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Abstract 
 

The k-rainbow domination is a variant of the 
classical domination problem in graphs and is 
defined as follows. Given an undirected graph G = (V, 
E), we have a set of k colors and we assign an 
arbitrary subset of these colors to each vertex of G. If 
a vertex which is assigned an empty set, then the 
union of color set of its neighbors must be k colors. 
This assignment is called the k-rainbow dominating 
function of G. The minimum sum of numbers of 
assigned colors over all vertices of G is called the 
k-rainbow domination number of G. In this paper, we 
present upper bounds on 2 and 3-rainbow 
domination number of Sierpiński Graphs. 

 
Keywords: Domination; k-rainbow domination; 
Sierpiński Graphs. 
 
1  Introduction 
 

The k-rainbow domination is a variant of classical 
domination [7, 8]. Let G = (V(G), E(G)) be a finite, 
simple and undirected graph, where V(G) and E(G) 
are the vertex and edge sets of G, respectively. For a 
vertex v ∈ V(G), the open neighborhood N(v) = {u ∈ 
V(G) | (u, v) ∈ E(G)}. Let C = {1, 2, ... , k} be a set 
of k colors, and f be a function that assign to each 
vertex a set of colors chosen from C, that is, f : V(G) 
→ P ({1, ... , k}). If for each vertex v ∈ V(G) such 
that f(v) =∅ we have ∪u∈N(v) f(u) = C then f is called 
a k-rainbow dominating function (kRDF) of G. The 
weight, ω(f), of a function f is defined as ω(f) = 
∑v∈V(G) |f(v)| . The k-rainbow domination number 
γrk(G) of G is the minimum weight of a k-rainbow 
dominating function. 

For example, two 2-rainbow dominations of graph 
G with 5 vertices are shown in Figure 1(a) and 1(b), 
respectively. In Figure 1(a), we assign a color set {1} 

to V1 and assign a color set {2} to V4. When f(V2) = 
∅, ∪u∈N(V2) f(u) = {1, 2}. Similarly, the union of 
color sets of neighbors of V3 and V5 are both {1, 2}, 
respectively. In Figure 1(b), we assign a color set {1, 
2} to V5. For each vertex v in {V1, V2, V3, V4}, f(v) 
=∅ and ∪u∈N(v) f(u) = {1, 2}. In Figure 1(a) and 1(b), 
both ω(f) = 2, and it is easy to verify that γr2(G) = 2. 

 
  (a) a 2RDF of G     (b) another 2RDF of G 

Figure 1: 2-rainbow dominations on graph G. In 
(a), the vertex with color set {1} and the vertex 
with color set {2} are filled with slashes and 
backslashes, respectively. In (b), the vertex with 
color set {1, 2} is filled with vertical line. 
 

In [2, 3], Brešar, Henning and Rall introduced the 
concept of k-rainbow domination of a graph G. The 
application is that there are k types of guards being 
used, and vertices v with f(v) = ∅ must have all types 
of guards in their neighborhoods. In [4], Brešar and 
Šumenjak showed that the decision version of 
2-rainbow domination of graphs is NP-complete 
even when restricted to chordal graphs (or bipartite 
graphs). They also gave the exact values of the 
2-rainbow domination numbers for paths, cycles and 
suns. Thus, further investigations tended to study 
bounds on k-rainbow domination number for certain 
families of graphs, such as trees, grids, generalized 
Petersen graphs and lexicographic product of graphs. 
This problem is widely studied in [1-6, 11-13, 15-19]. 
In this article, we give upper bounds on 2 and 
3-rainbow domination number of Sierpiński Graphs. 
 
