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Abstract

The Clustered Steiner tree problem is a variant
of Steiner minimum tree problem. The required
vertices are partitioned into clusters, and the sub-
trees spanning different clusters must be disjoint in
a feasible clustered tree. In this paper we show that
the Steiner ratio of the cluster Steiner tree problem
is three, where the Steiner ratio is defined as the
largest possible ratio of the minimal cost without
using any Steiner vertex to the optimal cost.

1 Introduction

Over the years Steiner tree problems are exten-
sively studied, it is widely used in the telecom-
munication networks, design of VLSI, or optimal
networks routing, etc.

Given a simple undirected graph G = (V,E, c)
and a required vertex set R ⊆ V , a Steiner tree
is a connected and acyclic subgraph of G that
spans all the vertices in R. The Steiner Minimum
Tree (SMT) problem is a classical and well-known
NP-hard problem which involves finding a Steiner
tree with minimum total edge cost [9, 14]. On
general metrics, the best approximation ratio ρ
achieved in polynomial time is an important pa-
rameters for many graph problems. From the first
non-trivial result 11/6 [21], it has been improved
several times [6, 2]. The current best approxima-
tion ratio is 1.39 [2]. A large number of variants of
the SMT problem have been studied, for example,
the versions on the Euclidean metric [7] and the
rectilinear metric [8], the Steiner forest problem
[1], the group Steiner tree problem [10], the ter-
minal Steiner tree problem [3, 5, 16, 17, 18], the
internal-selected Steiner tree problem [11, 13, 15],
and many others [4, 12, 22].

The Clustered Steiner tree (CluSteiner)
problem was proposed in [20]. In addition to
a metric graph G = (V,E, c) and required ver-
tex set R, we are also given a partition R =

{R1, R2, . . . , Rk} of R. A Steiner tree T is a clus-
tered Steiner tree for R if all the vertices in the
same cluster (Ri) are clustered together in T . That
is, T can be cut into k subtrees by removing k− 1
edges such that each subtree is a Steiner tree for
one cluster Ri. A formal definition will be given
in Section 2. If there is only one cluster or each re-
quired vertex is itself a cluster, the problem degen-
erates to the original Steiner minimum tree prob-
lem.

When no Steiner vertices can be used, that is we
want to find the minimum clustered spanning tree,
the problem can be simply solved in polynomial
time [20]. For an instance (G,R), let MCST(G,R)
and CSMT(G,R) denote the minimum costs of
a clustered spanning tree and a clustered Steiner
tree, respectively. It is interesting to know the
largest ratio of

MCST(G,R)
CSMT(G,R)

among all possible instances. Analogous to the
original Steiner minimum tree problem, we call the
ratio “Steiner ratio” of the clustered Steiner tree
problem. In [20], it was shown that

MCST(G,R)
CSMT(G,R)

≤ 4

and there exist instances with ratio three. In this
paper, we show that the Steiner ratio is three by
giving an algorithm which transform a minimum
clustered Steiner tree T into a cluster spanning
tree with cost at most three times of T .

The rest of the paper is organized as follows. In
Section 2, we give some notation, definitions and
some properties used in this paper. In Section 3,
we shown the Steiner ratio for CluSteiner. Fi-
nally some remarks are given in Section 4.
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2 Notation and definitions

For a graph G = (V,E, c), V and E are the
vertex and the edge sets, respectively, and c is the
edge cost. An edge between vertices u and v is de-
noted by (u, v), and its cost is denoted by c(u, v).
For a subgraph T of G, c(T ) denotes the total cost
of all edges of T . For a graph G, V (G) and E(G)
denote the vertex and the edge sets, respectively.
For a vertex subset U , the subgraph of G induced
by U is denoted by G[U ]. By smt(G,R), we de-
note a Steiner minimum tree with instance (G,R)
and also its cost. We use mst(R) to denote a min-
imum spanning tree (MST), and also its cost, of
G[R]. A path with end vertices s and t is called an
st-path. For a set S, a collection S of subsets of S
is a partition of S if the subsets are mutually dis-
joint and their union is exactly S. An undirected
complete graph G = (V,E, c) is a metric graph if

• c(u, u) = 0 for each u ∈ V ;

• c(u, v) ≥ 0 for all u, v ∈ V ;

• c(u, v) = c(v, u) for all u, v ∈ V ; and

• c(u, v) + c(v, x) ≥ c(u, x) for all u, v, x ∈ V
(triangle inequality).

