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Abstract

In this paper, we are concerned with the k-
rainbow domination problem on generalized de
Bruijn digraphs. We give an upper bound and
a lower bound for the k-rainbow domination num-
ber in generalized de Bruijn digraphs GB(n, d).
We also show that γrk(GB(n, d)) = k if and only
if α 6 1, where n = d+α and γrk(GB(n, d)) is the
k-rainbow domination number of GB(n, d).

1 Introduction

A dominating set in a digraph D = (V,A) is a
set S ⊆ V such that, for every v ∈ V \ S, there
is an arc (u, v) ∈ A with u ∈ S. The domination
number of D, denoted by γ(D), is defined as the
minimal cardinality of a dominating set of D. The
concept of rainbow domination was introduced by
Breŝar, Henning, and Rall [4]. Let G = (V,E) be
a graph and v ∈ V (G). Hereafter, V (G) and E(G)
are simply written as V and E, respectively. Let f
be a function that assigns to each vertex a subset
of colors chosen from the set C = {1, 2, . . . , k};
that is, f : V −→ P(C ), where P(C ) is the set
of all subsets of C . If

⋃
u∈N(v) f(u) = C for each

vertex v ∈ V with f(v) = ∅, then f is called a
k-rainbow dominating function (kRDF for short)
of G, where N(v) = {u ∈ V |uv ∈ E}. The weight
of f is defined as w(f) =

∑
v∈V |f(v)|. Given a

graph G, the minimum weight of a kRDF is called
the k-rainbow domination number of G, denoted
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by γrk(G). When w(f) = γrk(G), we say that
f is a γrk-function and the set S with f(v) 6= ∅
for every v ∈ S is called a γrk-set. Notice that
the ordinary domination problem is the 1-rainbow
domination problem.

Breŝar and Ŝumenjak [3] studied the 2-
rainbow domination problem in generalized Pe-
tersen graphs and proved that the 2-rainbow domi-
nation problem is NP-complete in general graphs.
In [5], Chang, Wu, and Zhu proved that the k-
rainbow domination problem is NP-complete for
any value of k and provided a linear-time algo-
rithm for the k-rainbow domination problem in
trees.

In this paper, we are concerned with the k-
rainbow domination problem in digraphs D =
(V,A). That is, the requirement on f(v) = ∅ is
changed to ⋃

u∈N−(v)

f(u) = {1, . . . , k},

where N−(u) = {v|(v, u) ∈ A} is the in-
neighborhood of u.

We give an example in Figure 1. In Figure
1, we can see that v0, v1, v3 and v4 is the in-
neighborhood of v2, and we give v2 → {1, 2, 3}, so
that v1, v3, and v4 is the in-neighborhood with 3
colors, so v2 is a 3-rainbow dominating set.

The generalized de Bruijn digraph GB(n, d) has
vertex set V (GB(n, d)) = {0, 1, . . . , n− 1} and arc
set A(GB(n, d)) = {(x, y)|y ≡ dx+ i (mod n), 0 6
i 6 d−1}, where n and d are two positive integers
with n > d > 2. In particular, if n = dm, then
GB(n, d) is the de Bruijn digraph B(d,m).

The generalized de Bruijn digraphs have been
widely studied as interconnection network topolo-
gies because of various good properties [3, 4].
For notational convenience, sometimes we simply
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Figure 1: 3-rainbow domination in digraphs.

write GB instead of GB(n, d) if n and d are explicit
from the context.

For generalized de Bruijn digraphs, their
Hamiltonian property [6], digameter [8], connec-
tivity [9], absorbant [13], domination [10] and twin
domination [11, 14] have been studied. Also, sev-
eral structural objects such as spanning trees, eu-
lerian tours [12], closed walks [16] and small cycles
[7] have been counted. Recently, various k-tuple
domination problems in de Bruijn digraphs have
also been studied [1, 2, 18, 15]. In [17], Tian and
Xu further investigated the distance for these di-
graphs.

2 The bounds of k-rainbow domi-
nation numbers of generalized de
Bruijn digraphs

In this section we propose a lower bound and an
upper bound of the k-rainbow domination number
for generalized de Bruijn digraphs. We also show
that the proposed bounds are tight.

