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Abstract

A set of spanning trees in a graph is said to be inde-
pendent (ISTs for short) if all the trees are rooted
at the same node r and for any other node v(6= r),
the paths from v to r in any two trees are node-
disjoint except the two end nodes v and r. For an
n-connected graph, the independent spanning trees
problem asks to construct n ISTs rooted at an arbi-
trary node of the graph. Recently, Zhang et al. [Y.-
H. Zhang, W. Hao, and T. Xiang, Independent
spanning trees in crossed cubes, Inform. Process.
Lett., 113 (2013) 653–658] proposed an algorithm
to construct n ISTs with a common root at node
0 in an n-dimensional crossed cube CQn. How-
ever, it has been proved by Kulasinghe and Bet-
tayeb [P.D. Kulasinghe and S. Bettayeb, Multiply-
twisted hypercube with 5 or more dimensions is not
vertex transitive, Inform. Process. Lett., 53 (1995)
33–36] that the CQn (a synonym called multiply-
twisted hypercube in that paper) fails to be node-
transitive for n > 5. Thus, the result of Zhang et al.
does not really solve the ISTs problem in CQn. In
this paper, we revisit the problem of constructing
n ISTs rooted at an arbitrary node in CQn. As a
consequence, we show that the proposed algorithm
can be parallelized to run in O(logN) time using
N = 2n nodes of CQn as processors.
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1 Introduction

Constructing multiple spanning trees in networks
have been studied from not only the theoretical
point of view but also some practical applications
such as fault-tolerant broadcasting [1, 15] and se-
cure message distribution [1, 25, 31]. Let G be a
graph with node set V (G) and edge set E(G), re-
spectively. Two spanning trees in a graph G are
said to be independent if they are rooted at the
same node r such that, for each node v(6= r) in
G, the two different paths from v to r, one path
in each tree, are internally node-disjoint. A set of
spanning trees of G is called independent spanning
trees (ISTs for short) if they are pairwise indepen-
dent.

A graph G is k-connected if |V (G)| > k and G−F
is connected for every subset F ⊆ V (G) with |F | <
k, where G−F denotes the graph obtained from G
by removing F . It was conjectured by Zehavi and
Itai [38] that for any n-connected graph there ex-
ist n ISTs rooted at an arbitrary node. From then
on, this conjecture has been shown to be true for k-
connected graphs with k 6 4 (see [15], [8,38] and [9]
for k = 2, 3, 4, respectively) and is still open for
k > 5. In particular, this conjecture has been con-
firmed for several restricted classes of graphs, e.g.,
graphs related to planarity [13,14,22,23], graphs de-
fined by Cartesian product [3, 24, 26, 27, 30, 33, 37],
variations of hypercubes [4–7,21,28,29,31], special
Cayley graphs [17, 18, 25, 32, 35, 36], and chordal
ring [16,34].

The n-dimensional crossed cube CQn, proposed
first by Efe [11], is a variant of an n-dimensional
hypercube. One advantage of CQn is that the di-
ameter is only about one half of the diameter of
an n-dimensional hypercube. For more properties
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of CQn, the reader can refer to [2, 10, 12, 19, 20].
Note that Kulasinghe [19] showed that CQn is n-
connected. Cheng et al. [6] and [5] respectively pro-
posed algorithms to construct n ISTs rooted at an
arbitrary node in CQn. Let N = 2n. The con-
struction scheme of [6] is in a recursive fashion to
run in O(N log2N) time. Although the algorithm
in [5] can simultaneously construct n ISTs in paral-
lel with time complexity O(N), it is not fully par-
allelized for the construction of each spanning tree.
Recently, Zhang et al. [39] proposed another algo-
rithm that takes time O(N logN) for construct-
ing n ISTs rooted at node 0 in CQn and showed
that it can be parallelized to run in time O(logN).
Because Kulasinghe and Bettayeb [20] had already
pointed out that CQn (a synonym called multiply-
twisted hypercube in that paper) fails to be node-
transitive for n > 5, the construction of [39] that
takes node 0 as the common root of spanning trees
does not really solve the ISTs problem in CQn. In
this paper, we present a fully parallelized approach
for constructing n ISTs rooted at an arbitrary node
in CQn. Our algorithm totally takes O(N logN)
time and can be parallelized to run in O(logN)
time using N = 2n nodes of CQn as processors.

