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Abstract

We consider the dynamic map labeling prob-
lem: given a set of rectangular labels on the
map, the goal is to appropriately select visible
ranges for all the labels such that no two con-
sistent labels overlap at every scale and the sum
of total visible ranges is maximized. We pro-
pose approximation algorithms for several vari-
ants of this problem. For the simple ARO
problem, we provide a 3c log n-approximation al-
gorithm for the unit-width rectangular labels if
there is a c-approximation algorithm for unit-
width label placement problem in the plane; and
a randomized polynomial-time O(log n log log n)-
approximation algorithm for arbitrary rectangular
labels. For the general ARO problem, we prove
that it is NP-complete even for congruent square
labels with equal selectable scale range. Moreover,
we contribute 9-approximation algorithms for both
arbitrary square labels and unit-width rectangular
labels, and a 5-approximation algorithm for con-
gruent square labels.

1 Introduction

Online maps have been widely used in re-
cent years, especially on portable devices. Such
geographical visualization systems provide user-
interactive operations such as continuous zoom-
ing. Thus, the interfaces provide to a new model in
map labeling problems. Been et al. [3] initiated an
interesting consistent dynamic map labeling prob-
lem whose objective is to maximize the sum of
total visible ranges, each of which corresponds to
the consistent interval of scales at which the label
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is visible; in other words, the aim is to maximize
the number of consistent labels at every scale. In
contrast with the static map labeling problem, the
dynamic map labeling problem can be considered
a traditional map labeling by incorporating scale
as an additional dimension. During zooming in
and out operations on the map, the labeling is re-
garded as a function of the zoom scale and the
map area.

Several desiderata [2] are provided by Been et
al. to define this problem. We adopt all desider-
ata to our problem. Labels are selected to display
at each scale and labels should be visible continu-
ously without intersection. Moreover, labels could
change their sizes as a function during monotonic
zooming at some specific scale. In order to main-
tain the consistence of notations, we also follow
the definition by Been et al.’s work [2, 3], and de-
fine active (visible) range to be a continuous in-
terval lying between the maximum scale and the
minimum scale where labels could be exactly dis-
played. Our goal is to maximize the number of
consistent labels at every scale, and thus we maxi-
mize the sum of total active ranges to achieve this
goal. The detailed problem definition is described
in the following.

Problem Definition. Given a set of n extru-
sions E , and each extrusion E ∈ E with an open
interval (sE , SE) ⊆ (0, Smax), which we call se-
lectable range, among the scale s. Note that Smax

is an universal maximum scale for all extrusions.
The goal is to compute a suitable active range
(aE , AE) ⊆ (sE , SE), for each E (see Figure 1).
Actually, when an extrusion E intersects a hori-
zontal plane at s, it forms a cross-section. We say
that this cross-section is a label L. Here, we con-
sider invariant point placements with axis-aligned
rectangular labels, in which labels always map to
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Figure 1: Two unit-width rectangular labels with selectable ranges and active ranges

the same location, so labels do not slide and ro-
tate.

According to [3], we consider two models in this
problem—general and simple. The general active
range optimization (ARO) problem is to choose
the active ranges (aE , AE) so as to maximize the
sum of total active ranges. For the simple ARO
problem, it is a variant in which the active range
are restricted so that a label is never deselected
when zooming in. That is, the active range of a
selected extrusion E ∈ E is (0, AE) ⊆ (0, Smax).

Moreover, we consider two types of dilation
cases in this paper—proportional dilation and con-
stant dilation. We say that labels have propor-
tional dilation if their sizes could change with scale
proportionally. In contrast, if the sizes of labels
are fixed at every scale, we say that labels have
constant dilation. For the simple ARO problem
with proportional dilation, because we consider
rectangular labels, the shapes of extrusions are in
fact rectangular pyramids. Let π(s) be the hyper-
plane at scale s. Also let the width and length of
the rectangular label E ∩π(s) of an (pyramid) ex-
trusion E at scale s be functions wE(s) = s

Smax
wE

and lE(s) = s
Smax

lE , respectively, where wE and
lE are the width and length of E, respectively, at
scale Smax. Then, for the general ARO problem
with constant dilation, the shapes of extrusions
are rectangular prisms. Let width and length be
wE(s) = wE and lE(s) = lE , respectively, where
s ∈ (sE , SE), because the sizes of all labels are
fixed at every scale. In addition, we say that E
and E′ ∈ E intersect at scale s, if and only if s ⊂
(sE , SE)∩(sE′ , SE′), |xE−xE′ | ≤ 1

2 (lE(s)+lE′(s))
and |yE − yE′ | ≤ 1

2 (wE(s) + wE′(s)) are satisfied,
where (xE , yE) is the central point of a pyramid
extrusion E.

