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Abstract

Generalized recursive circulant graphs were first
proposed in 2012 (See IEEE Transactions on Par-
allel and Distributed Systems 23, pp.87-93). This
graph class is a superclass of recursive circulant
graphs.

The one-to-many routing can achieve the fault-
tolerant broadcasting and secure message distri-
bution in a network. It is a common idea that
constructing multiple independent spanning trees
rooted at one node guarantees the one-to-many
routing. In this paper, we propose an algorithm to
construct δ independent spanning trees on a gen-
eralized recursive circulant graph with degree δ.
Moreover, the algorithm makes the one-to-many
routing parallelized.
Keyword: generalized recursive circulant graph,
one-to-many parallel routing, internally disjoint
paths, independent spanning trees.

1. Introduction

In [17], Tang et al. applied a multidimen-
sional vertex-labeling approach to extended the
class of recursive circulant graphs to a more gener-
alized graph class, called generalized recursive cir-
culant graphs (GRC graphs for short). A GRC
graph, denoted by GR(mh,mh−1, . . . ,m1), has

∗This research is supported by the National Science
Council of Taiwan under the Grants NSC102–2410–H–606–
005.

n = Πh
i=1mi = m1 · m2 · . . . · mh vertices where

mi > 2 for i = 1, 2, . . . , h. Index i is a di-
mension of the labeling system while mi is the
base (or called radix) of dimension i. Each ver-
tex in the graph can be expressed as an h-tuple
(xh, xh−1, . . . , x1) with 0 6 xi 6 mi − 1 for
i = 1, 2, . . . , h. The h-dimensional representa-
tion of a vertex also forms an h-positional nu-
merical representation based on a mixed radix
number system, i.e., xh(mh) . . . x2(m2)x1(m1) [9].
For the sake of conciseness, we omit the radices
in the numerical representation. In a GRC
graph, vertex (xh, . . . , xi+1, xi, xi−1, . . . , x1) is
adjacent to all of those vertices labeled by
(yh, . . . , yi+1, yi, yi−1, . . . , y1) for i = 1, 2, . . . , h if
and only if xj = yj for j = 1, 2, . . . , i−1 and num-
ber yh · · · yi+1yi is equal to xh · · ·xi+1xi±1 in the
mixed radix number system. Note that the addi-
tion (or subtraction) in each position may cause
a carry (or borrow), while the carry (or borrow)
occurred at position h will be neglected. This
means that, in case of mh = 2, either xh + 1
or xh − 1 obtains the same value and thus con-
tributes to only one adjacent vertex. For exam-
ple, both GR(2, 4, 3) and GR(3, 2, 4) have 24 ver-
tices, as shown in Figure 1. In Figure 1(a), the
5 neighbors of vertex (1,3,0) in GR(2, 4, 3) are
(1, 3, 0 + 1), (1, 3, 0− 1), (1, 3 + 1, 0), (1, 3− 1, 0),
and (1± 1, 3, 0) which are (1,3,1), (1,2,2), (0,0,0),
(1,2,0), and (0,3,0), respectively. In Figure 1(b),
the 6 neighbors of vertex (0,1,2) in GR(3, 2, 4) are
(1,1,2), (2,1,2), (1,0,2), (0,0,2), (0,1,3) and (0,1,1).

A GRC graph can be decomposed recursively.
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Figure 1: Two GRC graphs of 24 vertices,
GR(2, 4, 3) (left) and GR(3, 2, 4) (right).

That is, GR(mh, . . . ,m2,m1) can be partitioned
intom1 subgraphs isomorphic to GR(mh, . . . ,m2).
Anyone of the subgraphs is induced exactly by
those vertices with the same x1 value. In addi-
tion, the edges not in the induced subgraphs form
a cycle that links all vertices according to their nu-
merical order. The partition process can be con-
tinued, and for all i 6 h, GR(mh,mh−1, . . . ,mi)
is still a GRC graph. Particularly, GR(mh) is ei-
ther a cycle of mh vertices (if mh > 2) or a 2-
clique (if mh = 2) [17]. For example, GR(2, 4, 3)
shown in Figure 1(a) contains 3 disjoint copies
of GR(2, 4), and GR(2, 4) contains four 2-cliques.
Meanwhile, in Figure 1(b), GR(3, 2, 4) contains 4
disjoint copies of GR(3, 2), and GR(3, 2) contains
two 3-cycles.

