Rainbow Domination in Generalized de Bruijn Digraphs *

Yue–Li Wang^{1,†}, Meng–Hao Ko¹, and Jia–Jie Liu²

¹ Department of Information Management,

National Taiwan University of Science and Technology, Taipei, Taiwan ² Department of Information Management,

Shih Hsin University, Taipei, Taiwan

Abstract

In this paper, we are concerned with the krainbow domination problem on generalized de Bruijn digraphs. We give an upper bound and a lower bound for the k-rainbow domination number in generalized de Bruijn digraphs $G_B(n, d)$. We also show that $\gamma_{rk}(G_B(n, d)) = k$ if and only if $\alpha \leq 1$, where $n = d + \alpha$ and $\gamma_{rk}(G_B(n, d))$ is the k-rainbow domination number of $G_B(n, d)$.

1 Introduction

A dominating set in a digraph D = (V, A) is a set $S \subseteq V$ such that, for every $v \in V \setminus S$, there is an arc $(u, v) \in A$ with $u \in S$. The domination number of D, denoted by $\gamma(D)$, is defined as the minimal cardinality of a dominating set of D. The concept of rainbow domination was introduced by Breŝar, Henning, and Rall [4]. Let G = (V, E) be a graph and $v \in V(G)$. Hereafter, V(G) and E(G)are simply written as V and E, respectively. Let fbe a function that assigns to each vertex a subset of colors chosen from the set $\mathscr{C} = \{1, 2, \dots, k\};$ that is, $f: V \longrightarrow \mathcal{P}(\mathscr{C})$, where $\mathcal{P}(\mathscr{C})$ is the set of all subsets of $\mathscr C.$ If $\bigcup_{u\in N(v)}f(u)=\mathscr C$ for each vertex $v \in V$ with $f(v) = \emptyset$, then f is called a k-rainbow dominating function (kRDF for short) of G, where $N(v) = \{u \in V | uv \in E\}$. The weight of f is defined as $w(f) = \sum_{v \in V} |f(v)|$. Given a graph G, the minimum weight of a kRDF is called the k-rainbow domination number of G, denoted

by $\gamma_{rk}(G)$. When $w(f) = \gamma_{rk}(G)$, we say that f is a γ_{rk} -function and the set S with $f(v) \neq \emptyset$ for every $v \in S$ is called a γ_{rk} -set. Notice that the ordinary domination problem is the 1-rainbow domination problem.

Breŝar and Ŝumenjak [3] studied the 2rainbow domination problem in generalized Petersen graphs and proved that the 2-rainbow domination problem is NP-complete in general graphs. In [5], Chang, Wu, and Zhu proved that the krainbow domination problem is NP-complete for any value of k and provided a linear-time algorithm for the k-rainbow domination problem in trees.

In this paper, we are concerned with the k-rainbow domination problem in digraphs D = (V, A). That is, the requirement on $f(v) = \emptyset$ is changed to

$$\bigcup_{u \in N^-(v)} f(u) = \{1, \dots, k\},\$$

u

where $N^{-}(u) = \{v | (v, u) \in A\}$ is the *inneighborhood* of u.

We give an example in Figure 1. In Figure 1, we can see that v_0 , v_1 , v_3 and v_4 is the inneighborhood of v_2 , and we give $v_2 \rightarrow \{1, 2, 3\}$, so that v_1 , v_3 , and v_4 is the in-neighborhood with 3 colors, so v_2 is a 3-rainbow dominating set.

The generalized de Bruijn digraph $G_B(n, d)$ has vertex set $V(G_B(n, d)) = \{0, 1, \ldots, n-1\}$ and arc set $A(G_B(n, d)) = \{(x, y) | y \equiv dx + i \pmod{n}, 0 \leq i \leq d-1\}$, where *n* and *d* are two positive integers with $n \geq d \geq 2$. In particular, if $n = d^m$, then $G_B(n, d)$ is the de Bruijn digraph B(d, m).

The generalized de Bruijn digraphs have been widely studied as interconnection network topologies because of various good properties [3, 4]. For notational convenience, sometimes we simply

^{*}This research was partially supported by National Science Council of R.O.C. under Contracts NSC 100–2221–E–011–067-MY3 and NSC 101–2221–E–011–038–MY3.

[†]All correspondence should be addressed to Professor Yue–Li Wang, Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan (Email: ylwang@cs.ntust.edu.tw).

Figure 1: 3-rainbow domination in digraphs.

write G_B instead of $G_B(n, d)$ if n and d are explicit from the context.

