Upper bounds on 2 and 3-rainbow Domination Number of Sierpiński Graphs^{*}

Ting-Wei Liu¹, Kung-Jui Pai^{1,+} and Ro-Yu Wu²

¹ Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, Taiwan

² Department of Industrial Management, Lunghwa University of Technology, Taoyuan, Taiwan

Abstract

The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set of k colors and we assign an arbitrary subset of these colors to each vertex of G. If a vertex which is assigned an empty set, then the union of color set of its neighbors must be k colors. This assignment is called the k-rainbow dominating function of G. The minimum sum of numbers of assigned colors over all vertices of G is called the k-rainbow domination number of G. In this paper, we present upper bounds on 2 and 3-rainbow domination number of Sierpiński Graphs.

Keywords: Domination; *k*-rainbow domination; Sierpiński Graphs.

1 Introduction

The *k*-rainbow domination is a variant of classical domination [7, 8]. Let G = (V(G), E(G)) be a finite, simple and undirected graph, where V(G) and E(G) are the vertex and edge sets of G, respectively. For a vertex $v \in V(G)$, the open neighborhood $N(v) = \{u \in V(G) \mid (u, v) \in E(G)\}$. Let $C = \{1, 2, ..., k\}$ be a set of k colors, and f be a function that assign to each vertex a set of colors chosen from C, that is, $f : V(G) \rightarrow P(\{1, ..., k\})$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have $\bigcup_{u \in N(v)} f(u) = C$ then f is called a *k*-rainbow dominating function (*k*RDF) of G. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \sum_{v \in V(G)} |f(v)|$. The *k*-rainbow domination number $\gamma_{rk}(G)$ of G is the minimum weight of a *k*-rainbow dominating function.

For example, two 2-rainbow dominations of graph G with 5 vertices are shown in Figure 1(a) and 1(b), respectively. In Figure 1(a), we assign a color set $\{1\}$

to V_1 and assign a color set {2} to V_4 . When $f(V_2) = \emptyset$, $\bigcup_{u \in N(V_2)} f(u) = \{1, 2\}$. Similarly, the union of color sets of neighbors of V_3 and V_5 are both {1, 2}, respectively. In Figure 1(b), we assign a color set {1, 2} to V_5 . For each vertex v in $\{V_1, V_2, V_3, V_4\}$, $f(v) = \emptyset$ and $\bigcup_{u \in N(v)} f(u) = \{1, 2\}$. In Figure 1(a) and 1(b), both $\omega(f) = 2$, and it is easy to verify that $\gamma_{r2}(G) = 2$.

(a) a 2RDF of G (b) another 2RDF of GFigure 1: 2-rainbow dominations on graph G. In (a), the vertex with color set {1} and the vertex with color set {2} are filled with slashes and backslashes, respectively. In (b), the vertex with color set {1, 2} is filled with vertical line.

In [2, 3], Brešar, Henning and Rall introduced the concept of k-rainbow domination of a graph G. The application is that there are k types of guards being used, and vertices v with $f(v) = \emptyset$ must have all types of guards in their neighborhoods. In [4], Brešar and Sumenjak showed that the decision version of 2-rainbow domination of graphs is NP-complete even when restricted to chordal graphs (or bipartite graphs). They also gave the exact values of the 2-rainbow domination numbers for paths, cycles and suns. Thus, further investigations tended to study bounds on k-rainbow domination number for certain families of graphs, such as trees, grids, generalized Petersen graphs and lexicographic product of graphs. This problem is widely studied in [1-6, 11-13, 15-19]. In this article, we give upper bounds on 2 and 3-rainbow domination number of Sierpiński Graphs.

2 Preliminaries

The definition of Sierpiński graph is described as follows. Readers may refer to [9, 10, 14] for the

^{*}This research was partially supported by NSC of R.O.C. under the Grants NSC101-2221-E-131-039 and NSC102-2221-E-262-013.

⁺Corresponding author: poter@mail.mcut.edu.tw

details. The vertex set of S(n, m) consists of all *n*-tuples of integers 1, 2, ..., *m*, for integers $n \ge 1$ and $m \ge 3$, namely $V(S(n, m)) = \{1, 2, ..., m\}^n$. Thus, let $\langle v_1, v_2, ..., v_n \rangle$ be the label of vertex *v*, denoted l(v), or in the regular expression form $v_1v_2..., v_n$ for short when no confusion arises. For notational convenience, we always use *w* to denote a substring of $v_1v_2..., v_n$ and *a*, *b*, *c* to denote a number in $v_1v_2..., v_n$, i.e., *a*, *b*, $c \in \{1, 2, ..., m\}$. Let |w| be the length of a substring *w*, and b^i is equal to *bbbb*. For example, $l(v) = wab^{n-|w|-1}$ means that the label of *v* begins with prefix *w*, then concatenates with number *a*, and finally ends with n-|w|-1 b's.