The rest of this paper is organized as follows.
Section 2 formally gives the definition of crossed
cubes and provides some useful terminologies and
notations. Section 3 presents our algorithm for con-
structing ISTs in CQn. The final section proves the
correctness of the algorithm.

2 Preliminary

In this paper, we use a binary string
xn−1xn−2 · · ·x1x0 of length n to label a node
x in CQn. Two binary strings x = x1x0 and
y = y1y0 are pair-related, denoted x ∼ y, if and
only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.
The n-dimensional crossed cube CQn is the labeled
graph with the following recursively fashion:

CQ1 is the complete graph on two nodes with
labels 0 and 1. For n > 2, CQn consists of
two subcubes CQ0

n−1 and CQ1
n−1 such that ev-

ery vertex in CQ0
n−1 and CQ1

n−1 is labeled by
0 and 1 in its leftmost bit, respectively. Two
nodes x = 0xn−2 · · ·x1x0 ∈ V (CQ0

n−1) and y =
1yn−2 · · · y1y0 ∈ V (CQ1

n−1) are joined by an edge
if and only if

(1) xn−2 = yn−2 if n is even, and
(2) x2i+1x2i ∼ y2i+1y2i for 0 6 i < b(n− 1)/2c.

Figure 1 shows crossed cubes CQ3 and CQ4.

Let Zn = {0, 1, . . . , n− 1}. Crossed cubes can be
defined equivalently as follows:

Lemma 1. [11] For all integer n > 1, two nodes
x = xn−1xn−2 · · ·x0 and y = yn−1yn−2 · · · y0 are
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Figure 1: Croosed cubes CQ3 and CQ4.

joined by an edge in CQn if and only if there exists
an integer i ∈ Zn such that

(1) xn−1xn−2 · · ·xi+1 = yn−1yn−2 · · · yi+1,

(2) xi 6= yi,

(3) xi−1 = yi−1 if i is odd, and

(4) x2j+1x2j ∼ y2j+1y2j for 0 6 j < bi/2c.

If conditions (1) and (2) of Lemma 1 hold, we
say that x and y have the leftmost differing bit at
position i. In this case, x and y are said to be the
i-neighbors to each other, and for notational conve-
nience we write y = Ni(x) or x = Ni(y). Moreover,
the edge (x, y) is an i-dimensional edge of CQn,
and we denote i = dim(x, y). For example, we con-
sider the node x = 011011 in CQ6. Then, Ni(x) for
i = 0, 1, . . . , 5 are 011010, 011001, 011101, 010001,
001001, and 111001, respectively.

In this paper, we also use the following notation.
Two paths P and Q joining two distinct nodes x
and y are internally node-disjoint, denoted by P ||Q,
if V (P ) ∩ V (Q) = {x, y}. Let T be a spanning
tree rooted at node r of CQn. The parent of a
node x(6= r) in T is denoted by parent(T, x). For
x, y ∈ V (T ), the unique path from x to y is de-
noted by T [x, y]. Hence, two spanning trees T and
T ′ with the same root r are ISTs if and only if
T [x, r] ||T ′[x, r] for every node x ∈ V (T ) \ {r}.
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3 An algorithm of Construct-
ing ISTs

Since CQn is n-connected and we would like to con-
struct n ISTs, the root in each spanning tree must
have a unique child. Let r = rn−1rn−2 · · · r0 be
the common root of ISTs. For i ∈ Zn, we de-
note Ti as a tree such that r takes its i-neighbor
as the unique child. Let Ni(r) = cn−1cn−2 · · · c0.
A node is called the surrenal of Ni(r), denoted by
N̄i(r) = c′n−1c

′
n−2 · · · c′0, if the following conditions

hold:

(1) cj = c′j for j > i if i is even,
(2) cj = c′j for j > i if i is odd, and
(3) c2j+1c2j ∼ c′2j+1c

′
2j for 0 6 j < di/2e.

For each node x = xn−1xn−2 · · ·x0 ∈ V (Ti) \
{r}, a node x′ = x′n−1x

′
n−2 · · ·x′0 with respect to

x is defined as follows: x2j+1x2j ∼ x′2j+1x
′
2j for

0 6 j < bn/2c and xn−1 = x′n−1 when n is odd.
Let Ii(x) = {j ∈ Zn : xj 6= cj and j > i} and
Ii(x

′) = {j ∈ Zn : x′j 6= cj and j > i}. For two set
of integers S and T , define the following function:

β(S, T )=

{
0 if S = ∅;
β({t∈T : t<maxS}, S)+1 otherwise.

