching problem, which aims to find

all the positions i's in a given text where a given

pattern occurs. Our algorithms find the optimal

selective comparing order of the pattern so that we

could have a better performance in the searching

phase. To find the optimal comparing order, we adopt

the branch and bound approach. Moreover, our

proposed algorithm can be combined with other

existing exact string matching algorithms to improve

the searching efficiency. The experimental results

show that our algorithms indeed have the smallest

number of character comparisons when comparing

with the other algorithms using different comparing

order. Besides, our algorithms are also efficient in

the running time as compared with other existing

exact string matching algorithms.

1 Introduction

In this paper, we are concerned with the exact

string matching problem in which given a pattern

m
pppP ...

21
 and a text

n
tttT ...

21
 , mn  , we are

asked to find all occurrences of P in T . Much

research has been done for this problem [1-27]. The

most remarkable algorithms, KMP [17] and BM [3],

have linear searching time in the worst case. Many

algorithms [3,11,12,16,19] perform efficiently for

large alphabet size, but few algorithms [4,19]

preform efficiently for small alphabet size. Since

many applications, such as anti-virus and DNA

searching, are of small alphabet size, it is also

important to design efficient algorithms for these

cases. However, it is more difficult to design an

efficient algorithm for small alphabet size. Therefore,

in this paper, we concentrate on the efficiency of

string matching algorithms for small alphabet size. In

this paper, we assume that the size of the alphabet is

known when we are given P and T . For example,

considering the DNA sequence analysis, the size of

alphabet is 4.

Considering the brute-force algorithm, we first

open the window
m

tttmTW ...),1(
21

 in T with

size m and try to see whether P exactly matches

with this window. It compares the window with P

character by character from left to right. If a

mismatch is found, slide the window one step to the

right and then compare the window)1,2( mTW

with P . It repeats the processes till the right-most

window of T being compared. This approach is an

exhaustive search approach because every substring

of length m in T is compared, and the time

complexity in worst case is)(mnO . Nearly all exact

string matching algorithms try to avoid such kind of

exhaustively searching. In the following, we shall

introduce the Sunday algorithm [24] which allows us

to avoid an exhaustive search.

The Sunday’s Algorithm

In the Sunday algorithm [24], it compares

characters of the window with P by using a

specified order for every different P . Given a string

m
pppmP 

21
),1( ,)(iD for mi 1 , is the

distance between
i

p and the right most character

equal to
i

p to the left of location i if such a

character exists in)1,1(iP ; otherwise, iiD )(.

For example, suppose that gtactagtgctaP  . Then

its)(iD ’s are also shown in the following table.

i 1 2 3 4 5 6 7 8 9 10 11 12

P a c t a g t g c t a g t

)(iD 1 2 3 3 5 3 2 6 3 6 4 3

Having)(iD ’s, we may now determine the order

of character comparisons. The location with the

largest)(iD will be the first one and that with the

second largest)(iD will be the second and so on.

Let I be an integer array that is a permutation of

},,2,1{ m , and][jI be the location of the j-th

character in P to be compared. That is, for a window

m
wwwW 

21
 , we compare

]1[I
p against

]1[I
w

first, and then
]2[I

p against
]2[I

w and so on. We

denote the values of
1

]1[iI  ,
2

]2[iI  , …,

m
imI ][by],,,[

21 m
iiiI  . The table below gives

the order of the pattern in the above table.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

19

j 1 2 3 4 5 6 7 8 9 10 11 12

][jI 10 8 5 11 12 9 6 4 3 7 2 1

Next, we need to compute the number of steps to

slide the window to the right when the first mismatch

is found. Suppose that we find the first mismatch at

][jI
p . This means that

][iI
p matches with

][iI
w for

11  ji . If we slide the window x steps to the

right, then
)][(xiI

p


 will be aligned with
][iI

w for

each 11  ji if 0][ xiI . Note that if

0][ xiI , then
][iI

w will not be aligned with any

character in P . Since
][][iIiI

pw  for all

11  ji and
][][jIjI

pw  , we have

)][(][][xiIiIiI
ppw


 for all 11  ji if

0][ xiI and
)][(][][xjIjIjI

ppw


 if

0][ xjI . Therefore, we can decide the value of

x by satisfying
)][(][xiIiI

pp


 for all 11  ji

if 0][ xiI and
)][(][xjIjI

pp


 if 0][ xjI .

This can be done in preprocessing. Note that we

should have a minimum number of steps to slide the

window to satisfy the above condition so that we will

not miss any solution. The sliding distance  used

in Sunday algorithm [24] is defined as follows. For

all mj 1 ,][j is the minimum mshift , where

mshift is a positive integer, such that the following

two conditions are satisfied:

Condition (1) Either 1)][(mshiftiI or

)][(][mshiftiIiI pp  for all 11  ji .

