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Abstract

A set of spanning trees in a graph is said to be inde-
pendent (ISTs for short) if all the trees are rooted
at the same node r and for any other node v(# r),
the paths from v to r in any two trees are node-
disjoint except the two end nodes v and r. For an
n-connected graph, the independent spanning trees
problem asks to construct n ISTs rooted at an arbi-
trary node of the graph. Recently, Zhang et al. [Y.-
H. Zhang, W. Hao, and T. Xiang, Independent
spanning trees in crossed cubes, Inform. Process.
Lett., 113 (2013) 653-658] proposed an algorithm
to construct n ISTs with a common root at node
0 in an n-dimensional crossed cube C@Q,. How-
ever, it has been proved by Kulasinghe and Bet-
tayeb [P.D. Kulasinghe and S. Bettayeb, Multiply-
twisted hypercube with 5 or more dimensions is not
vertex transitive, Inform. Process. Lett., 53 (1995)
33-36] that the CQ,, (a synonym called multiply-
twisted hypercube in that paper) fails to be node-
transitive for n > 5. Thus, the result of Zhang et al.
does not really solve the ISTs problem in CQ,,. In
this paper, we revisit the problem of constructing
n ISTs rooted at an arbitrary node in C@Q,. As a
consequence, we show that the proposed algorithm
can be parallelized to run in O(log N) time using
N = 2" nodes of CQ,, as processors.
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1 Introduction

Constructing multiple spanning trees in networks
have been studied from not only the theoretical
point of view but also some practical applications
such as fault-tolerant broadcasting [1,15] and se-
cure message distribution [1,25,31]. Let G be a
graph with node set V(@) and edge set E(G), re-
spectively. Two spanning trees in a graph G are
said to be independent if they are rooted at the
same node r such that, for each node v(# r) in
G, the two different paths from v to r, one path
in each tree, are internally node-disjoint. A set of
spanning trees of G is called independent spanning
trees (ISTs for short) if they are pairwise indepen-
dent.

A graph G is k-connected if |V(G)| > kand G—F
is connected for every subset F' C V(G) with |F| <
k, where G — F denotes the graph obtained from G
by removing F. It was conjectured by Zehavi and
Ttai [38] that for any n-connected graph there ex-
ist n ISTs rooted at an arbitrary node. From then
on, this conjecture has been shown to be true for k-
connected graphs with k < 4 (see [15], [8,38] and [9]
for k = 2,3,4, respectively) and is still open for
k > 5. In particular, this conjecture has been con-
firmed for several restricted classes of graphs, e.g.,
graphs related to planarity [13,14,22,23], graphs de-
fined by Cartesian product [3,24, 26,27, 30, 33, 37],
variations of hypercubes [4-7,21,28, 29, 31], special
Cayley graphs [17, 18, 25, 32, 35, 36], and chordal
ring [16, 34].

The n-dimensional crossed cube CQ,,, proposed
first by Efe [11], is a variant of an n-dimensional
hypercube. One advantage of CQ,, is that the di-
ameter is only about one half of the diameter of
an n-dimensional hypercube. For more properties
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of CQ,, the reader can refer to [2,10, 12,19, 20].
Note that Kulasinghe [19] showed that CQ,, is n-
connected. Cheng et al. [6] and [5] respectively pro-
posed algorithms to construct n ISTs rooted at an
arbitrary node in CQ,,. Let N = 2. The con-
struction scheme of [6] is in a recursive fashion to
run in O(Nlog2 N) time. Although the algorithm
in [5] can simultaneously construct n ISTs in paral-
lel with time complexity O(N), it is not fully par-
allelized for the construction of each spanning tree.
Recently, Zhang et al. [39] proposed another algo-
rithm that takes time O(Nlog N) for construct-
ing n ISTs rooted at node 0 in C'Q,, and showed
that it can be parallelized to run in time O(log N).
Because Kulasinghe and Bettayeb [20] had already
pointed out that CQ,, (a synonym called multiply-
twisted hypercube in that paper) fails to be node-
transitive for n > 5, the construction of [39] that
takes node 0 as the common root of spanning trees
does not really solve the ISTs problem in C@Q,. In
this paper, we present a fully parallelized approach
for constructing n ISTs rooted at an arbitrary node
in CQ,. Our algorithm totally takes O(N log N)
time and can be parallelized to run in O(log N)
time using N = 2" nodes of C'Q,, as processors.