Two paths connecting two vertices in a simple
graph is said to be internally disjoint if they have
no common vertex except two end vertices. The
one-to-many routing is to construct internally dis-
joint paths in a graph from a given vertex to each
of the vertices in a given set that may contain all
other vertices. One vertex can send copies of a
message along internally disjoint paths to all other
vertices in a graph to achieve fault-tolerant broad-
casting [7, 14]. One vertex can also partition the
message into multiple parts and send them sepa-
rately to the destination vertices along internally

disjoint paths to achieve secure message distribu-
tion [13].

A spanning tree of a graph is a tree that con-
tains all vertices. Two spanning trees of a graph
are independent if they are rooted at the same ver-
tex r, and for every other vertex v 6= r, the two
paths from r to v, one path in each tree, are inter-
nally disjoint. A set of spanning trees of a graph
is said to be independent if they are pairwise inde-
pendent. In 1989, Zehavi and Itai conjecture that,
for any vertex r in a k-connected graph G, there
exist k independent spanning trees of G rooted at
r [25]. Although the conjecture has been proved
for k-connected graphs with k 6 4 ([7] for k =
2, [2, 25] for k = 3, and [3] for k = 4), it is still
open for k > 4. Notice that constructing mul-
tiple independent spanning trees (IST for short)
rooted at one vertex guarantees the one-to-many
routing. As a result, lots of research results are
presented for solving the IST problem in special
graph classes (especially in interconnection net-
works), such as planar graphs [6, 11], chordal rings
[8, 19], de Bruijn and Kautz graphs [4, 5], product
graphs [1, 12], hypercubes [14, 16, 20], star graphs
[15], folded hyper-stars [22], locally twisted cubes
[10], recursive circulant graphs [21, 23], multidi-
mensional tori [18], and folded hypercubes[24].

In this paper, we propose an algorithm to con-
struct δ IST rooted at an arbitrary vertex of a
GRC graph with degree δ. Particularly, the pro-
posed algorithm is based on the multidimensional

The 31st Workshop on Combinatorial Mathematics and Computation Theory

30



label of a vertex and can be implemented easily
and make the one-to-many routing parallelized.

The remaining part of this paper is organized
as follows. Section 2 gives some essential nota-
tions and properties for the algorithm. Section 3
presents the algorithm. Section 4 proves the cor-
rectness of the algorithm. The last section con-
tains our concluding remarks.

2. Preliminaries

Given a GRC graph GR(mh,mh−1, . . . ,m1).
Let M1 = 1 and Mi = mi−1 · Mi−1 for i =
2, 3, . . . , h. The ranking number of vertex x =
(xh, xh−1, . . . , x1), denoted by r(x), is the numer-
ical order of x in decimal form. Based on the def-
inition of GRC graphs, r(x) can be obtained by
using the following formula [17]:

r(x) =

h∑
i=1

xi ·Mi.

For example, in Figure 1, the ranking number of
each vertex of GR(2, 4, 3) and GR(3, 2, 4) is writ-
ten in the cycle.

Proposition 2.1. Suppose that vertex y is a
neighbor of vertex x in a GRC graph. Then
|r(x)− r(y)| ≡Mi (mod n) for i ∈ {1, 2, . . . , h}.