Condition (2) Either 1)][(mshiftjI or

)][(][mshiftjIjI pp  .

For 1 mj ,][j is the minimum value of

mshift such that either 1)][(mshiftiI or

)][(][mshiftiIiI
pp


 for all 11  ji . We denote the

values of
1

]1[d ,
2

]2[d , …,
1

]1[



m

dm

by],,,[
121 


m

ddd  .

For the example of agccaP  and

]1,4,2,3,5[I , it can be verified that

]4,4,4,4,4,1[ . Note that if the comparing order is

from left to right, i.e.],,2,1[mI  ,  is equal to

the sliding function used in KMP algorithm. If the

comparing order is from right to left, i.e.

]1,,1,[mmI ,  is equal to one of the sliding

functions used in BM algorithm. Sunday proposed

two algorithms [24] which used different comparing

orders, and both of them are better than KMP and

BM algorithms. Note that the values of  can be

computed in preprocessing. The algorithm for

finding the sliding distance  will not be described

in this paper. We refer the readers to [24] for the

algorithm. In the following section, we present our

algorithm [20] which improved the Sunday

algorithm.

2 Our Improved Algorithm

Consider the example with aaaaataP  and the

alphabet  tgca ,,, . The Sunday algorithm will

first compare tp 
6

 with
6

w of the window. If

66
wp  , it then compares

7
p with

7
w . Suppose

that the first mismatch is found at the second

comparison, i.e.
77

wp  . We then slide the window

seven steps to the right. If the first mismatch occurs

at the first comparison, i.e.
66

wp  , we can slide the

window only one step to the right because
65

pp  .

However, in this example, suppose that we compare

5
p with

5
w first and then

6
p with

6
w . If

55
wp  and

66
wp  , we can slide the window only

one step to the right because app 
54

 and

65
pp  . If

55
wp  , we then can slide the window

five steps to the right because the characters in

)5,1(P are all equal to ''a . In this example, the

alphabet size is 4. Then for two random characters

x and y from the alphabet, the probability of

yx  is 41 and that of yx  is 43 . Therefore,

if we compare
6

p with
6

w first and then
7

p with

7
w , we have 43 probability to slide the window

one step to the right, and 163)43()41(

probability to slide the window seven steps to the

right. However, if we compare
5

p with
5

w first

and then
6

p with
6

w , we have 43 probability to

slide the window with five steps, and

163)43()41( probability to slide the window

with one step. If we only consider the cases where

the first mismatch occurs at the first and the second

comparisons, the expected number of steps to slide a

window for Sunday algorithm is 1)43(

16337)163( , and that for comparing
5

p with

5
w first and then

6
p with

6
w is 5)43(

16631)163( . It can be realized that the latter

comparing order is better than the former used in

Sunday algorithm.

For a comparing order I , we can compute its

sliding distance  . Assume that the first mismatch

occurs at the position][iI . This means that

][][jIjI
wp  for)1(1  ij and

][][iIiI
wp  .

Then we can slide the window][i steps to the

right. Let  be the alphabet size. The probability of

][][jIjI
wp  for all)1(1  ij and

][][iIiI
wp  is

).)1(()1(1  i Therefore, the probability of

sliding the window by][i steps is

).)1(()1(1  i To measure the goodness of a

comparing order and its sliding distance  , we

define a function AVGS to compute the expected

number of steps to slide a window as follows.

].1[)1(][))1(()1()(
1

1 









 



 miAVGS m
m

i

i 

For example, let aaaaataP  . Consider the

comparing order
1

I and its sliding distance, denoted

by
1

 , which are shown in the following table.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

20

i=1.
j=1

low
AVGSAVGS

I







75.1)(

]4,4,4,4,1[

.1]1[

1,1

1,1

.75.1
low

AVGS

j=2 j=3 j=4

j=1 j=3 j=4

To be branched

i=2.

j=1 j=3
i=3.

Set AVGSlow=1.94.

i=4.