The rest of this paper is organized as follows.
Section 2 formally gives the definition of crossed
cubes and provides some useful terminologies and
notations. Section 3 presents our algorithm for con-
structing ISTs in CQ,,. The final section proves the
correctness of the algorithm.

2 Preliminary

In this paper, we wuse a Dbinary string
Tp_1Tn_o---x1x9 of length n to label a node
z in CQ,. Two binary strings x r179 and
Yy = y1yo are pair-related, denoted = ~ y, if and
only if (z,y) € {(00,00), (10, 10), (01,11), (11,01)}.
The n-dimensional crossed cube CQ,, is the labeled
graph with the following recursively fashion:

CQ; is the complete graph on two nodes with
labels 0 and 1. For n > 2, CQ, consists of
two subcubes CQ%_; and CQL_; such that ev-
ery vertex in CQY_; and CQL_; is labeled by
0 and 1 in its leftmost bit, respectively. Two
nodes * = 0xy,_2-- 2179 € V(CQY_,) and y =
Wn_2--y1y0 € V(CQL_,) are joined by an edge
if and only if
gl; Tp_92 = Yn_o if n is even, and

2 T2i41T2; ~ Y2i+1Y2i for0<i< I_(?’l — 1)/2J

Figure 1 shows crossed cubes CQ3 and C'Qy.

Let Z,, = {0,1,...,n—1}. Crossed cubes can be
defined equivalently as follows:

Lemma 1. [11] For all integer n > 1, two nodes
T = Tpn_1Tp_2°To and Y = Yn_1Yn—2° Yo are
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CQa

Figure 1: Croosed cubes CQs and CQ4.

joined by an edge in CQ,, if and only if there exists
an integer v € Z,, such that

1) Tp—1Tp—2" " "Ti+l = Yn—-1Yn—2 """ Yit+1,
3)
)

4 T2j+1T25 ~ Y25+1Y2; fOT’ 0< i< I_’L/QJ

(
(
(3) xi—1 = yi—1 if i is odd, and

(

If conditions (1) and (2) of Lemma 1 hold, we
say that x and y have the leftmost differing bit at
position i. In this case, x and y are said to be the
i-neighbors to each other, and for notational conve-
nience we write y = N;(x) or = N;(y). Moreover,
the edge (z,y) is an i-dimensional edge of CQ,,
and we denote ¢ = dim(z,y). For example, we con-
sider the node = 011011 in CQg. Then, N;(z) for

1=20,1,...,5 are 011010, 011001, 011101, 010001,
001001, and 111001, respectively.

In this paper, we also use the following notation.
Two paths P and @ joining two distinct nodes x
and y are internally node-disjoint, denoted by P||Q,
it V(P)NV(Q) = {x,y}. Let T be a spanning
tree rooted at node r of CQ,. The parent of a
node z(# r) in T' is denoted by PARENT(T, z). For
x,y € V(T), the unique path from x to y is de-
noted by T'[z,y]. Hence, two spanning trees T' and
T’ with the same root r are ISTs if and only if
Tz, r] || T' [z, r] for every node x € V(T)\ {r}.



3 An algorithm of Construct-
ing IST's

Since C'@,, is n-connected and we would like to con-
struct n ISTs, the root in each spanning tree must
have a unique child. Let r = r,_1rp_o2---79 be
the common root of ISTs. For i € Z,, we de-
note T; as a tree such that r takes its i-neighbor
as the unique child. Let N;(r) = ¢hp—1¢n_2 -+ Co.
A node is called the surrenal of N;(r), denoted by
Ni(r) =c|,_1ch_o -+ cp, if the following conditions
hold:

(1) ¢j = ¢} for j > i if i is even,

(2) ¢j = ¢} for j > i if i is odd, and

(3) cajt1cas ~ chyyqch; for 0<j < [i/2].