Proposition 1. For any graph G of n vertices, if
k > n, then γrk(G) = n.

By Proposition 1, hereafter, we assume that
k < n.

Theorem 2. γrk(GB(n, d)) > max{k,
⌈

kn
d+k

⌉
}.

Proof. It is clear that γrk(GB(n, d)) > k. Let f
be a kRDF of digraph D and let S be the set of
vertices with f(v) = ∅ for v ∈ V . Then obviously
w(f) > |V \ S|. Moreover, since every vertex v
with f(v) = ∅ must have all k colors in its in-
neighborhood, it follows that d · w(f) > |S| · k.
Therefore, we have

kw(f) > k|V \ S|
> k|V | − k|S|
> kn− d · w(f).

After rearranging, we have w(f) >
⌈

kn
d+k

⌉
. If f is

a γrk-function, then the theorem follows. �

Theorem 3. γrk(GB(n, d)) 6 kdnd e.

Proof. For GB(n, d), let S = {0, 1, . . . ,
⌈
n
d

⌉
− 1}.

It is easy to verify that S is a dominating set of
GB and |S| = dnd e. By setting f(v) = {1, . . . , k},
this results in S to be a k-rainbow dominating set.
Thus γrk(GB(n, d)) 6 kdnd e. �

3 The class of generalized de Bruijn
digraphs with γrk(GB(n, d)) = k

In this section, we investigate the class of gener-
alized de Bruijn digraphs with γrk(GB(n, d)) = k.

Lemma 4. If n = d, then γrk(GB(n, d)) = k.

Proof. By Theorem 1, γrk(GB(n, d)) >

max{k,
⌈

kn
d+k

⌉
} > k. When n = d, by Theorem 3,

γrk(GB(n, d)) 6 kdnd e = k. Thus the lemma fol-
lows. �

Theorem 5. For a digraph D, there is a γrk-
function f with w(f) = k if and only if there exists
a set S ⊆ V with |S| 6 k such that V \S ⊆ N+(v)
for each v ∈ S, where N+(v) = {u|(v, u) ∈ A} is
the out-neighborhood of v.

Proof. Assume that there exists a set S ⊆ V
with |S| 6 k such that V \ S ⊆ N+(v) for each
v ∈ S. Let f be a kRDF of D such that the colors
assigned to the vertices in S form a partition of
C . It is clear that f is a γrk-function with w(f) =
k. Now we consider the other direction. Suppose
to the contrary that there is a vertex, say v, in
S which does not dominate all vertices in V \ S.
Let u ∈ V \ S be a vertex which is not in N+(v)
and f(u) = ∅. By definition,

⋃
x∈N−(u) f(x) =

{1, . . . , k}. This further implies that w(f) > k, a
contradiction. This completes the proof. �

Lemma 6. If n = d + 1, then γrk(GB(n, d)) = k
for k > 2.

Proof. It is clear that N+(0) = {0, . . . , n − 2}
and N+(n− 1) = {1, . . . , n− 1} in GB(n, d) when
n = d+ 1. Let S = {0, n− 1}. It is easy to verify
that V \ S ⊆ N+(v) for every v ∈ S. Thus, by
Theorem 5, γrk(GB(n, d)) = k when k > 2. This
completes the proof. �
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Lemma 7. If f is a γrk-function of GB(n, d) with
w(f) = k and S is its corresponding γrk-set, then
there is a subset S′ of S in which all vertices in S′

and in V \ S′ are consecutive.

Proof. By Theorem 5, we have V \ S ⊆ N+(v)
for each v ∈ S. If the vertices in V \ S are not
consecutive, then the missing vertices must be in
S. Let M be the set of missing vertices. Now let
S′ = S \M . By the consecutive property of the
vertices in N+(v) for each v ∈ V in GB(n, d), all
vertices in S′ are consecutive. This further implies
that all vertices in V \ S′ are also consectutive.
This completes the proof. �

Corollary 8. If f is a γrk-function of GB(n, d)
with w(f) = k, then there is γrk-set in which all
vertices are consecutive.