P=aatc

low
AVGSAVGS

I







5.2)(

]4,4,4,4,2[

.2]1[

2,1

2,1

low
AVGSAVGS

I







75.1)(

]4,4,4,4,1[

.3]1[

3,1

3,1

low
AVGSAVGS

I







75.1)(

]4,4,4,4,1[

.4]1[

4,1

4,1

Be terminated Be terminated Be terminated

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.1]2[

1,2

1,2

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.3]2[

3,2

3,2

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.4]2[

4,2

4,2

To be branched

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.1]3[

1,3

1,3

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.3]3[

3,3

3,3

To be branched

low
AVGSAVGS

I







94.1)(

]4,4,4,1,2[

.1]4[

1,4

1,4

j=1

Fig. 1. An iteration of our branch and bound approach to find the optimal comparing order.

j 1 2 3 4 5 6 7 8

][1 jI 5 6 7 4 3 2 1

][1 j 5 1 7 6 6 6 6 6

Then, by the definition, we have )(
1

AVGS

5)43( + 1)43()41( + 7)43()41(2  +…+

.36.46)41(6)43()41(76  Let us consider

another comparing order
S

I and its sliding distance,

denoted by
S

 , used in Sunday algorithm as shown

in the following table.

j 1 2 3 4 5 6 7 8

][jI
S

 6 7 5 4 3 2 1

][j
S

 1 7 6 6 6 6 6 6

Then we have  1)43()(
S

AVGS

.44.26)41(...6)43()41(7)43()41(72 

By comparing)(
1

AVGS with)(
S

AVGS  , we

may conclude that the comparing order
1

I is better

than
S

I because)()(
1 S

AVGSAVGS  .

If we can find the optimal comparing order
OPT

I

such that its sliding distance, denoted by
OPT

 , has

the maximal value of
OPT

AVGS where

)(
OPTOPT

AVGSAVGS  , we would have the best

performance in searching phase. However, the

number of possible comparing orders is the factorial

of m . It is not practical to perform an exhaustive

search to find the optimal comparing order. In the

following, we give a branch and bound algorithm to

efficiently find the optimal comparing order.

Consider the example where aatcP  . The

comparing order of Sunday algorithm is

]1,2,3,4[
S

I and its sliding distance is

]4,4,4,4,1[
S

 . If we use this comparing order, we

have .75.1)(
S

AVGS Then we can use it as a

lower bound of
OPT

AVGS , denoted by
low

AVGS ,

that is, 75.1)(
Slow

AVGSAVGS . Next, we use a

branch and bound strategy for finding the optimal

comparing order as illustrated in Fig. 1.

In our branch and bound approach, we adopt the

depth first branching strategy. The nodes at level i

of our branch and bound tree represent all the

possible values][iI . Therefore, if we reach level i ,

the values of][jI for all ij 1 have been

determined. Let
ji ,

 denote the sliding distance 

for setting jiI ][at level i ,][][
,

kk
ji

 for

ik 1 , and mk
ji

][
,

 for 1 mki . Note

The 31st Workshop on Combinatorial Mathematics and Computation Theory

21

that for each level i of the branch and bound tree,

every node is related to a possible value of][iI .

Consider the first level of the tree in the Fig. 1, i.e.,

1i . Any character of P can be the first one to be

compared in a window. We compute the s
j
'

,1
 for

41  j . Consider the case where
2

p is the first

character to be compared. If
2

p mismatches with its

corresponding character in a window, we can slide

the window 2 steps to the right because app 
21

.

Therefore, we set 2]1[
2,1

 . As for the values of

sk]'[
2,1

 for 51  k , we set all of them as 4m

so that)(
2,1

AVGS is a upper bound of the

AVGS ’s in this branch. That is, if)(
2,1

AVGS is

smaller than or equal to 75.1
low

AVGS , we then

can terminate this branch. In this example, only the

branch 2]1[ jI will be branched.

In the second level, 2i , under the situation that

2
p is the first compared character, there are three

possibilities to choose one of
1

p ,
3

p , and
4

p as

the next compared character. For each possibility, we

compute the values of
1,2

 ,
3,2

 , and
4,2

 and

branch the node whose AVGS value is the largest.

We repeat the processes and if it can be branched to

the level mi  , we then compute the sliding

distance  . If
low

AVGSAVGS )(, we then set

)( AVGSAVGS
low

 and record this better

comparing order I . In this example, we reach the

level mi  , and the value of)(AVGS is 1.94

which is larger than 75.1
low

AVGS . Thus, we set

94.1
low

AVGS and record the comparing order

]1,3,4,2[I which is better than that of Sunday

algorithm. Note that there are still three nodes to be

branched. However, all of the branches will be

terminated immediately because their AVGS

values are smaller than or equal to 94.1
low

AVGS .

Note that for the very long patterns, it may still

take long time to search the optimal comparing order.

However, the effectiveness of the higher levels, say

level 5i , would not be significant. By the

definition of AVGS , the value do not have

significant differences for the different comparing

orders of 5i . Therefore, in practice, we may use a

level bound LvBound to serve as a termination

condition, that is, if the branch and bound procedure

reaches the level LvBound , we terminate it. Our

algorithm to find the optimal scanning order is

described in Preprocessing of Algorithm 1.