2  Preliminaries *This research was partially supported by NSC of 
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The definition of Sierpiński graph is described as 

follows. Readers may refer to [9, 10, 14] for the 
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details. The vertex set of S(n, m) consists of all 
n-tuples of integers 1, 2, …, m, for integers n ≥ 1 and 
m ≥ 3, namely V(S(n, m)) = {1, 2, …, m}n. Thus, let 
〈v1, v2,… , vn〉 be the label of vertex v, denoted l(v), or 
in the regular expression form v1v2… vn for short 
when no confusion arises. For notational 
convenience, we always use w to denote a substring 
of v1v2… vn and a, b, c to denote a number in v1v2… 
vn, i.e., a, b, c ∈ {1, 2, …, m}. Let |w| be the length of 
a substring w, and bi is the Kleene closure in regular 
expression, i.e., b4 is equal to bbbb. For example, l(v) 
= wabn−|w|−1 means that the label of v begins with 
prefix w, then concatenates with number a, and 
finally ends with n−|w|−1 b’s. 

For notational convenience, we refer to a color set 
{1, 2, …, k} as c{1, 2, …, k}, and call a vertex with 
an empty color set as a non-color vertex.  
 
3  2-rainbow Dominations on Sierpiński 

Graphs 
 
In this section, we proceed by giving upper bounds 

of the 2-rainbow domination number of Sierpiński 
Graphs S(n, m) while m ≥ 3. First, it is easy to check 
the following proposition. 

 
Proposition 1  γrk(Km) = k when k ≤ m. 
 

Two distinct vertices u and v are adjacent in S(n, m) 
if and only if l(u) = wabn−|w|−1 and l(v) = wban−|w|−1 
with a ≠ b and 0 ≤ |w| ≤ n – 1. Note that if |w| = 0, 
then w is a null string. Further, if |w| = n – 1, then 
both bn−|w|−1 and an−|w|−1 are empty. We use Sa(n – 1, 
m) (respectively, Sw(n – |w|, m)) to denote the 
subgraph induced by the vertices with prefix a 
(respectively, prefix w) in their labels. When |w| = 
n – 1, it is obvious that Sw(1, m) is a complete graph 
Km. If l(v) = an then we call v an extreme vertex. 
There are exactly m extreme vertices in S(n, m). 
Since the label of an extreme vertex v is an, by 
definition, v has exactly m – 1 neighbors whose 
labels are of the form an−1b with b ≠ a. Every 
non-extreme vertex v with l(v) = wabn−|w|−1 has 
exactly m neighbors whose labels are of the form 
wba n−|w|−1 and wab n−|w|−2c while c ≠ b. Let d(v) be the 
degree of vertex v. Thus, d(v) = m – 1 if v is a 
extreme vertex, and d(v) = m otherwise. Figure 2 
depicts S(1, 3), S(2, 3) and S(3, 3). 

Since S(1, m) is isomorphic to Km by definition, 
we have the following lemma. 
 
Lemma 2  γrk(S(1, m)) = k when k ≤ m and m ≥ 3. 
 

We give algorithm A to provide a 2RDF of S(2, 
m) for m ≥ 3. 
 
Algorithm A 
Input: a Sierpiński graph S(2, m) for m ≥ 3 
Output: A 2RDF of S(2, m) 
Step 1. D  ∅ 
Step 2. D  D ∪ jj with c{1} for j ∈ {1, 2, …, 

m} 
Step 3. D  D ∪ j1 with c{2} for j ∈ {2, 3, …, 

m} 
 
Lemma 3  γr2(S(2, m)) ≤ 2m – 1 for m ≥ 3. 
 
Proof. To achieve this upper bound, we give 
algorithm A to produce all 2RDFs of S(2, m) for m 
≥ 3. There are m S(1, m) in a S(2, m), and S(1, m) 
is isomorphic to Km. By algorithm A, there are a 
vertex jj with c{1} and a vertex j1 with c{2} in 
each Sj(1, m) for j ∈ {2, 3, …, m}, thus all 
non-color vertices are dominated beside the ones 
of S1(1, m). In S1(1, m), the non-color vertex 1j can 
be dominated by the vertex 11 with c{1} and the 
vertex j1 with c{2} for j ∈ {2, 3, …, m}. Finally, 
all non-color vertices are dominated and the 
weight of 2RDF of S(2, m) is 2m – 1.         � 

  
(a) S(1,3)        (b) S(2, 3) 

 

For example, Figure 2(a) and 2(b) shows 
2-rainbow dominations of S(2, 3) and S(2, 5), 
respectively. 