For each node © = zp_ 12,2 29 € V(T;) \
{r}, anode o’ =z _jx}_5---x{ with respect to
x is defined as follows: xgjy129; ~ z’2j+1m’2j for
0<j<|n/2| and z,_1 = x!,_; when n is odd.
Let Ij(z) = {j € Zn: z; # ¢j and j > i} and
Ii(x") = {j € Zn: 2} # cj and j > i}. For two set
of integers S and T, define the following function:

0 if $ = 0;
B(S,T)= .
B{teT: t<max S}, S)+1 otherwise.
In particular, we let «;(x) = B(L;(x), I;(z')). Ac-
cording to the parity of a;(x), let
JELy: x5 # ¢} if ai(x) is even;
Hi(z) = {_ Y f} : (1)
{j €Zn: x; # ¢} otherwise.
We further define the following function:
NEXT(i,2) =
1 if H;(z) = 0;
max H;(z) if H;(z)#0 and i <min H;(z); (2)

max{j € H;(x): j <i} otherwise.

That is, we regard H;(x) as a cyclic ordered set in
decreasing order. If H;(x) = 0 or i € H;(z), the
function outputs 7; otherwise, the function outputs
the next element in the cyclic order of H;(x) with
respect to .
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For example, consider C@Q12 and a node x =
110001101110 in Ty rooted at r = 101101000111.
By definitions, Ny(r) 101101011101, Ny(r) =
101101010111 and 2 010011100110.  Since
Iy(xz) = {10,9,8,5} and I4(z') = {11,10,9,8,7,5},
we can find ay(x) as follows:

B
B
B
B
B

B
5.

{10,9,8,5},{11,10,9,8,7,5})
{9,8,7,5},{10,9,8,5}) + 1
{8,5},{9,8,7,5}) + 2
{7,5},{8,5}) + 3

{5}.{7,5}) +4

0,{5}) +5

ay(x)

—_——~ ===

Thus, Hy(z) = {10,9,8,5,4, 3,0} and NEXT(4, z) =
4. Table 1 shows more examples of C'Qg.

It is clear that, for each node z € V(CQ,) \ {r},
finding I;(x), Li(z"), a;(z), H;(x) and NEXT(7, z)
can be done in O(n) time provided ¢ is given. In
what follows, we present a fully parallelized algo-
rithm for constructing n spanning trees with an ar-
bitrary node r = r,,_17,_2---To as their common
root in CQ,,. For each node z € V(CQ,)\ {r} with
binary string x = x,,_1x,_2 - - Tg, the construction
can be carried out by describing the parent of x in
each spanning tree T;.

Algorithm CONSTRUCTING-ISTS
Input: All nodes of CQ,, and the common root
"=Tn-1Tn-2"""T0.

Output: n ISTs Ty, T4, ...,T,—1 root at r.

1: fori=0ton—1do in parallel
/* construct T; simultaneously */

2: for each node x in CQ,, do in parallel
/* generate parent of each node x
simultaneously */

3: Jj = NEXT(i, x)

4: PARENT(T;, ) = N;(z)

Figure 2: Algorithm for constructing n spanning
trees in C'Q,,.

Table 1: The parent of some nodes = € V(CQg) in T» rooted at r = 0110115 = 27.

N2 (27) = 0111015 = 29

Na(27) = 0111115 = 31

x z’ Ix(x) I(z') az(z) Ha(z) Jj = NEXT(2,z) PARENT(T%,x)
(34) 100010 100010  {5,4,3} {5,4,3} 3  {5.4,3,2,0} 2 — Na(34) = 100110 (38)
(38) 100110 101110  {5,4,3}  {5,4} 3 {5,4,3,0} 0 — No(38) = 100111 (39)
(39) 100111 101101  {5,4,3} {5,4} 3 {5,4,3) 5 — N5(39) = 001101 (13)
(13) 001101 000111 {4} {4,3} 2 {4} 4 = N4(13) = 010111 (23)
(23) 010111 111101 {3} {5} 1 {3 3 = N3(23) = 011101 (29)
(29) 011101 110111 1] {5,3} 0 ] 2 = N2(29) = 011011 (27)
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Figure 3: Two ISTs T and T3 of CQg.