Two distinct vertices u and v are adjacent in S(n, m)if and only if $l(u) = wab^{n-|w|-1}$ and $\tilde{l}(v) = wba^{n-|w|-1}$ with $a \neq b$ and $0 \leq |w| \leq n - 1$. Note that if |w| = 0, then w is a null string. Further, if |w| = n - 1, then both $b^{n-|w|-1}$ and $a^{n-|w|-1}$ are empty. We use $S_a(n-1)$, m) (respectively, $S_w(n - |w|, m)$) to denote the subgraph induced by the vertices with prefix a(respectively, prefix w) in their labels. When |w| =n-1, it is obvious that $S_w(1, m)$ is a complete graph K_m . If $l(v) = a^n$ then we call v an extreme vertex. There are exactly m extreme vertices in S(n, m). Since the label of an extreme vertex v is a^n , by definition, v has exactly m - 1 neighbors whose labels are of the form $a^{n-1}b$ with $b \neq a$. Every non-extreme vertex v with $l(v) = wab^{n-|w|-1}$ has exactly m neighbors whose labels are of the form $wba^{n-|w|-1}$ and $wab^{n-|w|-2}c$ while $c \neq b$. Let d(v) be the degree of vertex v. Thus, d(v) = m - 1 if v is a extreme vertex, and d(v) = m otherwise. Figure 2 depicts *S*(1, 3), *S*(2, 3) and *S*(3, 3).

(c) *S*(3, 3) Figure 2: Labeled Sierpiński graphs

For notational convenience, we refer to a color set $\{1, 2, ..., k\}$ as $c\{1, 2, ..., k\}$, and call a vertex with an empty color set as a *non-color vertex*.

3 2-rainbow Dominations on Sierpiński Graphs

In this section, we proceed by giving upper bounds of the 2-rainbow domination number of Sierpiński Graphs S(n, m) while $m \ge 3$. First, it is easy to check the following proposition.

Proposition 1 $\gamma_{rk}(K_m) = k$ when $k \le m$.

Since S(1, m) is isomorphic to K_m by definition, we have the following lemma.

Lemma 2 $\gamma_{rk}(S(1, m)) = k$ when $k \le m$ and $m \ge 3$.

We give algorithm A to provide a 2RDF of S(2, m) for $m \ge 3$.

Algorithm A
Input: a Sierpiński graph $S(2, m)$ for $m \ge 3$
Output: A 2RDF of $S(2, m)$
Step 1. $D \leftarrow \emptyset$
Step 2. $D \leftarrow D \cup jj$ with $c\{1\}$ for $j \in \{1, 2,, n\}$
m
Step 3. D \leftarrow D \cup <i>j</i> 1 with <i>c</i> {2} for <i>j</i> \in {2, 3,,
$m\}$

Lemma 3 $\gamma_{r2}(S(2, m)) \le 2m - 1$ for $m \ge 3$.

Proof. To achieve this upper bound, we give algorithm A to produce all 2RDFs of S(2, m) for m ≥ 3 . There are m S(1, m) in a S(2, m), and S(1, m) is isomorphic to K_m . By algorithm A, there are a vertex *jj* with $c\{1\}$ and a vertex *j*1 with $c\{2\}$ in each $S_j(1, m)$ for $j \in \{2, 3, ..., m\}$, thus all non-color vertices are dominated beside the ones of $S_1(1, m)$. In $S_1(1, m)$, the non-color vertex 1*j* can be dominated by the vertex 11 with $c\{1\}$ and the vertex *j*1 with $c\{2\}$ for $j \in \{2, 3, ..., m\}$. Finally, all non-color vertices are dominated and the weight of 2RDF of S(2, m) is 2m - 1.

For example, Figure 2(a) and 2(b) shows 2-rainbow dominations of S(2, 3) and S(2, 5), respectively.

Then, we give algorithm B to provide a 2RDF of S(3, m) for $m \ge 3$.