Preprocessing of Algorithm 1 (P , , LvBound): A branch and bound algorithm to find the optimal scanning

order

Input: A pattern P , alphabet size  and an integer LvBound .

Output: The optimal scanning order OPTI and OPT .

1: Compute the scanning order I and its shifting function  used in Sunday’s Algorithm. Set

)( AVGSAVGSOPT .
2: Set 0][jCheckPos for all mj 1 .

3: ),(OPTOPTI FindOpt_branch_and_bound(1, I , OPTAVGS ,  , LvBound , CheckPos).

4: Return OPTI and its shifting function OPT .

FindOpt_branch_and_bound (i , I , OPTAVGS ,  , LvBound , CheckPos).

Input: An integer i , an integer array I , an integer OPTAVGS , alphabet size  , an integer LvBound , and

an integer array CheckPos .

Output: The optimal scanning order OPTI and its shifting function OPT .

1: if LvBoundi  then /* Termination conditions */

2: for mj  to 1j do

3: If 0][jCheckPos , set jiI ][, 1][jCheckPos , and 1 ii .

4: end for

5: Compute the shifting function  of I .
6: If OPTAVGSAVGS )(, set)( AVGSAVGSOPT , IIOPT  , and OPT .

7: Return),(OPTOPTI  .

8: end if

9: if mi  then

10: For every j , where mj 1 , such that 0][jCheckPos , set jiI j ][and compute the shifting

function]1[ij  . Set the values of mmij ]11[ .

The 31st Workshop on Combinatorial Mathematics and Computation Theory

22

11: while ()(jAVGS  OPTAVGS for some j) do /* bound */

12: Find the maxj such that)(maxj
AVGS  is the largest among all mjmax 1 and maxj is the

largest.

13: Set 0)(max 
j

AVGS and 1][max jCheckPos . /* branch */

14: OPTI =FindOpt_branch_and_bound(,1i ,maxj
I ,OPTAVGS , ,LvBound CheckPos).

15: Set 0][max jCheckPos .

16: end while

17: end if

18: else /* i=m+1 */

19: Compute the shifting function  of I .
20: If OPTAVGSAVGS )(, set)( AVGSAVGSOPT , IIOPT  , and OPT .

21: Return),(OPTOPTI  .

22: end else

Our complete algorithm using optimal scanning order for the exact string matching problem is described in

Algorithm 1.

Algorithm 1 (P , T ,  , LvBound)

Input: A pattern P , a text string T , alphabet size  , and an integer LvBound .

Output: All the occurrences of P in T .

1: Compute ),(I Preprocessing of Algorithm 1 (P , , LvBound).

2: Set 1i .

3: while 1 mni do

4: Set 1j .

5: while mj  do

6: if 1][][ jIijI tp then exit the inner loop.

7: else set 1 jj .

8: end while

9: if 1mj then report the position i .

10: Set][jii  .

11: end while

3 A Combined Algorithm of Algorithm
1 and HASHq Algorithm

The most recent survey [13] shows that HASHq

algorithm [19] is very efficient for small alphabet. In

this section, we combine the HASHq algorithm with

our algorithm proposed in the previous section. As

can be seen from our experimental results, the

combined algorithm is more efficient than our

proposed Algoriehm 1 and the HASHq algorithm.

The HASHq algorithm is similar to the Horspool

algorithm. Given a window, it checks whether a

suffix of the window is equal to a suffix of the

pattern. If it is not, it slides the window; otherwise, it

uses a very simple left-to-right comparison method to

determine whether there is an exact match. To check

whether a suffix of the window is equal to a suffix of

the pattern, the HASHq algorithm uses a simple

hashing function h to transform a substring with

length q into an integer value within 0 and 255.

Therefore, if two strings A and B are equal, then

)()(BhAh  . But if)()(BhAh  , then it does not

imply BA  . Thus, if )),1((mqmWh

)),1((mqmPh  , we start to determine whether

there is an exact match.

The hashing function is to serve as a filtering

mechanism. It also can help us to decide the number

of steps to slide the window. Suppose that the length

of the suffix is q and that i is the largest integer

such that mi  and )),1((mqmWh

)),1((iqiPh  . Then we slide the window to the

right by im steps. The algorithm performs a

pre-processing on the pattern P to derive the

sliding table. The sliding table is of length 256. For

all 2550  x , the preprocessing constructs a

sliding table shift with imxshift ][if there

exists
iqiqi

ppp 
21 

 which is the rightmost

substring of P such that xppph
iqiqi



)(

21


and qmxshift ][, otherwise, where miq  .