Then, we give algorithm B to provide a 2RDF 
of S(3, m) for m ≥ 3. 
 
Algorithm B 
Input: a Sierpiński graph S(3, m) for m ≥ 3 
Output: A 2RDF of S(3, m) 
Step 1.  D  ∅ 
Step 2.  for i  1 to m (c) S(3, 3) 
Step 3.1. if m is odd then  Figure 2: Labeled Sierpiński graphs 
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Step 3.2.   x  ( i + ⎣m/2⎦ – 1) % m + 1 
Step 3.3.   y  ( i + ⎣m/2⎦ ) % m + 1 
Step 3.4. else 
Step 3.5.   x  i % m + 1 
Step 3.6.   y  ( i + m – 2 ) % m + 1 
Step 3.7.  end if 
Step 4.1. for j  1 to m  
Step 4.2.   if j ≠ x then D  D ∪ ijx with c{1} 
Step 4.3. end for 
Step 5.1. for j  1 to m 
Step 5.2.     if j ≠ x and j ≠ y then D  D ∪ ijy 

with c{2} 
Step 5.3. end for 
Step 6. D  D ∪ ixx with c{2} 
Step 7.  end for 
 

 
(a) a 2RDF of S(2, 3)   (b) a 2RDF of S(2, 5) 

Figure 3: 2-rainbow dominations of S(2, 3) and 
S(2, 5). The vertex with c{1} and the vertex with 
c{2} are filled with slashes and backslashes, 
respectively. 
 
Lemma 4  γr2(S(3, m)) ≤ 2m2 – 2m for m ≥ 3. 
 
Proof. There are m × m S(1, m) in a S(3, m).  
Case 1: m is odd. 

In this case, let i ∈ {1, 2, …, m}, x = ( i + 
⎣m/2⎦ – 1) % m + 1, y = ( i + ⎣m/2⎦ ) % m + 1 and j 
∈ {1, 2, …, m} – {x}. By algorithm B, there are a 
vertex ijx with c{1} and a vertex ijy with c{2} in 
each Sij(1, m), thus all non-color vertices in Sij(1, 
m) are dominated. In Six(1, m), each non-color 
vertex ixj is dominated by the vertex ixx with c{2} 
and the vertex ijx with c{1}. In Siy(1, m), each 
non-color vertex iyz is dominated by the vertex ixx 
with c{1} and the vertex izy with c{2} while z ∈ 
{1, 2, …, m} – {x, y}, and the non-color vertex iyy 
is dominated by the vertex ixx with c{1} and the 
vertex yii with c{2}.  
Case 2: m is even.  

In this case, let i ∈ {1, 2, …, m}, x = i % m + 1, 
y = ( i + m – 2 ) % m + 1 and j ∈ {1, 2, …, m} – 
{x}. Since the remaining parts of algorithm B are 
the same in case 1 and case 2, the proof can be 
verified by a similar way of above case.  

Finally, all non-color vertices are dominated in 
both cases and the weight of 2RDF of S(3, m) is 

2m2 – 2m.                               � 
For example, Figure 3(a) and 3(b) shows 

2-rainbow dominations of S(3, 3) and S(3, 4), 
respectively. 

 

(a) a 2RDF of S(3, 3) 
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(b) a 2RDF of S(3, 4) 
Figure 4: 2-rainbow dominations of S(3, 3) and 
S(3, 4). The vertex with c{1} and the vertex with 
c{2} are filled with slashes and backslashes, 
respectively. 
 
Lemma 5  γrk(S(n, m)) ≤ m × γrk(S(n–1, m)). 
 
Proof. By the definition of Sierpiński graph, there 
are m S(n–1, m) in a S(n, m). We can apply a 
kRDF with γr2(S(n–1, m)) on each S(n–1, m) to 
obtain a kRDF with ω(f) = m × γrk(S(n–1, m)), 
which will be the upper bound of γrk(S(n, m)), on 
S(n, m).                                 � 
 

By applying Lemma 5 recursively on Lemma 4, 
we have the following lemma. 