In particular, we let αi(x) = β(Ii(x), Ii(x
′)). Ac-

cording to the parity of αi(x), let

Hi(x) =

{
{j ∈ Zn : xj 6= cj} if αi(x) is even;

{j ∈ Zn : xj 6= c′j} otherwise.
(1)

We further define the following function:
next(i, x) =
i if Hi(x) = ∅;
maxHi(x) if Hi(x) 6=∅ and i<minHi(x);

max{j ∈ Hi(x) : j 6 i} otherwise.

(2)

That is, we regard Hi(x) as a cyclic ordered set in
decreasing order. If Hi(x) = ∅ or i ∈ Hi(x), the
function outputs i; otherwise, the function outputs
the next element in the cyclic order of Hi(x) with
respect to i.

Table 1: The parent of some nodes x ∈ V (CQ6) in T2 rooted at r = 0110112 = 27.

N2(27) = 0111012 = 29
N̄2(27) = 0111112 = 31

x x′ I2(x) I2(x′) α2(x) H2(x) j = next(2, x) parent(T2, x)

(34) 100010 100010 {5, 4, 3} {5, 4, 3} 3 {5, 4, 3, 2, 0} 2 = N2(34) = 100110 (38)
(38) 100110 101110 {5, 4, 3} {5, 4} 3 {5, 4, 3, 0} 0 = N0(38) = 100111 (39)
(39) 100111 101101 {5, 4, 3} {5, 4} 3 {5, 4, 3} 5 = N5(39) = 001101 (13)
(13) 001101 000111 {4} {4, 3} 2 {4} 4 = N4(13) = 010111 (23)
(23) 010111 111101 {3} {5} 1 {3} 3 = N3(23) = 011101 (29)
(29) 011101 110111 ∅ {5, 3} 0 ∅ 2 = N2(29) = 011011 (27)

For example, consider CQ12 and a node x =
110001101110 in T4 rooted at r = 101101000111.
By definitions, N4(r) = 101101011101, N̄4(r) =
101101010111 and x′ = 010011100110. Since
I4(x) = {10, 9, 8, 5} and I4(x′) = {11, 10, 9, 8, 7, 5},
we can find α4(x) as follows:

α4(x) = β({10, 9, 8, 5}, {11, 10, 9, 8, 7, 5})
= β({9, 8, 7, 5}, {10, 9, 8, 5}) + 1

= β({8, 5}, {9, 8, 7, 5}) + 2

= β({7, 5}, {8, 5}) + 3

= β({5}, {7, 5}) + 4

= β(∅, {5}) + 5

= 5.

Thus, H4(x) = {10, 9, 8, 5, 4, 3, 0} and next(4, x) =
4. Table 1 shows more examples of CQ6.

It is clear that, for each node x ∈ V (CQn) \ {r},
finding Ii(x), Ii(x

′), αi(x), Hi(x) and next(i, x)
can be done in O(n) time provided i is given. In
what follows, we present a fully parallelized algo-
rithm for constructing n spanning trees with an ar-
bitrary node r = rn−1rn−2 · · · r0 as their common
root in CQn. For each node x ∈ V (CQn)\{r} with
binary string x = xn−1xn−2 · · ·x0, the construction
can be carried out by describing the parent of x in
each spanning tree Ti.

Algorithm Constructing-ISTs
Input: All nodes of CQn and the common root

r = rn−1rn−2 · · · r0.
Output: n ISTs T0, T1, . . . , Tn−1 root at r.
1: for i = 0 to n− 1 do in parallel

/* construct Ti simultaneously */
2: for each node x in CQn do in parallel

/* generate parent of each node x
simultaneously */

3: j = next(i, x)
4: parent(Ti, x) = Nj(x)

Figure 2: Algorithm for constructing n spanning
trees in CQn.
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Figure 3: Two ISTs T2 and T3 of CQ6.

Figure 3 illustrates the construction of T2 and
T3 for CQ6. Henceforth, we adopt the notation

x
j−→ y to mean that y =parent(Ti, x) = Nj(x)

in Ti. For instance, we have T2[34, 27] = 34
2−→

38
0−→ 39

5−→ 13
4−→ 23

3−→ 29
2−→ 27 in Figure 3.