Definition 1 : For a tree T spanning S, i.e.,
S ⊆ V (T ), the local tree of S on T is the minimal
subtree of T spanning all vertices in S. In other
words, if Y is the local tree of S, then S ⊆ V (Y )
and all leaves of Y are in S.

Definition 2: Let R = {Ri | 1 ≤ i ≤ k} be a
partition of R. A Steiner tree T for R is a clustered
Steiner tree for R if the local trees of all Ri ∈
R are mutually disjoint, i.e., there exists a cut
set C ⊆ E(T ) with |C| = k − 1 such that each
component of T −C is a Steiner tree Ti for Ri for
all 1 ≤ i ≤ k.

The CluSteiner problem is formally defined
as follows.

Clustered Steiner Tree problem (CluS-
teiner)
Instance: A metric graphG = (V,E, c),
required vertices R ⊆ V , and a partition
R = {R1, R2, . . . , Rk} of R.
Goal: Find a minimum-cost clustered
Steiner tree for R.

A vertex not in R is a Steiner vertex. In the re-
mainder of this paper, we assume that (G,R) is
the instance of the problem, where G = (V,E, c)

and R = {R1, R2, . . . , Rk} is a partition of R. We
also use n = |V | and note that |E| ∈ Θ(n2) since
G is a complete graph.

A odd vertex is a vertex with odd degree, or
otherwise an even vertex. An Eulerian path is a
path traveling all the edges exactly once. A con-
nected undirected graph has an Eulerian path if
and only if there are exactly two odd vertices. An
Eulerian cycle is an Eulerian path starting and
ending at the same vertex. A connected undi-
rected graph has an Eulerian cycle if and only if
all vertices are even. A Hamiltonian path is a path
traveling all the vertices exactly once.

For a graph H, contraction of (u, v) ∈ E(H)
replaces u, v with a new vertex s. For any
other vertex w, the edge cost is set to c(s, w) =
min{c(u,w), c(v, w)}. For a subgraph S, contract-
ing S in H means contracting all the edges E(S)
in H, and the resulting graph is denoted by H/S.
For convenience, for a vertex set S, we also use
H/S to denote the graph obtained by contract-
ing all vertices in S even when H[S] is discon-
nected. That is, we shrink S into a new vertex
s and c(s, w) = minv∈S{c(v, w)} for any vertex
w /∈ S. Let G/R denote the graph resulted from
contracting all Ri for all Ri ∈ R.

For a graph T and (u, r), (r, v) ∈ E(T ), “taking
a shortcut between u, v” means we replace edges
(u, r) and (r, v) with (u, v). Similarly, for a uv-
path, taking a shortcut between u, v replaces the
path with edge (u, v).

For a clustered Steiner tree T , contracting all
the local trees results in a tree, denoted by T/R,
called the inter-cluster tree of T . Since a Steiner
vertex with degree two in an inter-cluster tree is
meaningless, the topology of an inter-cluster tree
is itself.

The Steiner ratio for general metric spaces is
bounded by 2. The inequality (1) is well-known,
see for example [19].

mst(R) ≤ 2 · smt(G,R). (1)

The inequality can be simply shown as follows. Let
T = smt(G,R). By doubling E(T ), we can obtain
an Eulerian multigraph and therefore an Eulerian
tour Y with c(Y ) = 2c(T ) = 2smt(G,R). Travel-
ing along the Eulerian tour and taking shortcuts
between consecutive unvisited required vertices,
we can obtain a Hamiltonian path of G[R] with
cost at most c(Y ) because of the triangle inequal-
ity. Since MST is the cheapest way to connect R,
we have that mst(R) ≤ c(Y ) and the inequality
follows.
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WhenR = V , i.e., the minimum clustered span-
ning tree problem, the problem is equivalent to the
case that no Steiner vertices are allowed. For this
case, the next lemma is shown in [20].

Lemma 1: The minimum clustered spanning
tree problem can be solved in O(n2) time [20].

Figure 1 was given in [20], which shows the
Steiner ratio for CluSteiner is at least three.

3 Steiner ratio of CluSteiner

Definition 3: Let T be a tree. For any u, v ∈
V (T ), the unique path between u and v on T is
denoted by T [u, v]. When u = v, T [u, v] is null
path with only one vertex but no edges.