Accordingly, our goal is to compute a set of
pairwise disjoint truncated extrusions T = {TE :
(aE , AE) | E ∈ E}, where TE is the truncated
extrusion of E, so as to maximize the sum of total

active range height H(T ) =
∑
E∈E |AE − aE |.

Previous Work. Map labeling is an important
application [9] and a popular research topic dur-
ing the past three decades [16]. The labeling prob-
lems which were proposed before dynamic labeling
problems are mostly static labeling problems [3].
There are various settings for static labeling prob-
lems [10] and they have been shown to be NP-
hard [11]. One of major topics and its typical goal
is to select and place labels without intersection
and its objective is to maximize the total number
of labels. Agarwal et al. presented a PTAS for
the unit-width rectangular label placement prob-
lem and a logn-approximation algorithm for the
arbitrary rectangle case [1]; Berman et al. [5] im-
proved the latter result and obtained a dlogk ne-
factor algorithm for any integer constant k ≥ 2.
Then, Chan [7, 8] improved the running time of
these algorithms. Chalermsook and Chuzhoy [6]
showed an O(logd−2 n log logn)-approximation al-
gorithm for the maximum independent set of rect-
angles where rectangles are d-dimensional hyper-
rectangles.

In addition, there have been a few studies on
dynamic labeling. Poon and Shin [15] devel-
oped an algorithm for labeling points that precom-
putes a hierarchical data structure for a number
of specific scales. For dynamic map labeling prob-
lems, Been et al. [2] proposed several consistency
desiderata and presented several algorithms for
one-dimensional (1D) and two-dimensional (2D)
labeling problems [3]. Note that labels in 1D prob-
lems are open intervals; labels in 2D problems are
open rectangles. They showed NP-completeness
of the general 1D ARO problem with “constant”
dilation with square extrusions of distinct sizes,
and the simple 2D ARO problem with “propor-
tional” dilation with congruent square cone ex-
trusions. They focused on dynamic label selec-
tion, i.e., assuming a 1-position model for label
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Problem Extrusion Shape Approximation Ratio Time Complexity

Simple ARO
unit-width rectangular pyramids

6 logn O(n log2 n)

3 k+1
k logn O(n log2 n+ n4k−1 logn)

rectangular pyramids O(logn log logn) Polynomial

General ARO

unit-width rectangular prisms 9 O(n log3 n)

arbitrary square prisms 9 O(n log3 n)

congruent square prisms 5 O(n log3 n)

Table 1: Summary of our approximation results

placement. Moreover, Gemsa et al. [12] provided
a FPTAS for general sliding models of the 1D dy-
namic map labeling problem. Since dynamic map
labeling is still a new research topic, there are still
many unsolved problems. Yap [17] summarized
some open problems.

Our contribution. In this paper, we consider
simple ARO with proportional dilation and gen-
eral ARO with constant dilation. We design a list
of approximation algorithms as shown in Table 1.
Moreover, we also prove that the general ARO
problem with constant dilation is NP-complete.

2 Approximation for the simple
ARO problem

In this section, we investigate the simple ARO
problem with proportional dilation and present
two approximation algorithms for a given set E
of axis-aligned rectangular pyramids, where the
intersection of a pyramid E with the horizontal
plane at scale s is a rectangular label whose width
and length are s

Smax
wE and s

Smax
lE , respectively.

First, we explore the simple ARO problem for an
input set of unit-width rectangular pyramids, in
which the rectangular label of a pyramid at scale
Smax is associated with a given uniform width
and an arbitrary length. In particular, we pro-
pose a 3c log n-approximation algorithm for this
problem, where c is an approximation factor for
the unit-width rectangular label placement prob-
lem in the plane. The best known-to-date approx-
imation ratio for this two-dimensional label place-
ment problem is c = k+1

k , derived by Agarwal et
al. [1] and Chan [8], for any integer k ≥ 1. Subse-
quently, we extend the technique to the arbitrary
rectangular pyramid case and obtain an expected
O(log n log log n)-approximation algorithm.