 
Lemma 6  γr2(S(n, m)) ≤ 2(m –1)mn-2 for n ≥ 4. 
 
We summarize Lemmas 2, 3, 4 and 6 as follows. 
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Theorem 7  Some upper bounds of γr2(S(n, m)) are 
shown as below, which m ≥ 3. 

Theorem 10  Some upper bounds of γr3(S(n, m)) are 
shown as below, which m ≥ 3. 

              2,        if n = 1, 3,     if n = 1, 
γr2(S(n, m)) ≤   2m – 1,    if n = 2, 

2(m –1)mn-2, otherwise. 
 
4  3-rainbow Dominations on Sierpiński 

Graphs 
 

In this section, we proceed by giving upper bounds 
of the 3-rainbow domination number of Sierpiński 
Graphs S(n, m) while m ≥ 3. First, We give algorithm 
C to provide a 3RDF of S(2, m) for m ≥ 3. 

 
Algorithm C 
Input: a Sierpiński graph S(2, m) for m ≥ 3 
Output: A 3RDF of S(2, m) 
Step 1. D  ∅ 
Step 2. D  D ∪ 11 with c{1} ∪ 32 with c{1} 
Step 3. D  D ∪ j2 with c{1} for j ∈ {4, 5, …, 

m} 
Step 4. D  D ∪ 13 with c{2} ∪ 22 with c{2} 
Step 5. D  D ∪ j3 with c{2} for j ∈ {4, 5, …, 

m} 
Step 6. D  D ∪ 21 with c{3} ∪ 33 with c{3} 
Step 7. D  D ∪ j1 with c{3} for j ∈ {4, 5, …, 

m} 
 
Lemma 8  γr3(S(2, m)) ≤ 3m – 3 for m ≥ 3. 
 
Proof. There are m S(1, m) in a S(2, m). When m = 
3, it is easy to verify that algorithm C provide a 
3RDF of S(2, 3) by Figure 5 (a). When m ≥ 4, 
there are a vertex j2 with c{1}, a vertex j3 with 
c{2} and a vertex j1 with c{3} in each Sj(1, m) for 
j ∈ {4, 5, …, m}, thus all non-color vertices are 
dominated beside the ones of S1(1, m), S2(1, m) 
and S3(1, m). In S1(1, m), the non-color vertex 12 
can be dominated by the vertex 11 with c{1}, the 
vertex 13 with c{2} and the vertex 21 with c{3}, 
and the other non-color vertex 1j can be 
dominated by the vertex 11 with c{1}, the vertex 
13 with c{2} and the vertex j1 with c{3} while j ∈ 
{4, 5, …, m}. The non-color vertices in S2(1, m) 
and S3(1, m) can be dominated by the similar way. 
Finally, all non-color vertices are dominated and 
the weight of 3RDF of S(2, m) is 3m – 3.       � 

For example, Figure 5(a) and 5(b) shows 
2-rainbow dominations of S(2, 3) and S(2, 6), 
respectively. 

By applying Lemma 5 recursively on Lemma 8, 
we have the following lemma. 
 
Lemma 9  γr3(S(n, m)) ≤ 3(m –1)mn-2 for n ≥ 3. 
 
We summarize Lemmas 2, 8 and 9 as follows. 
 

      3(m –1)mn-2, otherwise. 
 

γr3(S(n, m)) ≤ 

 
(a) a 3RDF of S(2, 3) 

 (b) a 3RDF of S(2, 6) 
Figure 5: 3-rainbow dominations of S(2, 3) and 
S(2, 6). The vertex with c{1}, the vertex with c{2} 
and the vertex with c{3} are filled with slashes, 
backslashes and vertical line, respectively. 
 
5  Conclusion 

 
In this paper, we study 2 and 3-rainbow 

domination on Sierpiński Graphs. Then, we design 
some algorithms to produce 2RDFs and 3RDFs of 
S(n, m), and the weights of these rainbow domination 
functions are upper bounds on γrk(S(n, m)). As a 
future work, we will try to prove the lower bounds on 
γrk(S(n, m)). 
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