Lemma 2: Let Y be a tree on a metric graph G
with edge length function c. For any U ⊆ V (Y )
and x, y ∈ V (Y ), there exists an xy-path Q on
G such that U ⊆ V (Q) and c(Q) ≤ 2c(Y ) −
c(Y [x, y]).

Proof: Construct a multi-graph M by doubling
all edges in Y except for the edges in the path
Y [x, y]. We have that c(M) = 2c(Y )− c(Y [x, y]).
Furthermore, x and y are odd vertices and all the
other in V (M) are even vertices. Therefore there
exists an Eulerian xy-path P of M . Traveling
along P and taking short-cuts between the first
visiting of every vertex in U , we can obtain a
path visiting each vertex in U exactly once. By
the triangle inequality, the path length is at most
c(M).

Let dia(Y ) denote the diameter of a tree Y .

Algorithm 1 Path-Partition

Input: a local Steiner tree Ti rooted at v.
Output: a set of disjoint paths on Ti containing
all vertices of Ti.

1: F = ∅;
2: for each Steiner vertex p in V (Ti) do
3: insert an arbitrary edge between p and its

children into F ;
4: end for
5: output the subgraph (V (Ti), F ).

In the Path-Partition of a local tree Ti, the
spine of Ti is defined as the path containing the
root of Ti.

Corollary 3 : Let Y be a tree on a metric graph
with edge length function c. If U ⊆ V (Y ), then
mst(U) ≤ 2c(Y )− dia(Y ).

Corollary 4: Let Y be a tree on a metric graph.
For any U ⊆ V (Y ) and x, y ∈ V (Y ), we have that
mst(U) ≤ 2c(Y )− c(Y [x, y]).

Corollary 5 : Let Ti be a local tree of an optimal
clustered Steiner tree. For any x, y ∈ V (Ti), we
have that mst(Ri) ≤ 2c(Ti) − c(Ti[x, y]). Partic-
ularly, mst(Ri) ≤ 2c(Ti) − c(Si), where Si is the
spine of Ti in any path partition.

For a clustered Steiner tree T , let α(T ) denote
the total cost of all its local trees and β(T ) =
c(T ) − α(T ) the cost of its inter-cluster topology,
i.e., β(T ) = c(T/R). A local edge is an edge of
a local tree and a local Steiner vertex is a Steiner
vertex in a local tree. Note that a local Steiner
vertex is incident to at least two local edges.

We define a procedure Path-Partition by Al-
gorithm 1. An example is shown in Figure 2. The
next lemma can be easily shown and the proof is
omitted.

Lemma 6: Let P = (V (Ti), F ) be the output of
Path-Partition. Let P = {P0, P1, . . .} be the
collection of the connected components of P. The
following properties hold.

• Each connected component Pj is a path (pos-
sibly a null path).

• Each Pj contains exactly one required vertex,
and the required vertex is one of its endpoints.

For a given clustered Steiner tree T , Algo-
rithm 2 computes a clustered spanning tree T ′,
i.e., without using any Steiner vertex. We shall
show that c(T ′) ≤ 3c(T ).

Lemma 7: In Algorithm 2,
∪

j mst(Uj)/R is an
inter-cluster tree and all endpoints of the edges
are required vertices.

∪
i mst(Ri) ∪

∪
j mst(Uj)

in Algorithm 2 is also a tree. Furthermore,∑
j mst(Uj) ≤ 2β(T )+α(T )+

∑
1≤i≤k c(Si), where

Si is the spine of the local tree Ti.

Proof: Each inter-cluster edge of T is in one
component Cj after path-partitioning all local
trees. Apparently

∪
j Cj/R is still the original

inter-cluster tree of T . The clusters intersecting
with Uj is exactly the same as Cj , and therefore∪

j mst(Uj)/R is an inter-cluster tree. Since all Uj

contain only required vertices, all endpoints of the
edges in

∪
j mst(Uj) are required vertices.
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Figure 1: An example with Steiner ratio three. R1 consists of the q required vertices circled by dotted
line. As indicated, each path has p internal Steiner vertices. (a) The optimal solution. (b) The best one
without any Steiner vertex. The optimal tree (a) has cost q(p(2 + ϵ) + 1) ≈ 2pq + 2q. The right tree
(b) is the best possible without Steiner vertex, and its cost is (q − 1)(4p + 2) + qp(2 + ϵ). The ratio is
asymptotically three when pq is large.