2.1 Approximation for unit-width
rectangular pyramids

Given a set E of n unit-width rectangular pyra-
mids for the simple ARO problem with propor-
tional dilation, where the uniform label width of
each pyramid at scale s is s

Smax
w, the objective

is to select a set of truncated pyramids such that
they are pairwise disjoint and the total sum of
their active range height is maximized. Note that
the maximum unit-width label placement problem
at scale s can be approximated well by using the
famous shifting technique [13]. However, the ma-
jor challenge is that a feasible label placement at
each scale cannot be merged into a feasible solu-
tion for the ARO problem; that is, an integrated
solution may cause inconsistent active range for a
pyramid, even if an optimal label placement can
be derived at each scale s.

The rationale behind the proposed approach
is described as follows. We divide the scale into
(log n + 1) heights for (log n + 1) restricted sim-
ple ARO problems such that in each of the prob-
lems, every rectangular pyramid has an upper
bound on the selectable range that cannot exceed
sj = Smax/2

logn−j+1, 1 ≤ j ≤ (log n + 1), where
s0 = 0 and the (log n + 1)’th scale slogn+1 is in
fact the universal maximum scale Smax. Then, for
each restricted simple ARO problem, we devise a
good approximation solution S for the unit-width
rectangular label placement problem in the hyper-
plane at scale sj , and select the whole rectangu-
lar pyramids whose labels at scale sj are selected
in S. That is, we take the complete selectable
ranges (0, sj) of those pyramids in S as their active
ranges. Finally, we choose the largest approxima-
tion solution among all the (logn + 1) restricted
ARO problems and analyze its ratio.

First, we recall the unit-width rectangular label
placement problem in the plane. Agarwal et al. [1]
presented a k+1

k -approximation algorithm based
on the shifting technique [13]. For ease of exposi-
tion, we refer to Agarwal et al.’s method and use a
simple 2-approximation algorithm to derive a label
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Figure 2: Side view of an illustration of P k1,j , P
k
2,j and P k2,j+1

placement solution Mj in the hyperplane at scale
sj . We draw a set of horizontal lines from top to
bottom of y-axis using an incremental approach,
i.e., from ymax = max{yE} to ymin = min{yE}
of y-axis. The separation between two horizontal
lines is larger than the uniform width, i.e.,

sj
Smax

w,
and the lines that do not intersect any labels, if
any, are skipped. For each line `jk at scale sj , where
1 ≤ k ≤ mj ≤ n, let a subset of labels intersected

by line `jk be denoted by Rjk. The lines are drawn
such that the next two properties hold: every line
`jk intersects at least one unit-width rectangular

label, i.e., Rjk 6= ∅, and each label is intersected by

exactly one line. Hence, we have
∑mj

k=1 |R
j
k| = n,

where |Rjk| is the cardinality of Rjk, i.e., the num-

ber of labels that are intersected by `jk. Moreover,

for every line `jk, Rjk∩R
j
i = ∅, when k+1 < i ≤ mj

and 1 ≤ i < k−1. Subsequently, we apply a greedy
algorithm to compute a one-dimensional maxi-
mum independent set, denoted by M j

k , for each

subset Rjk of labels that are intersected by line `kj .

The greedy strategy, which takes O(|Rjk| log |Rjk|)
time, proceeds as follows: Sort the right bound-
aries of all labels in Rjk by their x-axis and scan
the labels from left to right. Select the label
whose right boundary is the smallest, say L, into
the independent set, M j

k , and remove labels that
overlap L. Repeat the argument until each la-
bel is scanned. The correctness of this simple
greedy algorithm is straightforward. Then, con-
sider two sets Modd = {M j

1 ,M
j
3 , ...,M

j
2dmj/2e−1}

and Meven = {M j
2 ,M

j
4 , ...,M

j
2dmj/2e}; clearly,

both of them are independent sets, i.e., feasible
label placement at scale sj . Let the larger one
of Modd and Meven be Mj , which implies |Mj | ≥
1
2 (|Modd|+ |Meven|). Thus, a 2-approximation al-
gorithm follows for the unit-width rectangular la-
bel placement problem at scale sj .