For generalized de Bruijn digraphs, their Hamiltonian property [6], digameter [8], connectivity [9], absorbant [13], domination [10] and twin domination [11, 14] have been studied. Also, several structural objects such as spanning trees, eulerian tours [12], closed walks [16] and small cycles [7] have been counted. Recently, various k-tuple domination problems in de Bruijn digraphs have also been studied [1, 2, 18, 15]. In [17], Tian and Xu further investigated the distance for these digraphs.

2 The bounds of k-rainbow domination numbers of generalized de Bruijn digraphs

In this section we propose a lower bound and an upper bound of the k-rainbow domination number for generalized de Bruijn digraphs. We also show that the proposed bounds are tight.

Proposition 1. For any graph G of n vertices, if $k \ge n$, then $\gamma_{rk}(G) = n$.

By Proposition 1, hereafter, we assume that k < n.

Theorem 2. $\gamma_{rk}(G_B(n,d)) \ge \max\{k, \left\lceil \frac{kn}{d+k} \right\rceil\}.$

Proof. It is clear that $\gamma_{rk}(G_B(n,d)) \ge k$. Let f be a kRDF of digraph D and let S be the set of vertices with $f(v) = \emptyset$ for $v \in V$. Then obviously $w(f) \ge |V \setminus S|$. Moreover, since every vertex v with $f(v) = \emptyset$ must have all k colors in its inneighborhood, it follows that $d \cdot w(f) \ge |S| \cdot k$. Therefore, we have

$$\begin{array}{ll} kw(f) & \geqslant & k|V \setminus S| \\ & \geqslant & k|V| - k|S| \\ & \geqslant & kn - d \cdot w(f). \end{array}$$

After rearranging, we have $w(f) \ge \left\lceil \frac{kn}{d+k} \right\rceil$. If f is a γ_{rk} -function, then the theorem follows.

Theorem 3. $\gamma_{rk}(G_B(n,d)) \leq k \lceil \frac{n}{d} \rceil$.

Proof. For $G_B(n, d)$, let $S = \{0, 1, \ldots, \left\lceil \frac{n}{d} \right\rceil - 1\}$. It is easy to verify that S is a dominating set of G_B and $|S| = \left\lceil \frac{n}{d} \right\rceil$. By setting $f(v) = \{1, \ldots, k\}$, this results in S to be a k-rainbow dominating set. Thus $\gamma_{rk}(G_B(n, d)) \leq k \lceil \frac{n}{d} \rceil$.

3 The class of generalized de Bruijn digraphs with $\gamma_{rk}(G_B(n, d)) = k$

In this section, we investigate the class of generalized de Bruijn digraphs with $\gamma_{rk}(G_B(n,d)) = k$.

Lemma 4. If n = d, then $\gamma_{rk}(G_B(n, d)) = k$.

Proof. By Theorem 1, $\gamma_{rk}(G_B(n,d)) \ge \max\{k, \left\lceil \frac{kn}{d+k} \right\rceil\} \ge k$. When n = d, by Theorem 3, $\gamma_{rk}(G_B(n,d)) \le k \lceil \frac{n}{d} \rceil = k$. Thus the lemma follows.

Theorem 5. For a digraph D, there is a γ_{rk} -function f with w(f) = k if and only if there exists a set $S \subseteq V$ with $|S| \leq k$ such that $V \setminus S \subseteq N^+(v)$ for each $v \in S$, where $N^+(v) = \{u | (v, u) \in A\}$ is the out-neighborhood of v.

Proof. Assume that there exists a set $S \subseteq V$ with $|S| \leq k$ such that $V \setminus S \subseteq N^+(v)$ for each $v \in S$. Let f be a kRDF of D such that the colors assigned to the vertices in S form a partition of \mathscr{C} . It is clear that f is a γ_{rk} -function with w(f) = k. Now we consider the other direction. Suppose to the contrary that there is a vertex, say v, in S which does not dominate all vertices in $V \setminus S$. Let $u \in V \setminus S$ be a vertex which is not in $N^+(v)$ and $f(u) = \emptyset$. By definition, $\bigcup_{x \in N^-(u)} f(x) = \{1, \ldots, k\}$. This further implies that w(f) > k, a contradiction. This completes the proof.

Lemma 6. If n = d + 1, then $\gamma_{rk}(G_B(n, d)) = k$ for $k \ge 2$.