Proof. Since y is a neighbor of vertex x, by
the definition of GRC graphs, |yh · · · yi · · · y1 −

xh · · ·xi · · ·x1| ≡ 1

i−1︷ ︸︸ ︷
0 · · · 0 (mod 1

h︷ ︸︸ ︷
0 · · · 0) in the

mixed radix number system. That is, |r(x) −
r(y)| ≡Mi (mod n). �

To explicitly represent the adjacency of ver-
tices in a GRC graph, we say that vertex x =
(xh, . . . , xi, . . . , x1) takes jump i± to reach ver-
tex y = (yh, . . . , yi, . . . , y1) if xj = yj for 1 6
j 6 i − 1 and number yh · · · yi+1yi is equal to
xh · · ·xi+1xi ± 1 in the mixed radix number sys-
tem. Thus, the neighbors of x can be represented
as a jump set {1−, 1+, 2−, 2+, . . . , h−, h+}. In
case of mh = 2, jumps h+ and h− reach the same
vertex and they are viewed as one single jump h−.

The jump set representation is helpful to ex-
press the construction algorithm of IST. Similar
to Propositions 2.1, we have the following propo-
sition.

Proposition 2.2. If vertex x takes jump i+
(respectively, i−) to reach a neighbor y, then

r(x) − r(y) = −Mi (respectively, Mi) for i ∈
{1, 2, . . . , h}.

Proof. When x takes jump i+ to reach y, r(x) <
r(y) (by taking modulo n). That is, r(x)− r(y) =
−Mi. Conversely, r(x)− r(y) = Mi. �

Similar to the complement number of a num-
ber system, every vertex in a GRC graph has its
complement vertex. For simplicity, every ranking
number computation hereinafter is taken modulo
n.

Definition 1. In a GRC graph, the complement
vertex of vertex x is denoted by x′ and r(x′) =
n − r(x) where n is the number of vertices in the
graph. In case r(x)=0 or n/2 (where n is even),
x′=x.

Proposition 2.3. If y is a neighbor of x, then y′

is also a neighbor of x′.

Proof. By Proposition 2.1, |r(y) − r(x)| = Mi

for i ∈ {1, 2, . . . , h}. Then, |r(y′)− r(x′)| = |(n−
r(y))− (n− r(x))| = Mi. �

According to Propositions 2.3 and 2.2, we have
the following lemma.

Lemma 2.4. In a GRC graph, vertex x takes
jump i+ (respectively, i−) to reach a neighbor y
if and only if x′ takes jump i− (respectively, i+)
to reach vertex y′ for i ∈ {1, 2, . . . , h}.

Proof. When x takes jump i+ to reach y, by
Proposition 2.2, r(x)− r(y) = −Mi. That is, (n−
r(x))− (n− r(y)) = Mi or r(x′)− r(y′) = Mi. On
the contrary, when x takes jump i+ to reach y,
r(x′)− r(y′) = −Mi. �

Since GRC graphs are vertex-symmetric, with-
out loss of generality, we can only consider the ver-
tex (0, 0, . . . , 0) (also called vertex 0) as the root of
IST on a GRC graph. Due to Lemma 2.4, when we
determine a set of internally disjoint paths from
vertex x to vertex 0, a set of internally disjoint
paths from vertex x′ to vertex 0 (self-complement)
is also determined. Thus, only a half number of
vertices need to be considered when solving the
IST problem in a GRC graph.

Due to the internally disjoint requirement, it is
obvious that the root has only one child in every
independent spanning tree. If j is the jump taken
by the only child for reaching the root, the inde-
pendent spanning tree can be denoted by Tj . In
Figure 2, for example, each of the IST rooted at
vertex 0 in GR(3, 2, 4) is named after the unique
jump used to reach vertex 0.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

31



0

1

17 2152 9

18 2263 10 13

19 2374 11 14

15 208 12

16

T1-

0

23

7 31922 15

6 21821 14 11

5 11720 13 10

9 416 12

8

T1+

0

4

12 2053 8

13 2162 9 16

14 2271 10 17

23 1811 15

19

T2-

0

20

12 41921

11 31822 15 8

10 21723 14 7

1 613 9

5

T2+

16

0

8

12 1674 9

17 1363 10 20

18 1452 11 21

15 221 19

23

T3-

0

16

12 81720 15

7 111821 14 4

6 101922 13 3

9 223 5

1

T3+

Figure 2: Six IST rooted at vertex 0 on
GR(3, 2, 4).