In the restricted ARO problem for an input
set of unit-width rectangular pyramids whose se-

lectable range cannot exceed scale sj , we select the
whole pyramid E whose label at scale sj is in Mj ;
that is, we set the active range of E as AE = sj ,
for every E ∈ Mj , and the solution at scale sj ,
denoted by Sj = {TE : (0, AE) | E ∈ Mj}, has
the sum of active ranges H(Sj) =

∑
E∈Mj

AE . As
mentioned earlier, we select the maximum among
all the (log n+1) approximation solutions at scale
sj , 1 ≤ j ≤ log n + 1, denoted by S. That is
H(S) = maxj{H(Sj)}. Note that the running
time of the overall algorithm is O(n log2 n), be-
cause there are (log n + 1) restricted ARO prob-
lems.

In the following theorem, we analyze the ap-
proximation ratio of the proposed algorithm.

Theorem 1. Given a set of n unit-width rectan-
gular pyramids in the simple ARO problem, there
exists a 6 logn-approximation algorithm, which
takes O(n log2 n) time, for this problem.

Proof. Given a set E of n unit-width rectangular
pyramids, let S∗ = {T ∗E : (0, A∗E) | E ∈ E , A∗E >
0} be the optimum solution for the problem and
|S∗| be its cardinality. The sum of active range
height of S∗ is H(S∗) =

∑
E∈S∗ A

∗
E . We consider

the intersection of those pyramids in S∗ with the
hyperplane π(sj) at scale sj = Smax/2

logn−j+1,
denoted by S∗j , 1 ≤ j ≤ log n + 1. We define two

subsets P k1,j and P k2,j recursively as follows.

P k1,j =


{T ∗E : (0, A∗E) | A∗E ≥ sj}, if k = 1;

{T ∗E : (0, A∗E) | A∗E > sj and

T ∗E ∈ S∗ \ {
⋃k−1
k′=1 P

k′

2,j+1}}, if k > 1;

P k2,j =


{T ∗E : (0, A∗E) | A∗E < sj}, if k = 1;

{T ∗E : (0, A∗E) | A∗E ≤ sj and

T ∗E ∈ S∗ \ {
⋃k−1
k′=1 P

k′

2,j+1}}, if k > 1;

Figure 2 illustrates the definition of P k1,j and

P k2,j . Initially, let k = 1, and we locate the scale
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sj such that

|P 1
1,j | ≥ |S∗|/2, |P 1

2,j | ≤ |S∗|/2, and

|P 1
1,j+1| < |S∗|/2, |P 1

2,j+1| > |S∗|/2.

As mentioned above, because Mj is a 2-
approximation solution at scale sj , we have
2|Mj | ≥ |S∗j |, which implies

2|Sj | ≥ |S∗ \ P 1
2,j | = |P 1

1,j | ≥ |P 1
2,j |, and

2H(Sj) = 2|Sj | × sj ≥ |P 1
1,j | × sj

≥ |P 1
2,j | × sj ≥ H(P 1

2,j).
(1)

Because P 1
2,j+1 \ P 1

2,j ⊆ P 1
1,j and 2sj = sj+1, we

have

2H(Sj) ≥ |P 1
1,j | × sj ≥ |P 1

2,j+1 \ P 1
2,j | ×

sj+1

2

≥ 1

2
H(P 1

2,j+1 \ P 1
2,j).

(2)

Based on the equations (1) and (2), clearly,
6H(Sj) ≥ H(P 1

2,j+1). Then, we remove the rectan-

gular pyramids in P 1
2,j+1 from S∗. Since |P 1

2,j+1| >
|S∗|/2, more than half of pyramids in S∗ are re-
moved at this step. Now we set the index j for
this first round to be j1. Next, for the remaining
active ranges in S∗, we proceed to locate another
scale sj in the same fashion. Then we consider
P 2

1,j and P 2
2,j for the new scale sj . Similarly we

remove P 2
2,j+1 from S∗, and set this index j to be

j2. We repeat the above step until we locate the
scale sj = Smax satisfying the property or all the
rectangular pyramids in S∗ are removed. Suppose
that the number of rounds considered in the above
process in k, and we set last scale considered to be
sjk . Note that for each of the above steps, more
than half of remaining rectangular pyramids in S∗
are removed. Thus, the above step repeats at most
log n times, i.e., k ≤ log n. According to the above
reasoning,

6

k∑
`=1

H(Sj`) ≥
k∑
`=1

H(P `2,j`+1) ≥ H(S∗),

⇒H(S) =
log +1
max
j=1
{H(Sj)} ≥

k
max
`=1
{H(Sj`)}

≥

k∑̀
=1

H(Sj`)

log n
≥ H(S∗)

6 logn
.