Proof. It is clear that $N^+(0) = \{0, \ldots, n-2\}$ and $N^+(n-1) = \{1, \ldots, n-1\}$ in $G_B(n,d)$ when n = d + 1. Let $S = \{0, n-1\}$. It is easy to verify that $V \setminus S \subseteq N^+(v)$ for every $v \in S$. Thus, by Theorem 5, $\gamma_{rk}(G_B(n,d)) = k$ when $k \ge 2$. This completes the proof. **Lemma 7.** If f is a γ_{rk} -function of $G_B(n, d)$ with w(f) = k and S is its corresponding γ_{rk} -set, then there is a subset S' of S in which all vertices in S' and in $V \setminus S'$ are consecutive.

Proof. By Theorem 5, we have $V \setminus S \subseteq N^+(v)$ for each $v \in S$. If the vertices in $V \setminus S$ are not consecutive, then the missing vertices must be in S. Let M be the set of missing vertices. Now let $S' = S \setminus M$. By the consecutive property of the vertices in $N^+(v)$ for each $v \in V$ in $G_B(n, d)$, all vertices in S' are consecutive. This further implies that all vertices in $V \setminus S'$ are also consecutive. This completes the proof. \Box

Corollary 8. If f is a γ_{rk} -function of $G_B(n,d)$ with w(f) = k, then there is γ_{rk} -set in which all vertices are consecutive.

Proof. By Lemma 7, there is a set S' in which all vertices are consecutive. Clearly, the property $V \setminus S' \subseteq N^+(v)$ for each $v \in S'$ still holds. By Theorem 5, S' is a γ_{rk} -set. This completes the proof.

By Corollary 8, in the following, we assume that all the vertices in the γ_{rk} -set S of $G_B(n, d)$ are consecutive. We also assume that the set $V \setminus S$ contains all the vertices x with $s \leq x \leq t$. Moreover, let $n = d + \alpha$ with $\alpha \geq 0$ in $G_B(n, d)$, and let $N_0(x) = d \cdot x$ and $N_{d-1}(x) = d \cdot x + d - 1$.

Lemma 9. If f is a γ_{rk} -function of $G_B(n, d)$ with w(f) = k and S is its corresponding γ_{rk} -set, then both |S| and $|V \setminus S|$ are less than d.

Proof. First, we consider the cardinality of $V \setminus S$. By Theorem 5, we have $|V \setminus S| \leq d$; for otherwise, every vertex $v \in S$ has $|N^+(v)| > d$, a contradiction. Now we consider the case where $|V \setminus S| = d$. By Theorem 5 again, $V \setminus S \subseteq N^+(v)$ for every $v \in S$. This further implies that $u \notin N^-(v)$ and $v \notin N^-(u)$ for any two vertices $u, v \in S$. Furthermore, there is also no self-loop vertex in S. Since $|V \setminus S| = d$, it follows that $N_0(u+1) = N_{d-1}(u)+1$. Note that both u+1 and $N_0(u+1)$ are in S. This implies that there is an arc from u+1 to $N_0(u+1)$, a contradiction. Therefore, we have $|V \setminus S| < d$.

Now we consider the cardinality of S. If |S| > d, then, by Theorem 5, $|N^-(v)| > d$ for each $v \in V \setminus S$, a contradiction. Now we consider the case where |S| = d. By using a similar argument as above, we can find that there exists an arc from vertex u to $N_0(u)$, where both u and $N_0(u)$ are in $V \setminus S$. This contradicts the assumption that $N^-(N_0(u)) = S$. This completes the proof. \Box **Lemma 10.** If f is a γ_{rk} -function of $G_B(n, d)$ with w(f) = k and S is its corresponding γ_{rk} -set, then $|V \setminus S| > \alpha$.

Proof. By Lemma 9, we have $d - 1 \ge |S|$. Accordingly, we have the following derivation:

$$\begin{aligned} |V \setminus S| &= |V| - |S| \\ &\geqslant |V| - (d-1) \\ &= d + \alpha - d + 1 \\ &= \alpha + 1. \end{aligned}$$

This completes the proof.

Theorem 11. $\gamma_{rk}(G_B(n,d)) = k$ if and only if $\alpha \leq 1$.

Proof. By Lemmas 4 and 6, if $\alpha \leq 1$, i.e., n = d or d+1, then $\gamma_{rk}(G_B(n, d)) = k$. Now we consider the other direction.

Suppose to the contrary that there exists a γ_{rk} -function f of $G_B(n,d)$ with w(f) = k and $n \ge d+2$, namely $\alpha \ge 2$. Let S be the γ_{rk} -set and $M = V \setminus S$ in which s and t are the smallest and largest, respectively, numbers in M. For simplicity, we only consider the case where M contains all the vertices x with $s \le x \le t$. The case where M contains $V \setminus \{x | s < x < t\}$ can be handled similarly.