For the IST on a GRCG, the jumps for reaching
the root in all trees must be distinct. In addition,
for a single non-root vertex, the jumps to reach its
parents in different trees are also distinct. Since
the jump sets are equivalent, the IST construction
algorithm is simply to determine a bijection from
the parent-reaching jump set to the root-reaching
jump set for every vertex. For example, in Figure
2, vertex 7 reaches its parent by taking jumps 2−,
1−, 1+, 3−, 2+ and 3+ in the IST which are
labeled by jumps 1−, 2−, 3−, 1+, 2+ and 3+,
respectively.

When a jump j consecutively occurs k times
(k > 1), we use (j)k to denote the jump sequence
and call it a leap. A leap sequence, denoted by [`1,
`2, · · · , `t], is a sequence of t leaps (t > 1). Any
path between two vertices in a GRC graph can be
represented as a leap sequence.

Let dim(`) and occ(`) denote the dimension and
the occurrences, respectively, of the jump that
consists of leap `. A leap sequence [`1, `2, · · · ,
`t] is strictly increasing if for all 1 6 i < j 6 t,
dim(`i) < dim(`j). Further, a leap sequence is
regular if it is strictly increasing and for each leap
` in the leap sequence, occ(`) < mdim(`).

The leap sequence [`s, · · · , `t, `1, · · · , `s−1]
is called a rotation of the leap sequence [`1, · · · ,

`s−1, `s, · · · , `t] when 1 6 s 6 t. Then, we
describe two special types of paths from vertex
x = (xh, xh−1, . . . , x1) to vertex 0 in a GRC graph
by means of the rotations of a regular leap se-
quence. Note that we only consider half of the
vertices, i.e., for vertex x where r(x) 6 bn/2c.

Definition 2. An α-path from vertex x to vertex
0 is composed of a rotation of the regular leap
sequence L , where for each xi > 0, there exactly
exists a leap (i−)xi in L .

For example, see Figure 1(b), two rotations
of the regular leap sequence [(1−)3, (2−)1] form
two α-paths from vertex (0, 1, 3) to vertex 0 in
GR(3, 2, 4). One α-path is the regular leap se-
quence itself, and another is [(2−)1, (1−)3].

Definition 3. Let k be the left-most dimension

where xk > 0. Then, let y = 1

k︷ ︸︸ ︷
0 · · · 0−xk · · ·x1

(in the mixed radix number system). A β-path
from vertex x to vertex 0 is composed of a rotation
of the regular leap sequence L , where for each
yi > 0, there exactly exists a leap (i+)yi in L ,
and if k < h, a leap ((k+1)−)1 is especially added
to the end of L .

For example, see vertex (0, 1, 3) in Figure 1(b)
again, y = (1, 0, 0) − (0, 1, 3) = (0, 0, 1) where
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k = 2. Since k < h, the regular leap sequence
L = [(1+)1, (3−)1]. Two rotations of L form
two β-paths from vertex (0, 1, 3) to vertex 0 in
GR(3, 2, 4). Take vertex (1, 0, 1) as an exam-
ple of k = h, the regular leap sequence L =
[(1+)3, (2+)1, (3+)1]. Three rotations of L form
three β-paths from vertex (1, 0, 1) to vertex 0
in GR(3, 2, 4). They are [(1+)3, (2+)1, (3+)1],
[(2+)1, (3+)1, (1+)3], and [(3+)1, (1+)3, (2+)1].

Accordingly, we have the following three lem-
mas:

Lemma 2.5. In a GRC graph, any two α-paths
from a vertex are internally disjoint.

Proof. Suppose P1 and P2 are two different α-
paths from vertex x to vertex 0. Let v1 and v2 be
internal vertices in P1 and P2, respectively. If v1
= v2, then the two paths from x to v1 and v2 must
contain the same leaps. Since the leap sequences of
P1 and P2 are rotations of a regular leap sequence,
this condition never happens. �

Lemma 2.6. In a GRC graph, any two β-paths
from a vertex are internally disjoint.

Proof. The proof is similar to Lemma 2.5 and is
thus omitted. �

Lemma 2.7. In a GRC graph, an α-path and a
β-path from a vertex are internally disjoint.