We remark that two special cases need to be
addressed. Assume the first scale we reach is
s1 = Smax/n such that |P 1

1,1| < |P 1
2,1|. In this

case, we skip the rectangular pyramids in P 1
2,1,

and we conduct the similar analysis on the remain-
ing rectangular pyramids in S∗, as mentioned ear-
lier. Moreover, H(P 1

2,1) ≤ n × Smax

n = Smax ≤
H(Slogn+1) ≤ H(S). Thus, we have

(6(log n− 1) + 1)H(S) ≥ H(S∗)

⇒H(S) ≥ H(S∗)
6 log n− 5

≥ H(S∗)
6 log n

.

In addition, consider the other case that the first
scale we reach is s1 = Smax such that |P 1

1,logn+1| ≥
|P 1

2,logn+1|. Then clearly,

2|Slogn+1| ≥ |P 1
1,logn+1| ≥ |P 1

2,logn+1|
⇒2H(Slogn+1) ≥ H(P 1

1,logn+1) ≥ H(P 1
2,logn+1)

⇒4H(S) ≥ 4H(Slogn+1)

≥ H(P 1
1,logn+1) +H(P 1

2,logn+1)

= H(S∗),

which implies a better approximation ratio for S.
The proof is complete.

We can show that the analysis of this approxi-
mation ratio is in fact tight, whose detail is omit-
ted.

Theorem 2. The analysis of the 6 log n-
approximation algorithm is tight.

Moreover, if there is a c-approximation algo-
rithm for the unit-width label placement problem
in the plane, the approximation factor can be im-
proved to 3c log n, according to the equations (1)
and (2). The currently best ratio, obtained by
Agarwal et al. [1] and Chan [8], is k+1

k , for any in-
teger k ≥ 1. Therefore, the unit-width case of the
simple ARO problem can be approximated with

a 3 logn(k+1)
k -approximation factor, for any inte-

ger k ≥ 1, though, in O(n log2 n + n∆k−1 log n)
time [8], where ∆ is the maximum intersection
number of rectangular pyramids. We remark that
the tight example, as described above, can be ap-
plied to 3c log n-factor approximation algorithm as
well.

Corollary 1. The simple ARO problem with unit-
width rectangular pyramids can be approximated
with 3c log n-factor, where c is an approximation
ratio for the unit-width label placement problem in
the plane.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

55



3 Complexity and approximation
for general ARO problems

In this section, we first prove that the gen-
eral ARO problem with constant dilation for a
given set of axis-aligned congruent square prisms
of equal selectable scale range (or height, for short)
is NP-complete. We then proceed to present a
greedy algorithm that yields constant-factor ap-
proximation for the general ARO problem with
constant dilation for an input set of general axis-
aligned square prisms of equal height, or for an
input set of axis-aligned unit-width rectangular
prisms of equal height.

3.1 Complexity of general ARO for
congruent square prisms

Been et al. [2] showed the NP-completeness
of the simple 2D ARO problem with “propor-
tional” dilation for congruent square cone extru-
sions. Here, we show that even the general ARO
problem with “constant dilation” for congruent
square prisms is also NP-complete, whose proof
uses a reduction from the known NP-complete
problem, the planar 3SAT problem [14]. The de-
tail of its proof is in Appendix.

Theorem 3. The general ARO problem with con-
stant dilation is NP-complete. That is, given a
set E of axis-aligned congruent square prisms of
equal selectable range of height and a real number
K > 0, it is NP-complete to decide whether there
is a set of pairwise disjoint truncated prisms T
from the prisms in E such that H(T ) ≥ K. More-
over, the problem remains NP-complete even when
restricted to instances where not all the spans on
the scale dimension of the input prisms are the
same.