4 Correctness and analysis

In this section, we will show the validity of the algo-
rithm. Firstly, we give the following basic property.

Lemma 2. For i ∈ Zn and a node x ∈ V (CQn) \
{r}, if Hi(x) = ∅ then x = Ni(r).

Proof. Suppose Hi(x) = ∅. We claim αi(x) = 0,
and thus by Eq. (1), it follows that x = Ni(r).
We suppose that, on the contrary, αi(x) 6= 0 (i.e,
Ii(x) 6= ∅). This implies that there is a k ∈ Zn \ Zi

such that xk 6= ck. Obviously, if αi(x) is even, then
Ii(x) ⊆ Hi(x). This contradicts that Hi(x) = ∅.
On the other hand, from the surrenal of Ni(r), we
have cj = c′j for all j > i. Thus, xk 6= c′k, and it
follows that Hi(x) 6= ∅, a contradiction. �

For two ordered sets A and B, we write A ≺lex B
to mean that A precedes B in lexicographic order.
We now prove the reachability between every node
x(6= r) and the root r in Ti, thereby proving the
existence of a unique path from x to the root in the
tree.

Theorem 3. Let r ∈ V (CQn) be an arbitrary
node. The construction of Ti for i ∈ Zn are span-
ning trees rooted at r.

Proof. From Constructing-ISTs, since every
node v ∈ V (CQn) must be contained in Ti, it fol-
lows that Ti is a spanning subgraph of CQn. Let
x = xn−1xn−2 · · ·x0 be any node of CQn. We show
that Ti[x, r] is the unique path connecting x and r
in Ti. By Lemma 2, if Hi(x) = ∅, then x = Ni(r).

Thus, next(i, x) = i and Ti[x, r] = x
i−→ r is the

desired path that connects x and r in Ti.

Next, we suppose that Hi(x) =
{jp−1, jp−2, . . . , j0} is nonempty and it is treated
as an ordered set such that jp−1 > jp−2 > · · · > j0.
Clearly, 1 6 p 6 n. There are two scenarios as
follows:

Case 1: i /∈ Hi(x) (i.e., xi = ci). Let jk =
next(i, x), where 0 6 k 6 p − 1. By Eq. (2),
we know that jp−1 > jp−2 > · · · > jk+1 > i >
jk > · · · > j0. Since Hi(x) 6= ∅, we assume
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that y(6= r) = yn−1yn−2 · · · y0 is the parent of
x in Ti. That is, y = parent(Ti, x) = Njk(x).
By Lemma 1, the following condition hold: (i)
yn−1yn−2 · · · yjk+1yjk = xn−1xn−2 · · ·xjk+1x̄jk ; (ii)
yjk−1 = xjk−1 when jk is odd; and (iii) y2j+1y2j ∼
x2j+1x2j for 0 6 j < bjk/2c. We consider the fol-
lowing two subcases:

Case 1.1: αi(x) is even. By Eq. (1), xj 6= cj for
j ∈ Hi(x) and xj = cj for j /∈ Zn \ Hi(x). Thus,
we have Ii(x) = Hi(x) \ {jk, jk−1, · · · , j0}. Since
i > jk, we have yj = xj for every bit at position
j with j > i. Thus, Ii(y) = Ii(x). In addition,
for jk < j 6 i, we have yj = xj = cj . Moreover,
xjk 6= cjk and yjk 6= xjk imply yjk = cjk . Let
F = {j ∈ Zjk : yj 6= cj}. Then, we can determine
Hi(y) as follows: Hi(y) = Ii(y) ∪ F = (Hi(x) \
{jk, jk−1, · · · , j0}) ∪ F .

Case 1.2: αi(x) is odd. By Eq. (1), xj 6= c′j for
j ∈ Hi(x) and xj = c′j for j /∈ Zn \ Hi(x). Let
I ′i(x) = {j ∈ Zn : xj 6= c′j and j > i}. Clearly,
I ′i(x) = Hi(x) \ {jk, jk−1, · · · , j0}. Since i > jk, we
have yj = xj for every bit at position j with j > i.
Thus, I ′i(y) = I ′i(x). In addition, for jk < j 6 i, we
have yj = xj = c′j . Moreover, xjk 6= c′jk and yjk 6=
xjk imply yjk = c′jk . Let F = {j ∈ Zjk : yj 6= c′j}.
Then, we can determine Hi(y) as follows: Hi(y) =
I ′i(y) ∪ F = (Hi(x) \ {jk, jk−1, · · · , j0}) ∪ F .