(a) (b)

Figure 2: An example of path-partition algorithm. (a) A local Steiner tree. (b) An Output of the
path-partition algorithm. Dotted lines indicate the deleted edges, and solid lines indicate the paths after
applying path-partition algorithm.
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root

Figure 3: The clustered Steiner tree after applying the path-partition algorithm. The shaded areas
indicate the connected components C.

Algorithm 2 Construction

Input: a clustered Steiner tree T .
Output: a clustered spanning tree T ′.

1: root T at a required vertex r;
2: for all local tree Ti do
3: call Path-Partition(Ti)
4: end for
5: for all connected components Cj containing

an inter-cluster edge do
6: Uj ← V (Cj) ∩R;
7: construct mst(Uj);
8: end for
9: construct mst(Ri) for all i.

10: output
∪

i mst(Ri) ∪
∪

j mst(Uj).

Let I and L denote the sets of inter-cluster and
local edges of T , respectively. For any Cj , let Ij be
the set of inter-cluster edges in Cj and Dj = {h |
Rh ∩ Cj ̸= ∅, h = 1, 2, ..., k} be the set of indexes
of clusters intersecting with Cj . Let |Dj | = ηj
and fj : [1, ηj ] 7→ Dj be an arbitrary labeling. By
Lemma 6, the edge set of Cj can be written as

E(Cj) = Ij ∪
∪

1≤h≤ηj

E(Pjh), (2)

where Pjh is a path in local tree Tfj(h) and these
paths come from different local trees, i.e., fj is
bijection. Among these paths, there is exactly one

path which is not a spine. We assume that Pj1 is
not a spine. By Lemma 2, we have that mst(Uj) ≤
2(Cj)− c(Pj1). By (2),∑

j

mst(Uj)

≤ 2
∑
j

(
c(Ij) +

ηj∑
h=1

c(Pjh)

)
−
∑
j

c(Pj1)

= 2
∑
j

c(Ij) + 2
∑
j

ηj∑
h=1

c(Pjh)−
∑
j

c(Pj1)

= 2
∑
j

c(Ij) +
∑
j

ηj∑
h=1

c(Pjh) +
∑
j

ηj∑
h=2

c(Pjh)

(3)

Since each inter-cluster edge is in exactly one
component, we have

2
∑
j

c(Ij) = 2c(I) = 2β(T ). (4)

Since the components Cj for all j are pairwise dis-
joint, the second term in (4) is exactly the total
cost of the local edges in all components, i.e.,∑

j

ηj∑
h=1

c(Pjh)

=
∑
j

c(E(Cj) ∩ L)
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≤
k∑

i=1

c(Ti) = α(T ). (5)

Recall that the spine of a local tree is the path
containing its root. For each j and h > 1, Pjh is
a spine of some local tree. On the other hand, the
spine of any local tree is in exactly one component.
Therefore,

∑
j

ηj∑
h=2

c(Pjh) =
k∑

i=1

c(Si). (6)

By (3–6), we have

∑
j

mst(Uj) ≤ 2β(T ) + α(T ) +
k∑

i=1

c(Si)

Theorem 8 : The Steiner ratio of clustered
Steiner trees is three.

Proof: First, it was shown in [20] that the Steiner
ratio is lower bounded by three. Let T be an op-
timal cluster Steiner tree. To complete the proof,
we shall show that Algorithm 2 always outputs a
clustered spanning tree with cost at most 3c(T ).

By lemma 7, Algorithm 2 outputs a clustered
spanning tree T ′ with β(T ′) ≤ 2β(T ) + α(T ) +∑

1≤i≤k c(Si), where Si is the spine of the local
tree Ti. The local trees of T ′ are minimum span-
ning trees of the clusters, and we have

α(T ′) =
k∑

i=1

mst(Ri).

By Corollary 5, mst(Ri) ≤ 2c(Ti) − c(Si), and
therefore

c(T ′)

= α(T ′) + β(T ′)

≤
∑

1≤i≤k

(2c(Ti)− c(Si))

+2β(T ) + α(T ) +
∑

1≤i≤k

c(Si)

= 2β(T ) + 3α(T ) ≤ 3c(T ).

4 Conclusion

In this paper, we show that the Steiner ratio
for CluSteiner is three. The result also provides
a 3-approximation for CluSteiner. How to im-
prove the approximation ratio is an interesting fu-
ture work.
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