Proof. By Lemma 7, there is a set S′ in which
all vertices are consecutive. Clearly, the property
V \ S′ ⊆ N+(v) for each v ∈ S′ still holds. By
Theorem 5, S′ is a γrk-set. This completes the
proof. �

By Corollary 8, in the following, we assume that
all the vertices in the γrk-set S of GB(n, d) are
consecutive. We also assume that the set V \ S
contains all the vertices x with s 6 x 6 t. More-
over, let n = d + α with α > 0 in GB(n, d), and
let N0(x) = d · x and Nd−1(x) = d · x+ d− 1.

Lemma 9. If f is a γrk-function of GB(n, d) with
w(f) = k and S is its corresponding γrk-set, then
both |S| and |V \ S| are less than d.

Proof. First, we consider the cardinality of V \S.
By Theorem 5, we have |V \S| 6 d; for otherwise,
every vertex v ∈ S has |N+(v)| > d, a contradic-
tion. Now we consider the case where |V \S| = d.
By Theorem 5 again, V \ S ⊆ N+(v) for every
v ∈ S. This further implies that u /∈ N−(v) and
v /∈ N−(u) for any two vertices u, v ∈ S. Further-
more, there is also no self-loop vertex in S. Since
|V \S| = d, it follows that N0(u+1) = Nd−1(u)+1.
Note that both u+ 1 and N0(u+ 1) are in S. This
implies that there is an arc from u+1 to N0(u+1),
a contradiction. Therefore, we have |V \ S| < d.

Now we consider the cardinality of S. If |S| > d,
then, by Theorem 5, |N−(v)| > d for each v ∈
V \ S, a contradiction. Now we consider the case
where |S| = d. By using a similar argument as
above, we can find that there exists an arc from
vertex u to N0(u), where both u and N0(u) are
in V \ S. This contradicts the assumption that
N−(N0(u)) = S. This completes the proof. �

Lemma 10. If f is a γrk-function of GB(n, d)
with w(f) = k and S is its corresponding γrk-set,
then |V \ S| > α.

Proof. By Lemma 9, we have d − 1 > |S|. Ac-
cordingly, we have the following derivation:

|V \ S| = |V | − |S|
> |V | − (d− 1)

= d+ α− d+ 1

= α+ 1.

This completes the proof. �

Theorem 11. γrk(GB(n, d)) = k if and only if
α 6 1.

Proof. By Lemmas 4 and 6, if α 6 1, i.e., n = d
or d+1, then γrk(GB(n, d)) = k. Now we consider
the other direction.

Suppose to the contrary that there exists a
γrk-function f of GB(n, d) with w(f) = k and
n > d+2, namely α > 2. Let S be the γrk-set and
M = V \ S in which s and t are the smallest and
largest, respectively, numbers in M . For simplic-
ity, we only consider the case where M contains
all the vertices x with s 6 x 6 t. The case where
M contains V \ {x|s < x < t} can be handled
similarly.

It is clear that there exist vertices u, v ∈ S such
that N0(u) = s and Nd−1(v) = t. If v + 1 is in S,
then N0(v + 1) = t + 1. Since M ⊆ N+(v + 1),
vertex t is also in N+(v + 1). This implies that
n = d, a contradiction. Thus v = s− 1. By using
a similar argument, we can find that u = t+ 1.

By definition, we have

Nd−1(u) ≡ s+ d− 1 (mod n)

≡ s− α− 1 (mod n).

By Lemma 10, it follows that s−α−1 (mod n) is
in S. Similarly, Nd−1(u) ≡ s − 2 · α − 1 (mod n)
which is also in S. Thus s− x · α− 1 (mod n) for
1 6 x 6 |S| are all in S. By Lemma 10 again, all
s− x · α− 1 (mod n) for 1 6 x 6 |S| are distinct.
This implies that α = 1. This contradicts the
assumption that α > 2. This completes the proof.
�

4 Conclusion

In this paper, we discuss the k-rainbow domi-
nation problem in generalized de Bruijn digraphs.
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We present an upper bound and a lower bound
on the k-rainbow domination number for gener-
alized de Bruijn digraphs. We also show the
proposed lower bound is tight. As a future
study, we have the following conjecture: d kn

d+1e 6
γrk(GB(n, d)) 6 kd n

d+1e.
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