3.2 Approximation for general square
prisms

Given a set E of general axis-aligned square
prisms of equal height, we propose a 9-
approximation algorithm for such a general ARO
problem with constant dilation. Our algorithm
runs in a greedy fashion as follows. We greed-
ily select a subset of prisms S from E , and we
take their complete selectable ranges as their ac-
tive ranges in our solution. First we select a prism
E with the smallest base area from E , i.e., the
smallest square, and put it into S. Then we dis-
card E and the other prisms intersecting E from

E . We repeat this step on the current set of E
until E becomes empty. We then show in the fol-
lowing theorem that the sum of active ranges of S
is a constant-factor approximation to the optimal
solution S∗.

Theorem 4. Given a set E of general axis-
aligned square prisms of equal height, there is a 9-
approximation algorithm which takes O(n log3 n)
time for such a general ARO problem.

Proof. We first let h be the common height of all
prisms in E . Consider E to be an element selected
into the set S in our algorithm. Then let NE be
the discarded set of prisms due to selection of E
in our algorithm. We divide NE into eight groups,
each of which contains at least one corner point
of E as E has the smallest base area comparing
to the prisms in NE and all prisms have the same
selectable range of height. Let Gp be the group
of prisms in NE containing a corner point p of E.
And let T ∗p be the set of truncated prisms in S∗
from the prisms in the group Gp. Since all prisms
in Gp contain the single point p and have the same
height h, H(T ∗p ) ≤ h. As prism E has eight cor-
ner points, the prisms in NE can contribute active
ranges of total height at most 8h to the optimal
solution S∗. In addition, E contributes an active
range of height at most h in the optimal solution
S∗. Hence H(S) ≥ 1

9H(S∗).
Moreover, the O(n log3 n) running time can be

easily attained by making use of three-dimensional
segment tree. Hence, we complete the proof.

In fact, the approximation factor 9 for our algo-
rithm is tight in the worst case, whose proof detail
is in Appendix.

3.3 Approximation for unit-width
rectangular prisms

Given a set E of axis-aligned unit-width rectan-
gular prisms of equal height, we can obtain a 9-
approximation algorithm for such a general ARO
problem with constant dilation using the same
strategy as in the previous section. In the al-
gorithm, again we iteratively select the prism of
the smallest base area among the available ones.
Hence, we have the following theorem.

Theorem 5. Given a set E of axis-aligned unit
rectangular prisms of equal height, there is a 9-
approximation algorithm which takes O(n log3 n)
time for such a general ARO problem.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

56



3.4 Approximation for congruent
square prisms

Given a set E of axis-aligned congruent square
prisms of equal selectable range of height, we pro-
pose a 5-approximation algorithm for such a gen-
eral ARO problem with constant dilation. Been
et al. [3] propose a greedy algorithm which has 4-
approximation ratio, but our running time which
takes O(n log3 n) is better than theirs. Our al-
gorithm again runs in a greedy fashion, which is
described as follows. We greedily select a set of
prisms S from E , and we take their complete se-
lectable ranges as their active ranges in our solu-
tion. We process the prisms in the order of in-
creasing x-coordinates. First we select a prism E
with the smallest x-coordinate from E and put it
into S. Then we discard E and the other prisms
intersecting E from E . We repeat this step on the
current set of E until E becomes empty. We then
show in the following theorem that the sum of ac-
tive ranges of S is a constant-factor approximation
to the optimal solution S∗.

Theorem 6. Given a set E of axis-aligned con-
gruent square prisms of equal selectable of height,
there is a 5-approximation algorithm which takes
O(n log3 n) time for such a general ARO problem.

Proof. We first let h be the common height of all
prisms in E . Consider E to be an element se-
lected into the set S in our algorithm. Then let
NE be the discarded set of prisms due to selection
of E in our algorithm. According to the design
of our algorithm, E is the leftmost one along the
x-axis comparing to the prisms in NE . Since all
prisms are congruent, each prism in NE contains
at least one corner point of the right face f of E
in the direction of x-axis. We divide NE into four
groups, each of which contains prisms enclosing
one corner point of face f . Let Gp be the group of
prisms in NE containing a corner point p of E. By
the same reasoning as in the proof of Theorem 4,
the prisms in Gp contribute active ranges of total
height at most h to the optimal solution S∗. Thus
the prisms in the four groups of NE contribute
active ranges of total height at most 4h to the op-
timal solution S∗. In addition, E contributes an
active range of height at most h in the optimal
solution S∗. Hence H(S) ≥ 1

5H(S∗).
Moreover, the O(n log3 n) running time can be

easily attained by making use of three-dimensional
segment tree. Hence, we complete the proof.