For miq  , we compute)(
21 iqiqi

ppph 


. For

The 31st Workshop on Combinatorial Mathematics and Computation Theory

23

mi  , we let)(
21 mqmqmm

ppphx 


 . Then

0][ mmxshift
m

. In addition, the preprocessing

uses another variable 1sh with 1sh

)]([
21 jqjqj

ppphshift 


 if
jqjqj

ppp 
21 

 is the

second rightmost substring of P such that

mjqjqj
xppph 


)(

21
 and qmsh 1 , otherwise,

where mjq  .

For a window),1(mW in the searching phase,

the HASHq first checks if)]([
21 mqmqm

wwwhshift 


is equal to 0 or not. That is, it checks if the hashing

value of the suffix with length q of W is equal to

the hashing value of the suffix with length q of P .

If)]([
21 mqmqm

wwwhshift 


 is not equal to 0, then

the HASHq algorithm slides the window

)]([
21 mqmqm

wwwhshift 


 steps to the right.

Otherwise, it compares the characters of the window

against those of P from left to right. After it, the

HASHq slides the window 1sh steps to the right.

Basically, the HASHq algorithm can be considered as

a filtering algorithm. It only checks the windows

with the value .0)]([
21


 mqmqm

wwwhshift 

Therefore, it would be very efficient if most of the

windows are filtered out.

The HASHq algorithm is very good at filtering.

But it uses a straightforward algorithm to determine

whether PW  . It does not consider the order of

character comparisons. The value of 1sh may be

small for some patterns and this makes the sliding of

the window inefficient. For example, consider

gcataaaaP  and 3q . The value of 1sh is 1

because)(
11  mqmqm

ppph  =)(aaah =

)(
21 mqmqm

ppph 


, where 8m in this example.

Consider the window gcgtaaaaW  , the HASHq

algorithm will compare the characters
1

w ,
2

w and

3
w with

1
p ,

2
p and

3
p , respectively. It finds a

mismatch when comparing gw 
3

 with ap 
3

and then slides the window to the right by one step

since 11sh . If we use the idea of our proposed

algorithm in the previous section to find a good

comparing order, we may slide the window more

steps in this case.

Below, we try to find a good comparing order I

as well as a sliding distance to replace the checking

step of HASHq algorithm. Suppose that

)),1(()),1((mqmWhmqmPh  . We first

define a new sliding distance
q

 . This sliding

distance is similar to the sliding distance 

introduced in the previous section. For all mj 1 ,

][j
q

 is the minimum value of mshift with

satisfying the following three conditions:

(1) Either 1)][(mshiftiI or)][(][mshiftiIiI pp 

for all 11  ji .

(2) Either 1)][(mshiftjI or)][(][mshiftjIjI pp  .

We now add another rule:

(3) Either qmshiftm )(or mshiftqmph  1(

)mshiftmp)(1 mqm pph  .

For 1 mj ,][jq is the minimum value of

mshift that satisfies the following conditions.

(1) Either 1)][(mshiftiI or)][(][mshiftiIiI pp 

for all 11  ji .

(2) Either qmshiftm )(or mshiftqmph  1(
)() 1 mqmmshiftm pphp   .

Consider the example that gcataaaaP  and

3q . A comparing order I and the sliding

distance q are shown in the following.

j 1 2 3 4 5 6 7 8 9

][jI 5 1 2 3 4 6 7 8

][jq 1 6 6 6 6 6 6 7 8

In this example, 6]2[
q

 because 6mshift

is the minimum value to satisfy the required three

conditions, as shown as follows.

(1) 1656]1[I .

(2) 1616]2[I .

(3) 3686  qm .

It can be verified that 2]2[ since it does not

need to meet the condition 3 required by
q

 . Note

that it is not hard to see that][][ii
q

 for all

mi 1 .

In this combined algorithm, we do not have to use

the branch and bound algorithm introduced in the

previous section to find the optimal comparing order

OPT
I with the largest)(

q
AVGS  for the entire

pattern. Suppose that 


)(
21 mqmqm

ppph 
)(

21 mqmqm
wwwh 


. It means that the substring

mqmqm
ppp 

21 
 may have very high probability to

be equal to
mqmqm

www 
21 

. If we compare the

characters of
mqmqm

www 
21 

 in the very

beginning, we would need to compare more

characters to find a mismatch if it exists. Note that

this is also the reason that the HASHq algorithm

compares the characters of the window from left to

right. Thus, in our combined algorithm, we set

iiI ][for miqm  1 and find the optimal

comparing order][iI for qmi 1 such that

)(
q

AVGS  is the maximal.