From above, we can determine Hi(y). In par-
ticular, we show that Hi(y) ≺lex Hi(x) and jk /∈
Hi(y). By a similar argument, if Hi(y) 6= ∅, let
z = parent(Ti, y) = Nj`(y) be the parent of y in
Ti, where j` = next(i, y). Again, we can determine
Hi(z) and show that jk, j` /∈ Hi(z). By this way,
we find a sequence of nodes y, z, · · · , c = Ni(r) in
Ti such that Hi(c) = ∅. Recall that we have al-

ready constructed Ti[c, r] = c
i−→ r for connecting

c and r in Ti before Case 1. Therefore, we obtain
the following unique path that connects x and r in
Ti:

Ti[x, r] : x
jk−→ y

j`−→ z
jm−→ · · · jq−→ c

i−→ r.

Case 2: i ∈ Hi(x) (i.e., xi 6= ci). Suppose i =
jk for some k ∈ {0, 1, . . . , p − 1}. By Eq. (2), we
have next(i, x) = i. Let y = parent(Ti, x) =
Ni(x). Clearly, yi = x̄i = ci. This shows that the
current status of y is in the situation of Case 1.
Let P = Ti[y, r] be the path connecting y and r in
Ti. Therefore, we obtain the unique path Ti[x, r]

by concatenating x
i−→ y and P . �

According to the proof of Theorem 3, we have
the following properties.

Corollary 4. For i ∈ Zn, let Ti[x, r] : v0(= x)
j1−→

v1
j2−→ · · · jk−→ vk

i−→ r be a path constructed from
Theorem 3. Then, the following statements hold:

(1) ∅ = Hi(vk) ≺lex Hi(vk−1) ≺lex · · · ≺lex

Hi(v0).

(2) For 1 6 ` < m 6 k, j` /∈ Hi(vm) (i.e., j` 6=
jm).

(3) For 2 6 ` 6 k, j` 6= i. In particular, it is
possible j1 = i.

For instance, if we consider the path T2[34, 27] =

34
2−→ 38

0−→ 39
5−→ 13

4−→ 23
3−→ 29

2−→ 27
in Figure 3, we can verify from Table 1 as follows:
(H2(29) = ∅) ≺lex (H2(23) = {3}) ≺lex (H2(13) =
{4}) ≺lex (H2(39) = {5, 4, 3}) ≺lex (H2(38) =
{5, 4, 3, 0}) ≺lex (H2(34) = {5, 4, 3, 2, 0}). Let
height(T ) denote the height of a tree T . Since
|Hi(x)| 6 n for every node x ∈ V (CQn), the fol-
lowing result can be obtained from Corollary 4 di-
rectly.

Corollary 5. For i ∈ Zn, height(Ti) 6 n+ 1.

Theorem 6. The spanning trees constructed from
Constructing-ISTs are independent.

Proof. We prove the lemma by contradiction.
Suppose that the lemma is false. That is, there ex-
ist two integers i, j ∈ Zn and a node x ∈ V (CQn) \
{r} such that the following two paths constructed
in Theorem 3 satisfy {x, r} ( P ∩Q:

P = Ti[x, r] : u0(= x)
j0−→ u1

j1−→ u2
j2−→ · · · jk−1−→ uk

i−→ r
and

Q=Tj [x, r] : v0(= x)
`0−→ v1

`1−→ v2
`2−→ · · · `m−1−→ vm

j−→ r.
Suppose that up = vq for 1 6 p < k and 1 6
q < m. Let A = {jp, jp+1, . . . , jk−1, i} and B =
{`q, `q+1, . . . , `m−1, j}. Since i 6= j, by Corollary 4
we have A 6= B. Let d = max((A ∪ B) \ (A ∩ B)).
This implies that the dth bit of up is different from
that of vq, which leads to a contradiction. �

According to Theorems 3 and 6, we have the fol-
lowing main result.

Corollary 7. Let N = 2n and r ∈ V (CQn)
be an arbitrary node. Algorithm Constructing-
ISTs can correctly construct n ISTs rooted at r in
O(N logN) time. In particular, the algorithm can
be parallelized to run in O(logN) time using N pro-
cessors of CQn.
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