It is clear that there exist vertices $u, v \in S$ such that $N_0(u) = s$ and $N_{d-1}(v) = t$. If v + 1 is in S, then $N_0(v + 1) = t + 1$. Since $M \subseteq N^+(v + 1)$, vertex t is also in $N^+(v + 1)$. This implies that n = d, a contradiction. Thus v = s - 1. By using a similar argument, we can find that u = t + 1.

By definition, we have

$$N_{d-1}(u) \equiv s+d-1 \pmod{n}$$
$$\equiv s-\alpha-1 \pmod{n}.$$

By Lemma 10, it follows that $s - \alpha - 1 \pmod{n}$ is in *S*. Similarly, $N_{d-1}(u) \equiv s - 2 \cdot \alpha - 1 \pmod{n}$ which is also in *S*. Thus $s - x \cdot \alpha - 1 \pmod{n}$ for $1 \leq x \leq |S|$ are all in *S*. By Lemma 10 again, all $s - x \cdot \alpha - 1 \pmod{n}$ for $1 \leq x \leq |S|$ are distinct. This implies that $\alpha = 1$. This contradicts the assumption that $\alpha \geq 2$. This completes the proof. \Box

4 Conclusion

In this paper, we discuss the k-rainbow domination problem in generalized de Bruijn digraphs. We present an upper bound and a lower bound on the k-rainbow domination number for generalized de Bruijn digraphs. We also show the proposed lower bound is tight. As a future study, we have the following conjecture: $\lceil \frac{kn}{d+1} \rceil \leq \gamma_{rk}(G_B(n,d)) \leq k \lceil \frac{n}{d+1} \rceil$.

References

- T. Araki, On the k-tuple domination in de Bruijn and Kautz digraphs, *Information Pro*cessing Letters 104 (2007) 86-90.
- [2] T. Araki, The k-tuple twin domination in de Bruijn and Kautz digraphs, Discrete Mathematics 308 (2008) 6406-6413.
- [3] B. Breŝar, T.K. Ŝumenjack, On the 2-rainbow domination in graphs, *Discrete Apllied Mathematics* 155 (2007) 2394-2400.
- [4] B. Breŝar, M.A. Henning, D.F. Rall, Rainbow domination in graphs, *Taiwanese J. Math.* 12 (2008) 213-225.
- [5] G.J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, *Discrete Applied Mathematics* 158 (2010) 8-12.
- [6] D.Z. Du, F.K. Hwang, Generalized de Bruijn digraphs, *Networks* 18 (1988) 27-38.
- [7] T. Hasunuma, Y. Shibata, Counting small cycles in generalized de Bruijn digraphs, *Net*works 29 (1997) 39-47.
- [8] M. Imase, M. Itoh, Design to minimize diameter on building-block networks, *IEEE Tansactions on Computers* 30 (1981) 439-442.
- [9] M. Imase, T. Soneoka, K. Okada, Connectivity of regular directed graphs with small diameters, *IEEE Tansactions on Computers* 34 (1985) 267-273.
- [10] Y. Kikuchi, Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, *Information Pro*cessing Letters 86 (2003) 79-85.
- [11] Jyhmin Kuo, On the twin domination numbers in generalized de Bruijn and geralized Kautz digraphs, *Discrete Mathematics* Algorithms and Applications 2 (2010) 199-205.

- [12] X. Li, F. Zhang, On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graphs, *Discrete Mathematics* 94 (1991) 189-197.
- [13] E.F. Shan, T.C.E. Cheng, L.Y. Kang, Absorbant of generalized de Bruijn digraphs, *Information Processing Letters* 105 (2007) 6-11.
- [14] E.F. Shan, Y.X. Dong, Y.K. Cheng, The twin domination in generalized de Bruijn digraphs, *Information Processing Letters* 109 (2009) 856-860.
- [15] E.F. Shan, Y.X. Dong, The k-tuple twin domination in generalized de Bruijn and Kautz networks, Computers and Mathematics with Applications 63 (2012) 222-227.
- [16] Y. Shibata, M. Shirahata, S. Osawa, Counting closed walks in generalized de Bruijn graphs, *Information Processing Letters* 49 (1994) 135-138.
- [17] F. Tian, J.-M Xu, Distance domination numbers of generalized de Bruijn and Kautz digraphs, Or Transactions 10 (2006) 88-94.
- [18] L.Y. Wu, E.F. Shan, Z.R. Liu, On the ktuple domination in generalized de Bruijn and Kautz digraphs, *Information Scinece* 180 (2010) 4430-4435.