Consider the example with gcataaaaP  and

3q . The optimal comparing order I and the

sliding distance
q

 used in our combined algorithm

are shown in the following.

j 1 2 3 4 5 6 7 8 9

][jI 5 1 2 3 4 6 7 8

][jq 1 6 6 6 6 6 6 7 8

In this example, we first set 6]6[I , 7]7[I ,

8]8[I because 3q , and then find the optimal

comparing order for the positions 1 to 5. In the

The 31st Workshop on Combinatorial Mathematics and Computation Theory

24

searching phase, we first compare
5

p with
5

w

first. If
55

wp  , we then compare
1

p with
1

w and

so on. Suppose that the mismatch occurs at the

second comparison, i.e.,
11

wp  . Then we can slide

the window to the right by 6]2[
q

 steps. Suppose

that the window gcgtaaaaW  . Then, we can find

the first mismatch occurring at
3

w and hence we

can slide the window 6]4[
q

 steps to the right.

Note that 6]4[
q

 is larger than the shift value

11sh which is used in the original HASHq

algorithm.

For the patterns with)2/(1 msh  , we use the

original HASHq algorithm for the searching phase.

For the patterns with)2/(1 msh  , we use our

optimal comparing order to improve the efficiency

for sliding the window.

The following Algorithm 2 is the combination of

Algorithm 1 and the HASHq algorithm, where

preprocessing_step_of_HASHq is a subroutine used

in the HASHq algorithm to find the sliding table

shift and 1sh , and searching_step_of_HASHq is a

subroutine of the HASHq algorithm to perform the

searching phase.

The Preprocessing of Algorithm 2 is obtained from

Preprocessing of Algorithm 1 by the following

modifications.

Line 1: Set iiI ][for miqm  1 and

then compute the comparing order][iI for

qmi 1 by using the Sunday’s algorithm.

Compute
q

 for][iI . Set 
low

AVGS)(
q

AVGS  .

Line 2: Set 0][jCheckPos for qmi 1

and 1][iCheckPos for miqm  1 .

Substitute  by
q

 in the functions

Preprocessing of Algorithm 1 and FindOpt_branch_

and_bound.

Algorithm 2 (P , T ,  , LvBound , q)

Input: A pattern P , a text string T , alphabet size  , an integer LvBound and an integer q .

Output: All the occurrences of P in T .

1:),(___)1,(qPHASHofstepingpreprocessshshift q .

2: if)2/(1 msh  then do)1,,,,(___ shshiftqTPHASHofstepsearching q and exit.

3: Compute ),(qI Preprocessing of Algorithm 2 (P , , LvBound , q).

4: Set 1i .

5: while 1 mni do

6: Set 1sh .

7: while 0sh and 1 mni do

8: Set)]([11  miqmiqmi wwwhshiftsh  .

9: Set shii  .

10: end while

11: Set 1j .

12: while mj  do

13: if 1][][ jIijI tp then exit the inner loop.

14: else set 1 jj .

15: end while

16: if 1mj then report the position i .

17: Set][jii q .

18: end while

4 Experiments

In our experiments, we randomly generated a text

T of size n 1G and patterns of size

}40,3530,5,2,20,15,10,5{m by using different

alphabet sizes with }26,8,4,2{ . We tested the

performances of Algorithm 1 (Alg1 for short) and

Algorithm 2 with 3q (Alg2_H3 for short) by

using 4LvBound . We first tested the performance

our Algorithm 1 by comparing the number of its

character comparison and the total running time

(including the pattern preprocessing time and the text

searching time) with those obtained by the other

algorithms which use the different comparing orders:

(1) KMP algorithm [17] (KMP) with left-to-right

comparing order. (2) Boyer-Moore algorithm [3]

without the bad character rule (BM-bc) that uses

right-to-left comparing order. (3) The Sunday’s

maximal shift algorithm [24] (MS). The experimental

results are shown in Table 1. Next, we compared the

total running times of our algorithms with those of

The 31st Workshop on Combinatorial Mathematics and Computation Theory

25

other algorithms which perform efficiently in

practice. The tested algorithms are listed follows.

Boyer-Moore algorithm [3] (BM), shift-and

algorithm [4] (SA), TVSBS algorithm [27] (TVSBS),

EBOM algorithm [12] (EBOM), Horspool algorithm

[16] (H80), tuning BNDM algorithm with 2-Grams

[11] (SBNDMq2), FJS algorithm [10] (FJS), and

HASHq algorithm with 3q [19] (HASH3). The

results are shown in Tables 2-3. Note that for these

algorithms, we used the C codes which were

implemented and used in [13]. The running time was

measured by using hardware cycle counter and

averaged over 100 random patterns in each

experiment.