Proof. Suppose P1 be an α-path and P2 be a
β-path from vertex x to vertex 0. Let v1 and v2
be internal vertices in P1 and P2, respectively. If
v1 = v2, then the two paths from x to v1 and v2
have the same leaps. Since the leap sequences of
P1 and P2 have different signs in each dimension,
this condition never happens. �

3. Constructing Independent Span-
ning Trees on a GRC graph

In this section, an algorithm is presented to con-
struct IST rooted at vertex 0 in a GRC graph. The
algorithm determines a bijection from the parent-
reaching jump set to the root-reaching jump set
for every non-root vertex. There are two phases
in the proposed algorithm. In the first phase, for
every non-root vertex, the jump set is partitioned
into four jump sets. In the second phase, different
rules are applied in each of the four jump sets to
determine the bijection.

For each non-root vertex x = (xh, xh−1, . . . , x1)
in GR(mh,mh−1, . . . ,m1), the following proce-
dure is performed to partition the entire jump set
into four jump sets, i.e., Ax, Bx, Cx and Dx. Note
that the procedure is designed for computing the
first half of n vertices, i.e., 1 6 r(x) 6 bn/2c.

Procedure Jump Set Partition(x)
begin
1. Ax = ∅; Bx = ∅; Cx = ∅; Dx = ∅;
2. carry = 0;
3. Let k be the left-most dimension where xk > 0.
4. For i = 1 to k do
5. if (xi > 0)
6. Ax = Ax ∪ {i−};
7. if ((0 < xi < mi − 1) or (xi = 0 and carry = 1) or

(xi = mi − 1 and carry = 0))
8. Bx = Bx ∪ {i+};
9. carry = 1;
10. endif
11. if (xi = 0 and carry = 0)
12. Dx = Dx ∪ {i−, i+};
13. if (xi = 0 and carry = 1)
14. Dx = Dx ∪ {i−};
15. if (xi = mi − 1 and carry = 1)
16. Dx = Dx ∪ {i+};
17. enddo
18. if (k < h)
19. Bx = Bx ∪ {(k + 1)−};
20. For j = k + 1 to h− 1 do
21. Cx = Cx ∪ {j+, (j + 1)−};
22. if (mh > 2)
23. Dx = Dx ∪ {h+};
24. endif
end Jump Set Partition

We use GR(3,2,4) as an example. Table 1 com-
putes the four jump sets for the first half of vertices
by using Procedure Jump Set Partition.

Suppose all jumps in jump sets Ax and Bx are
arranged in an increasing order of dimensions. We
define the predecessor jump of a jump as its previ-
ous jump. For the first jump of the set, its prede-
cessor jump is the last one of the set. In jump set
Cx, jumps are added pairwise. Thus, each jump
in one pair is the partner jump of the other jump.

When the jump set of vertex x is partitioned as
mentioned above, the parents of x in every inde-
pendent spanning tree can be determined by the
following procedure.
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Table 1: The four jump sets for vertex x (1 6
r(x) 6 12) in GR(3,2,4)

r(x) x Ax Bx Cx Dx

1 (0,0,1) {1−} {1+, 2−} {2+, 3−} {3+}
2 (0,0,2) {1−} {1+, 2−} {2+, 3−} {3+}
3 (0,0,3) {1−} {1+, 2−} {2+, 3−} {3+}
4 (0,1,0) {2−} {2+, 3−} ∅ {1−, 1+, 3+}
5 (0,1,1) {1−, 2−} {1+, 3−} ∅ {2+, 3+}
6 (0,1,2) {1−, 2−} {1+, 3−} ∅ {2+, 3+}
7 (0,1,3) {1−, 2−} {1+, 3−} ∅ {2+, 3+}
8 (1,0,0) {3−} {3+} ∅ {1−, 1+, 2−, 2+}
9 (1,0,1) {1−, 3−} {1+, 2+, 3+} ∅ {2−}