Figure 3 illustrates the construction of T and
T3 for CQg. Henceforth, we adopt the notation

x 25 y to mean that y =PARENT(T}, ) = N;(z)

in T;. For instance, we have T»[34,27] = 34 2
38 2539 25 13 -5 23 25 29 25 27 in Figure 3.

4 Correctness and analysis

In this section, we will show the validity of the algo-
rithm. Firstly, we give the following basic property.

Lemma 2. Fori € Z,, and a node x € V(CQ,) \
{r}, if Hi(z) =0 then x = N;(r).

Proof. Suppose H;(z) = . We claim ozz( ) =

and thus by Eq. (1), it follows that x = N;
We suppose that, on the contrary, «;(z) # 0 (i.e,
I;(z) # 0). This implies that there is a k € Z,, \ Z;
such that zy # cx. Obviously, if «;(z) is even, then
I;(z) C Hi(x). This contradicts that H;(x) = 0.
On the other hand, from the surrenal of N;(r), we
have ¢; = ¢} for all j > i. Thus, z) # c}, and it
follows that H;(x) # 0, a contradiction. O

0,
r)-
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For two ordered sets A and B, we write A <;zx B
to mean that A precedes B in lexicographic order.
We now prove the reachability between every node
x(# r) and the root r in T;, thereby proving the
existence of a unique path from z to the root in the
tree.

Theorem 3. Let r € V(CQ,) be an arbitrary
node. The construction of T; for i € Z,, are span-
ning trees rooted at r.

Proof. From CONSTRUCTING-ISTS, since every
node v € V(CQ,) must be contained in Tj;, it fol-
lows that T; is a spanning subgraph of CQ,. Let
T = XTp_1Tp_o - To be any node of C'Q,,. We show
that T;[z, 7] is the unique path connecting z and r
in T;. By Lemma 2, if H;(z) = 0, then z = N;(r).
Thus, NEXT(i,z) = i and Tj[z,r] = z — 7 is the
desired path that connects x and r in T;.
Next, suppose  that  H;(x)
{jp—1,Jp—2,---,Jo} is nonempty and it is treated
as an ordered set such that j,—1 > jp—2 > -+ > Jo.
Clearly, 1 < p < n. There are two scenarios as

we

follows:
Case 1: i ¢ H;(z) (ie., x; = ¢;). Let ji =
NEXT(i,2), where 0 < k& < p— 1. By Eq. (2),

we know that jp_1 > jp_g > e > Jpgr >0 >
Jjk > -+ > jo. Since H;(z) # 0, we assume



that y(# r) = Yn—1Yn—2---yo is the parent of
x in T;. That is, y = PARENT(T;,z) = Nj, ().
By Lemma 1, the following condition hold: (i)
Yn—1Yn—2 " Yjrt1¥jy = Tn—1Tn—2 - Tj, +1T;,; (ii)
Yjr—1 = Zj,—1 when ji is odd; and (iil) yo;1+1y2; ~
Tgjr1xe; for 0 < j < |ji/2]. We consider the fol-
lowing two subcases:

Case 1.1: «a;(x) is even. By Eq. (1), z; # ¢; for
j € Hi(z) and z; = ¢; for j ¢ Z,, \ Hi(x). Thus,
we have I;(x) = H;(z) \ {Jjk, k-1, "+ ,Jo}. Since
i > ji, we have y; = x; for every bit at position
j with j > 4. Thus, L;(y) = I;(z). In addition,
for ji < j <4, we have y; = x; = ¢;. Moreover,
zj, # ¢j, and y;, # xj imply y;, = c;,. Let
F={j€Zj: y; #c;}. Then, we can determine
Hiy) as follows: Hi(y) = L(y) UF = (H,(x) \
{jlﬁjk—la T 7j0}) UF.

Case 1.2: a;(7) is odd. By Eq. (1), z; # ¢ for
J € Hi(z) and z; = ¢ for j ¢ Z, \ Hi(x). Let
Ii(x) = {j € Zn: x; # ¢j and j > i}. Clearly,
Ii(x) = Hi(z) \ {Jk, jk—1," -, jo}. Since i > ji, we
have y; = z; for every bit at position j with j > 1.
Thus, I/(y) = I}(z). In addition, for j, < j <1, we
have y; = x; = ¢}. Moreover, z;, # cj, and y;, #
zj, imply y;, = C;’k' Let F'={j € Zj,: y; # C;}
Then, we can determine H;(y) as follows: H;(y) =
I/(y) U F = (Hy(2)\ s gt +jo}) UF.