The approximation factor 5 for our algorithm

is, in fact, tight in the worst case, whose proof
detail is in Appendix.
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[12] A. Gemsa, M. Nöllenburg, and I. Rutter.
Sliding labels for dynamic point labeling, in:
Proc. 23th Canadian Conference on Com-
putational Geometry. (CCCG’11), 205–210,
2011.

[13] D.S. Hochbaum, W. Maas, Approximation
schemes for covering and packing problems
in image processing and VLSI, Journal of the
ACM (JACM), 32(1): 130–136, 1985.

[14] D.E. Knuth, A. Raghunathan, The problem
of compatible representatives, SIAM J. Dis-
crete Math., 5(3), 422–427, 1992.

[15] S.-H. Poon, C.-S. Shin, Adaptive zooming
in point set labeling, In: Proc. 15th In-
ternational Symposium on Fundamentals of
Computation Theory (FCT 2005), Springer-
Verlag, 3623, 233–244, 2005.

[16] A. Wolff, T. Strijk, The map-labeling
bibliography, http://i11www.iti.uni-
karlsruhe.de/map-labeling/bibliography/,
2009.

[17] C.K. Yap, Open problem in dynamic map
labeling, in: Proc. International Workshop
On Combinatoral Algorithms (IWOCA’09),
2009.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

58



Appendix

A. Proof of Theorem 3

Proof. Clearly, the problem is in NP. To
show its hardness, we reduce the planar 3SAT
problem [14] to our problem. The input in-
stance for the planar 3SAT problem is a set
{x1, x2, . . . , xn} of n variables, and a Boolean
expression Φ = c1 ∧ c2 ∧ . . . ∧ cm of m clauses,
where each clause consists of exactly three literals,
such that the variable clause graph of the input
instance is planar. The planar 3SAT problem
asks for whether there exists a truth assignment
to the variables so that the Boolean expression Φ
is satisfied. In the following, we will describe our
polynomial-time reduction. In our construction,
each prism in E is a prism with unit-square base
and with height h, and not all prisms have the
same span along the scale dimension.

Variable gadgets. The gadget of a variable x con-
sists of a horizontal chain Gx of 4m pairs of con-
gruent square prisms, where every four consecutive
pairs of square prisms are dedicated for connect-
ing to one literal of a clause in Φ. Every pair of
square prisms intersects and locates either at the
span [0, h], called at down location, or at the span
[h/2, 3h/2], called at up location, on the scale di-
mension (see Figure 4).

Figure 3: Top view and side view of the variable
gadget

Along the chain of the variable gadget, the
prism pairs jump up and down alternately. We
observe that every pair of overlapping square
prisms along the chain of a variable gadget can
contribute at most h in total to the final solution.
We let variable x be true corresponding to that
the upper prism of first prism pair along Gx is
selected; the lower prism of second prism pair
along Gx is selected; the upper prism of third
prism pair along Gx is selected; etc. On the
other hand, variable x being false corresponds
to the selection of the remaining prisms in
contrast to the selected prisms for variable x

being true. It is not hard to see that either
of these two solutions for prisms in Gx are the
best possible. Whatever variable x is true or
false, Gx contributes 4m full prisms, and thus
total height 4mh units, to the final solution H(T ).

Literal gadgets. A literal gadget connects a
variable gadget to a clause gadgets. Again the
gadget Gλ of a literal λ consists of a chain of
square prism pairs such that all its prims locate
at up or down positions. However, the literal
gadget consists of a vertical part and a horizontal
part, if λ corresponds to the left or right literal of
the corresponding clause gadget. See Figure 4 for
an example.

Suppose that λ is positive, say being x, and its
dedicated chain of four consecutive square pairs
from the corresponding variable gadgets is Gx,λ;
then we connect Gλ to the two middle pairs of
square prisms of Gx,λ (see Figure 4). Otherwise,
suppose that λ is negative, say being x; then we
connect Gλ to the two rightmost pairs of square
prisms of Gx,λ. The literal gadget Gλ propagates
with square prisms at up or down locations in
the fashion as shown in Figure 4. When a literal
gadget needs to turn left or right, we have to
modify the location of one square prism at the
turning corner from up to down or vice versa
so that the propagation of up and down prisms
can proceed. If a literal λ is true, the prism that
connects the clause gadget is not selected into
the set T ; otherwise, if λ is false, then the prism
which connects the clause gadget is selected into
the set T . For a literal λ, let nλ be the number of
square prism pairs in Gλ. Then, λ contributes nλ
full prisms, and thus nλh units of height, to the
final solution H(T ), no matter whether literal λ
is true or false.