10 (1,0,2) {1−, 3−} {1+, 2+, 3+} ∅ {2−}
11 (1,0,3) {1−, 3−} {1+, 2+, 3+} ∅ {2−}
12 (1,1,0) {2−, 3−} {2+, 3+} ∅ {1−, 1+}

Algorithm Parent Jumps Determine(x)
begin
Step 1. Determine Ax, Bx, Cx and Dx by

using Procedure Jump Set Partition(x);
Step 2. for all j ∈ Ax do

Let jump p be the predecessor jump of
jump j in Ax;
Vertex x takes jump j to reach its parent
in tree Tp;

enddo
Step 3. for all j ∈ Bx do

Let jump p be the predecessor jump of
jump j in Bx;
Vertex x takes jump j to reach its parent
in tree Tp;

enddo
Step 4. for all j ∈ Cx do

Let jump t be the partner jump of
jump j in Cx;
Vertex x takes jump j to reach its parent
in tree Tt;

enddo
Step 5. for all j ∈ Dx do

Vertex x takes jump j to reach its parent
in tree Tj ;

enddo
end Parent Jumps Determine

We use GR(3,2,4) again as an example. Ta-
ble 2 shows the parent-reaching jumps of the
first half of vertices by using Algorithm Par-
ent Jumps Determine. According to the rules
in the algorithm, a bijection from parent-reaching
jump set to root-reaching jump set is established.

Table 2: The parent-reaching jumps of vertex x
(1 6 r(x) 6 12) in different IST on GR(3,2,4)

r(x) x T1− T1+ T2− T2+ T3− T3+

1 (0,0,1) 1− 2− 1+ 3− 2+ 3+
2 (0,0,2) 1− 2− 1+ 3− 2+ 3+
3 (0,0,3) 1− 2− 1+ 3− 2+ 3+
4 (0,1,0) 1− 1+ 2− 3− 2+ 3+
5 (0,1,1) 2− 3− 1− 2+ 1+ 3+
6 (0,1,2) 2− 3− 1− 2+ 1+ 3+
7 (0,1,3) 2− 3− 1− 2+ 1+ 3+
8 (1,0,0) 1− 1+ 2− 2+ 3− 3+
9 (1,0,1) 3− 2+ 2− 3+ 1− 1+
10 (1,0,2) 3− 2+ 2− 3+ 1− 1+
11 (1,0,3) 3− 2+ 2− 3+ 1− 1+
12 (1,1,0) 1− 1+ 3− 3+ 2− 2+

For constructing the IST shown in Figure 2, we
have to transform the parent-reaching jumps in
Table 2 to the ranking numbers of parent vertices.
As shown in Table 3, the first half of the table (1 6
r(x) 6 12) are computed by using the formula of
Proposition 2.2, while the second half of the table
(13 6 r(x) 6 23) are obtained directly from the
result of the first half by changing the sign of every
jump (by Lemma 2.4).

4. Correctness Proof

To show the correctness of Algorithm Par-
ent Jumps Determine, we have to prove that
the output of the algorithm are spanning trees of
the input GRC graph. Then, we should prove that
for every non-root vertex v, any two paths from v
to the root in different spanning trees must be in-
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Table 3: The parents of non-root vertex x in dif-
ferent IST on GR(3,2,4)

r(x) x T1− T1+ T2− T2+ T3− T3+

1 (0,0,1) 0 21 2 17 5 9
2 (0,0,2) 1 22 3 18 6 10
3 (0,0,3) 2 23 4 19 7 11
4 (0,1,0) 3 5 0 20 8 12
5 (0,1,1) 1 21 4 9 6 13
6 (0,1,2) 2 22 5 10 7 14
7 (0,1,3) 3 23 6 11 8 15
8 (1,0,0) 7 9 4 12 0 16
9 (1,0,1) 1 13 5 17 8 10
10 (1,0,2) 2 14 6 18 9 11
11 (1,0,3) 3 15 7 19 10 12
12 (1,1,0) 11 13 4 20 8 16
13 (1,1,1) 9 21 5 17 12 14
14 (1,1,2) 10 22 6 18 13 15
15 (1,1,3) 11 23 7 19 14 16
16 (2,0,0) 15 17 12 20 8 0
17 (2,0,1) 1 21 13 18 9 16
18 (2,0,2) 2 22 14 19 10 17
19 (2,0,3) 3 23 15 20 11 18
20 (2,1,0) 19 21 4 0 12 16
21 (2,1,1) 1 22 5 20 13 17
22 (2,1,2) 2 23 6 21 14 18
23 (2,1,3) 3 0 7 22 15 19