From above, we can determine H;(y). In par-
ticular, we show that H;(y) <uex H;i(z) and ji ¢
H;(y). By a similar argument, if H;(y) # 0, let
z = PARENT(T},y) = N;,(y) be the parent of y in
T;, where j, = NEXT(7,y). Again, we can determine
H;(z) and show that jg,j¢ ¢ H;(z). By this way,
we find a sequence of nodes y, z,- -+ ,¢ = N;(r) in
T; such that H;(c) = 0. Recall that we have al-

ready constructed Tj[c,7] = ¢ — r for connecting
¢ and r in T; before Case 1. Therefore, we obtain
the following unique path that connects x and r in
Til

. ., - i .
R R T =

Case 2: i € H;(z) (i.e., ; # ¢;). Suppose i =
ji for some k € {0,1,...,p —1}. By Eq. (2), we
have NEXT(i,x) = i. Let y = PARENT(T;,x) =
N;(x). Clearly, y; = T; = ¢;. This shows that the
current status of y is in the situation of Case 1.
Let P = T;[y,r] be the path connecting y and r in
T;. Therefore, we obtain the unique path T;[z,r]

O

by concatenating * — y and P.

According to the proof of Theorem 3, we have
the following properties.
J1

Corollary 4. Fori € Z,, let T;[z,r] : vo(=x) —

o LI ]—k> v — 1 be a path constructed from
Theorem 3. Then, the following statements hold:
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1) 0 =
Hi(vo).

(2) For 1 <t <m <k, jo ¢ Hi(vm) (ie., jo #
Jm)-

(3) For 2 < ¢ < k, jo # i. In particular, it is
possible j1 = i.

Hi(vkr) <LEX Hi(kal) <pLEx

—<LEX

For instance, if we consider the path T3[34,27] =

34 238 %539 -2 13 5 23 25 29 % 27
in Figure 3, we can verify from Table 1 as follows:
(H2(29) = 0) <uox (H2(23) = {3}) <wex (H2(13) =
{4}) <iex (H2(39) = {5,4,3}) =<wex (H2(38) =
{5,4,3,0}) <uex (H2(34) = {5,4,3,2,0}). Let
HEIGHT(T') denote the height of a tree T. Since
|H;(x)] < n for every node z € V(CQy,), the fol-
lowing result can be obtained from Corollary 4 di-
rectly.

Corollary 5. Fori € Z,, HEIGHT(T;) < n+ 1.

Theorem 6. The spanning trees constructed from
CONSTRUCTING-ISTS are independent.

Proof. We prove the lemma by contradiction.
Suppose that the lemma is false. That is, there ex-
ist two integers ¢, j € Z,, and a node z € V(CQ,) \
{r} such that the following two paths constructed
in Theorem 3 satisfy {z,r} C PN Q:

P:E[.’E,T]:uo(:gp)&ul L>U2£>E)uk

i
—r
and

-
Q:Tj[ﬂf,’r] IU()(: m) i}q}l i>,02 ﬁ) _)1

Um,
s
Suppose that v, = vy for 1 < p < k and 1 <
g <m. Let A = {jp,jp+1,--.,Jk-1,%} and B =
{lg,%g41,.--,4m—1,7}. Since i # j, by Corollary 4
we have A # B. Let d = max((AUB) \ (AN B)).
This implies that the dth bit of u, is different from
that of vy, which leads to a contradiction. ]

According to Theorems 3 and 6, we have the fol-
lowing main result.

Corollary 7. Let N = 2" and r € V(CQ,)
be an arbitrary node. Algorithm CONSTRUCTING-
ISTSs can correctly construct n ISTs rooted at r in
O(Nlog N) time. In particular, the algorithm can
be parallelized to run in O(log N) time using N pro-
cessors of CQy,.
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