Clause gadgets. One prism of the ending square
prism pair of a literal gadget connects to a clause
gadget. A gadget Gc for clause c consists of three
mutually intersecting square prisms all at up
locations (see Figure 4(a)). Thus the gadget Gc
can contribute at most one full square prism, and
thus h units of height, to the final solution H(T ).

Equivalence proof. The variable, literal, and
clause gadgets form the set E of all input prisms
representing Φ. It remains for the proof to set
the threshold K such that Φ is satisfiable iff
H(T ) ≥ K. All variable gadgets contribute 4mn
full prisms, and thus 4mnh units of height, to the
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(a) (b)

Figure 4: (a)The gadget Gc for the clause c = (x1 ∨ x2 ∨ x3) when c is true; (b)The gadget Gc for the
clause c = (x1 ∨ x2 ∨ x3) when c is false.

final solution H(T ). On the other hand, all literal
gadgets contribute

∑
λ∈lit(Φ) nλ full prisms, and

thus h(
∑
λ∈lit(Φ) nλ) units of height, to the final

solution H(T ), where lit(Φ) is the set of literals
in clauses of formula Φ.

Since at least one literal of a clause c is true if
and only if a clause gadget Gc can contribute one
full square prism, and thus h units of height, to
the final solution H(T ). If all literals of clause c
are false, then Gc contributes zero prism, and thus
zero units, to H(T ) (see Figure 4(b)). Hence we
conclude that Φ is satisfiable, i.e., all clauses are
satisfied, if and only if H(T ) ≥ K, where

K = h(4mn+
∑

λ∈lit(Φ)

nλ +m).

This completes the NP-hardness proof.

B. Tight example for Section 3.2

We provide a tight example for the 9-
approximation algorithm. Let n axis-aligned
square prisms of equal selectable range of height h
be divided into nine groups Gp, n ≥ 9, 1 ≤ p ≤ 9,
where each of the groups has n

9 prisms. In
addition, the length of the prism in G1 is one
and the length of other prisms is two. Let the
central point of each prism bottom in G1 is
(4k − 2, 2, h), in G2 is (4k − 3, 1, εh), in G3 is
(4k − 1, 1, εh), in G4 is (4k − 3, 3, εh), in G5 is
(4k − 1, 3, εh), in G6 is (4k − 3, 1, (2− ε)h), in G7

is (4k−1, 1, (2−ε)h), in G8 is (4k−3, 3, (2−ε)h),
and G9 is (4k− 1, 3, (2− ε)h), where 1 ≤ k ≤ dn9 e
(see Figure 5). Obviously, the optimum solution

is H(S∗) = 8nh
9 + (1 − 2ε)nh9 = (9−2ε)nh

9 and our

solution is H(S) = nh
9 . As a result, when ε is

sufficiently small, the 9-approximation ratio is
proved.

C. Tight example for Section 3.4

Figure 6 illustrates a tight example for the 5-
approximation algorithm. Let n axis-aligned con-
gruent square prisms of equal selectable range of
height h be equally divided into five groups Gp,
n ≥ 5, 1 ≤ p ≤ 5. In addition, the length of the
prism in each group is one. Let the central point
of each prism bottom in G1 is (2k, 1, h), in G2

is (2k + 0.5, 1.49, εh), in G3 is (2k + 0.5, 0.51, εh)
, in G4 is (2k + 0.5, 1.49, (2 − ε)h) and in G5 is
(2k+0.5, 0.51, (2−ε)h), where 1 ≤ k ≤ dn5 e. Obvi-

ously, the optimum solution is H(S∗) = 4nh
5 +(1−

2ε)nh5 = (5−2ε)nh
5 and our solution is H(S) = nh

5 .
As a result, when ε is sufficiently small, the 5-
approximation ratio is proved.
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Figure 5: An illustration for the tight example of the 9-approximation algorithm

Figure 6: An illustration for the tight example of the 5-approximation algorithm
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