ternally disjoint.
In Procedure Parent Jumps Determine, it

turns out that every non-root vertex x takes dif-
ferent jumps to reach its parent in different span-
ning subgraphs (not yet proved to be spanning
trees). To complete this proof, we need to show
that there exists a unique path from every vertex
x to 0 in each spanning subgraph. The following
lemma depicts that the output of Algorithm Par-
ent Jumps Determine are spanning trees.

Lemma 4.1. Procedure Par-
ent Jumps Determine can generate a set
of δ spanning trees rooted at vertex 0 in a GRC
graph, where δ is the degree or connectivity of the
graph.

Proof. According to the class of jump j of a non-
root vertex x, we consider the following four cases:

Case 1: j ∈ Ax. x takes an α-path to the root.
Case 2: j ∈ Bx. x takes a β-path to the root.
Case 3: j ∈ Cx. x either takes one negative

jump and then followed by a β-path to the root,
or takes one positive leap and then followed by a
β-path to the root.

Case 4: j ∈ Dx. x either takes one negative
jump and then followed by an α-path to the root,

or takes one positive jump and then followed by a
β-path to the root.

Consequently, the resulting δ spanning sub-
graphs of Algorithm Parent Jumps Determine
are spanning trees of the GRC graph. �

We now show the independency of the output
IST of Algorithm Parent Jumps Determine.

Lemma 4.2. All paths generated by jump sets Ax

or Bx are internally disjoint.

Proof. According to Lemmas 2.5, 2.6 and 2.7, all
α-paths or β-paths are internally disjoint. �

Lemma 4.3. All paths generated by jump set Cx

or Dx are internally disjoint.

Proof. In case a path generated by jump set Cx

or Dx, x takes one jump and then takes either an
α-path or a β-path to get to the root. We can
prove that all the paths are internally disjoint by
means of the summation of jumps. �

Lemma 4.4. Let P and Q are two paths generated
by jump sets Ax ∪ Bx and Cx ∪ Dx, respectively.
Then P and Q are internally disjoint.

Proof. We can prove that P and Q are internally
disjoint by means of the summation of jumps. �

According to Lemmas 4.1, 4.2, 4.3 and 4.4, we
give the following theorem.

Theorem 1. Algorithm Par-
ent Jumps Determine can correctly construct
δ IST on a GRC graph in O(δN) time, where δ is
the degree of a vertex, and N is the order of the
graph.

5. Concluding Remarks

In this paper, an algorithm is proposed to
solve the IST problem on GRC graphs. Based
on the algorithm, for each non-root vertex, a
bijection from the parent-reaching jump set to
root-reaching jump set is determined individually.
Thus, the algorithm can be applied to the one-to-
many parallel routing of a GRC graph.
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able broadcasting in product networks, Dis-
crete Applied Mathematics 83 (1998) 3–20.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

35



[2] J. Cheriyan and S. N. Maheshwari, Finding
nonseparating induced cycles and indepen-
dent spanning trees in 3-connected graphs,
Journal of Algorithms 9 (1988) 507–537.

[3] S. Curran, O. Lee, and X. Yu, Finding four
independent trees, SIAM Journal on Com-
puting, 35 (2006) 1023–1058.

[4] Z. Ge and S. L. Hakimi, Disjoint rooted span-
ning trees with small depths in de Bruijn and
Kautz graphs, SIAM Journal on Computing
26 (1997) 79–92.

[5] T. Hasunuma and H. Nagamochi, Indepen-
dent spanning trees with small depths in it-
erated line digraphs, Discrete Applied Math-
ematics 110 (2001) 189–211.