Table 1. The number of character comparisons (million)/the total running time (sec) for the

algorithms with different scanning orders.

Alphabet size m KMP BM-bc MS Alg1

2

5 1338/1121 860/755 877/796 795/717

15 1329/1107 510/450 492/476 374/359

25 1320/1107 411/366 404/397 260/262

35 1331/1106 356/319 349/351 216/222

4

5 1196/905 732/553 747/565 650/507

15 1198/907 531/402 423/320 336/267

25 1197/905 443/337 319/243 243/195

35 1200/908 421/321 297/227 199/163

8

5 1108/562 781/397 795/405 686/359

15 1107/561 610/313 479/248 417/221

25 1109/561 534/274 358/188 308/167

35 1111/562 498/257 293/155 245/135

26

5 1037/360 898/313 905/315 839/295

15 1038/360 752/264 694/244 616/218

25 1038/359 653/229 553/197 519/185

35 1037/360 624/221 465/167 435/156

Table 2. The comparison of total running time (sec) for 2||  .

m 5 10 15 20 25 30 35 40

BM 918 678 548 495 445 412 387 377

SA 366 359 349 353 365 374 220 210

TVSBS 765 791 807 772 796 835 821 797

EBOM 707 425 305 236 194 166 144 128

H80 970 992 1059 1017 1020 1005 1023 1021

SBNDMq2 641 334 222 166 133 114 106 106

FJS 914 1102 1142 1090 1134 1151 1132 1127

HASH3 468 269 215 209 195 196 193 198

Alg1 706 465 356 298 258 235 219 211

Alg2_H3 464 254 198 171 155 147 138 132

The 31st Workshop on Combinatorial Mathematics and Computation Theory

26

Table 3. The comparison of total running time (sec) for 4||  .

m 5 10 15 20 25 30 35 40

BM 545 403 379 327 328 316 320 303

SA 374 374 374 373 373 373 224 224

TVSBS 386 261 214 188 176 164 165 160

EBOM 244 179 141 115 96 83 74 66

H80 483 351 340 312 322 318 340 328

SBNDMq2 240 168 124 97 79 67 64 64

FJS 595 522 525 491 515 506 514 514

HASH3 288 132 99 84 74 70 69 66

Alg1 492 329 260 221 191 171 159 151

Alg2_H3 287 131 98 83 74 68 65 62

The experimental results can be summarized as

follows:

(1) According to Table 1, our proposed algorithm

Alg1, improves the Sunday’s maximal shift

algorithm (MS) in all cases and is also better than the

other algorithms using different comparing orders,

such as KMP and BM-bc algorithms.

(2) Our algorithm Alg2_H3 improves the HASH3

algorithm in all cases.

(3) Comparing to other algorithms, our algorithm

Alg2_H3 is most efficient for 5m to 15 when

2||  and for 10m to 25 when 4||  . Note

that the cases with 5m to 15 and 2||  are the

most time-consuming.

5 Conclusion and Future Research

In this paper, we proposed a branch and bound

algorithm to find the optimal comparing order to

minimize the number of character comparisons. Our

experimental results have shown that this algorithm

indeed has the smallest number of character

comparison in all experimental cases, especially

when the size of alphabet is small. In addition, we

proposed another algorithm by combining our

approach of computing an optimal comparing order

with the HASHq algorithm and showed that this

algorithm is most efficient among all of the tested

algorithms for some cases. It will be interesting

future work to analyze the time complexity of our

branch and bound algorithm or to find a polynomial

algorithm for finding the optimal comparing order. It

would also be interesting to analyze the average-case

time complexity of the string matching algorithm

using the optimal comparing order.

Reference

[1] Apostolico, A. and Crochemore, M., Optimal

canonization of all substrings of a string, Information

and Computation, Vol. 95, 1991, pp. 76-95.

[2] Apostolico, A. and Giancarlo, R., The

Boyer-Moore-Galil string searching strategies

revisited, SIAM Journal on Computing, Vol. 15, 1986,

pp. 98-105.

[3] Boyer, R.S. and Moore, J.S., A fast string

searching algorithm, Communications of the ACM,

Vol. 20, 1977, pp. 762-772.

[4] Baeza-Yates, R. and Gonnet, G. H., A new

approach to text searching, Communications of the

ACM, Vol.35, No. 10, 1992, pp.74-82.