[6] A. Huck, Independent trees in planar graphs,
Graphs and Combinatorics 15 (1999) 29–77.

[7] A. Itai and M. Rodeh, The multi-tree ap-
proach to reliability in distributed networks,
Information and Computation 79 (1988) 43–
59.

[8] Y. Iwasaki, Y. Kajiwara, K. Obokata, and
Y. Igarashi, Independent spanning trees of
chordal rings, Information Processing Letters
69 (1999) 155–160.

[9] D. Knuth. The Art of Computer Pro-
gramming, Volume 2: Seminumerical Algo-
rithms, Third Edition, Addison-Wesley, 1997,
pp.6566, 208209, and 290.

[10] J.-C. Lin, J.-S. Yang, C.-C. Hsu, J.-M.
Chang, Independent spanning trees vs. edge-
disjoint spanning trees in locally twisted
cubes,Information Processing Letters 110
(2010) 414–419.

[11] K. Miura, D. Takahashi, S. Nakano, and T.
Nishizeki, A linear-time algorithm to find four
independent spanning trees in four-connected
planar graphs, International Journal of Foun-
dations of Computer Science 10 (1999) 195–
210.

[12] K. Obokata, Y. Iwasaki, F. Bao, and Y.
Igarashi, Independent spanning trees of prod-
uct graphs and their construction, IEICE
Transactions on Fundamentals of Electron-
ics, Communications and Computer Sci-
ences, E79-A (1996) 1894–1903.

[13] M. O. Rabin, Efficient dispersal of informa-
tion for secursity, load balancing, and fault
tolerance, Journal of the ACM 36 (1989) 335–
348.

[14] P. Ramanathan, K. G. Shin, Reliable broad-
cast in hypercube multicomputers, IEEE

Transactions on Computers 37 (1988) 1654–
1657.

[15] A. A. Rescigno, Vertex-disjoint spanning
trees of the star network with applications to
fault-tolerance and security, Information Sci-
ences 137 (2001) 259–276.

[16] S.-M. Tang, Y.-L. Wang, and Y.-H. Leu, Op-
timal independent spanning trees on hyper-
cubes, Journal of Information Science and
Engineering 20 (2004) 605–617.

[17] S.-M. Tang, Y.-L. Wang and C.-Y. Li, Gen-
eralized recursive circulant graphs, IEEE
Transactions on Parallel and Distributed Sys-
tems, 23 (2012) 87–93.

[18] S.-M. Tang, J.-S. Yang, Y.-L. Wang and J.-M.
Chang, Independent spanning trees on multi-
dimensional torus networks, IEEE Transac-
tions on Computers 59 (2010) 93–102.

[19] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-
L. Wang, Reducing the height of independent
spanning trees in chordal rings, IEEE Trans-
actions on Parallel and Distributed Systems
18 (2007) 644–657.

[20] J.-S. Yang, S.-M. Tang, J.-M. Chang, and Y.-
L. Wang, Parallel construction of indepen-
dent spanning trees on hypercubes, Parallel
Computing 33 (2007) 73–79.

[21] J.-S. Yang, J.-M. Chang, S.-M. Tang, and
Y.-L. Wang, On the independent spanning
trees of recursive circulant graphs G(cdm, d)
with d > 2, Theoretical Computer Science 410
(2009) 2001–2010.

[22] J.-S. Yang and J.-M. Chang, Independent
spanning trees on folded hyper-stars, Net-
works 56 (2010) 272–281.

[23] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-
L. Wang, Constructing multiple independent
spanning trees on recursive circulant graphs
G(2m, 2), International Journal of Founda-
tions of Computer Science 21 (2010) 73–90.

[24] J.-S. Yang, J.-M. Chang, and H.-C. Chan,
Broadcasting secure messages via optimal
independent spanning trees in folded hy-
percubes, Discrete Applied Mathematics 159
(2011) 1254–1263.

[25] A. Zehavi and A. Itai, Three tree-paths, Jour-
nal of Graph Theory 13 (1989) 175–188.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

36