[5] Baeza-Yates, Ricardo A. and Régnier, Mireille,

Average Running Time of the Boyer Moore Horspool

Algorithm, Theoretical Computer Science, Vol.

92, 1992, pp.19-31.

[6] Colussi, L., Correctness and efficiency of the

pattern matching algorithms, Information and

Computation, Vol. 95, No. 2, 1991, pp. 225-251.

[7] Colussi, L., Fastest pattern matching in strings,

Journal of Algorithms, Vol. 16, No. 2, 1994, pp.

163-189.

[8] Crochemore, M., Czumaj, A., Gasieniec, L.,

Jarominek, S., Lecroq, T., Plandowski, W. and Rytter,

W., Speeding up two string matching algorithms,

Algorithmica, Vol. 12, 1994, pp. 247-267.

[9] Charras, C., Lecroq, T. and Pehoushek, J.D., A

very fast string matching algorithm for small

alphabets and long patterns, in Proceedings of

Combinatorial Pattern Matching, 1998, pp. 55-64,

The 31st Workshop on Combinatorial Mathematics and Computation Theory

27

Springer Berlin Heidelberg.

[10] Franek, Frantisek, Jennings, Christopher G., and

Smyth, W.F., A simple fast hybrid pattern-matching

algorithm, Journal of Discrete Algorithms, Vol. 5,

2007, pp. 682-695.

[11] Ďurian, B., Holub, J., Peltola, H., and Tarhio, J.,

Tuning BNDM with q-grams, in Proceedings of

ALENEX, pp.29-37.

[12] Faro, S. and Lecroq, T., Efficient variants of the

backward-oracle-matching algorithm, International

Journal of Foundations of Computer Science, Vol. 20,

No. 6, 2009, pp. 967-984.

[13] Faro, S. and Lecroq, T., The exact online string

matching problem: A review of the most recent

results, ACM Computing Surveys, Vol. 45, 2013, pp.

1-42.

[14] Galil, Z. and Giancarlo, R., On the exact

complexity of string matching: upper bounds, SIAM

Journal on Computing, Vol. 21, No. 3, 1992, pp.

407-437.

[15] Galil, Z. and Seiferas, J., Time-space optimal

string matching, Journal of Computer and System

Science, Vol. 26, No. 3, 1983, pp. 280-294.

[16] Horspool, R.N., Practical fast searching in

strings, Software - Practice & Experience, Vol. 10,

No. 6, 1980, pp. 501-506.

[17] Knuth, D.E., Morris (Jr), J.H. and Pratt, V.R.,

Fast pattern matching in strings, SIAM Journal on

Computing, Vol. 6, No. 2, 1977, pp. 323-350.

[18] Lecroq, T., A variation on the Boyer-Moore

algorithm, Theoretical Computer Science, Vol. 92,

No. 1, 1992, pp. 119-144.

[19] Lecroq, T., Fast Exact String Matching

Algorithms, Information Processing Letters, Vol. 102,

2007, pp. 229-235.

[20] Chia Wei Lu and R. C. T. Lee, An exact string

matching algorithm based upon selective matching

order and branch and bound approach, Proc. of the

30th Workshop on Combinatorial Mathematics and

Computation Theory, 2013, pp. 131-137.

[21] Navarro, G., Nr-grep: a fast and flexible

pattern-matching tool, Software - Practice &

Experience, Vol. 31, 2001, pp. 1265–1312.

[22] Navarro, G. and Raffinot, M., Fast and flexible

string matching by combining bit-parallelism and

suffix automata, Journal of Experimental

Algorithmics, Vol. 5, No. 4, 2000.

[23] Peltola, H. and Tarhio, J., Alternative algorithms

for bit-parallel string matching, in Proceedings of

String Processing and Information Retrieval, Vol.

2857, 2003, pp.80-93, Springer Berlin Heidelberg.

[24] Sunday, D.M., A very fast substring search

algorithm, Communications of the ACM, Vol. 33, No.

8, 1990, pp. 132-142.

[25] Smith, P.D., Experiments with a very fast

substring search algorithm, Software - Practice &

Experience, Vol. 21, No. 10, 1991, pp. 1065-1074.

[26] Simon, I., String matching algorithms and

automata, in Proceedings of 1st American Workshop

on String Processing, R.A. Baeza-Yates and N.

Ziviani ed., 1993, pp. 151-157, Universidade Federal

de Minas Gerais, Brazil.

[27] Thathoo, R., Virmani, A., Sai Lakshmi, S.,

Balakrishnan, N. and Sekar, K., TVSBS: A fast exact

pattern matching algorithm for biological sequences,

Current Science, Vol.91, No. 1, 2006, pp.47-53.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

28