Algorithm B

Input: a Sierpiński graph S(3, m) for $m \ge 3$ Output: A 2RDF of S(3, m)Step 1. $D \leftarrow \emptyset$ Step 2. for $i \leftarrow 1$ to mStep 3.1. if m is odd then

Step 3.2.	$x \leftarrow (i + \lfloor m/2 \rfloor - 1) \% m + 1$
Step 3.3.	$y \leftarrow (i + \lfloor m/2 \rfloor) \% m + 1$
Step 3.4.	else
Step 3.5.	$x \leftarrow i \% m + 1$
Step 3.6.	$y \leftarrow (i + m - 2) \% m + 1$
Step 3.7.	end if
Step 4.1.	for $j \leftarrow 1$ to m
Step 4.2.	if $j \neq x$ then $D \leftarrow D \cup ijx$ with $c\{1\}$
Step 4.3.	end for
Step 5.1.	for $j \leftarrow 1$ to m
Step 5.2.	if $j \neq x$ and $j \neq y$ then $D \leftarrow D \cup ijy$
	with c {2}
Step 5.3.	end for
Step 6.	$D \leftarrow D \cup ixx \text{ with } c\{2\}$
Step 7.	end for

(a) a 2RDF of S(2, 3) (b) a 2RDF of S(2, 5)Figure 3: 2-rainbow dominations of S(2, 3) and S(2, 5). The vertex with $c\{1\}$ and the vertex with $c\{2\}$ are filled with slashes and backslashes, respectively.

Lemma 4 $\gamma_{r2}(S(3, m)) \le 2m^2 - 2m$ for $m \ge 3$.

Proof. There are $m \times m S(1, m)$ in a S(3, m). Case 1: *m* is odd.

In this case, let $i \in \{1, 2, ..., m\}$, $x = (i + \lfloor m/2 \rfloor - 1)$ % m + 1, $y = (i + \lfloor m/2 \rfloor)$ % m + 1 and $j \in \{1, 2, ..., m\} - \{x\}$. By algorithm B, there are a vertex *ijx* with $c\{1\}$ and a vertex *ijy* with $c\{2\}$ in each $S_{ij}(1, m)$, thus all non-color vertices in $S_{ij}(1, m)$ are dominated. In $S_{ix}(1, m)$, each non-color vertex *ixj* is dominated by the vertex *ixx* with $c\{2\}$ and the vertex *ijx* with $c\{1\}$. In $S_{iy}(1, m)$, each non-color vertex *iyj* is dominated by the vertex *ixx* with $c\{2\}$ and the vertex *ijx* is dominated by the vertex *ixx* with $c\{1\}$ and the vertex *izy* with $c\{2\}$ while $z \in \{1, 2, ..., m\} - \{x, y\}$, and the non-color vertex *iyy* is dominated by the vertex *ixx* with $c\{1\}$ and the vertex *ixx* with $c\{2\}$.

Case 2: *m* is even.

In this case, let $i \in \{1, 2, ..., m\}$, x = i % m + 1, y = (i + m - 2) % m + 1 and $j \in \{1, 2, ..., m\} - \{x\}$. Since the remaining parts of algorithm B are the same in case 1 and case 2, the proof can be verified by a similar way of above case.

Finally, all non-color vertices are dominated in both cases and the weight of 2RDF of S(3, m) is

 $2m^2 - 2m$. For example, Figure 3(a) and 3(b) shows 2-rainbow dominations of S(3, 3) and S(3, 4), respectively.

(b) a 2RDF of S(3, 4)

Figure 4: 2-rainbow dominations of S(3, 3) and S(3, 4). The vertex with $c\{1\}$ and the vertex with $c\{2\}$ are filled with slashes and backslashes, respectively.

Lemma 5 $\gamma_{rk}(S(n, m)) \leq m \times \gamma_{rk}(S(n-1, m)).$

Proof. By the definition of Sierpiński graph, there are m S(n-1, m) in a S(n, m). We can apply a kRDF with $\gamma_{r2}(S(n-1, m))$ on each S(n-1, m) to obtain a kRDF with $\omega(f) = m \times \gamma_{rk}(S(n-1, m))$, which will be the upper bound of $\gamma_{rk}(S(n, m))$, on S(n, m).

By applying Lemma 5 recursively on Lemma 4, we have the following lemma.

Lemma 6 $\gamma_{r2}(S(n, m)) \le 2(m-1)m^{n-2}$ for $n \ge 4$.

We summarize Lemmas 2, 3, 4 and 6 as follows.

Theorem 7 Some upper bounds of $\gamma_{r2}(S(n, m))$ are shown as below, which $m \ge 3$.

$$\gamma_{r2}(S(n, m)) \leq \begin{cases} 2, & \text{if } n = 1, \\ 2m - 1, & \text{if } n = 2, \\ 2(m - 1)m^{n-2}, & \text{otherwise} \end{cases}$$

4 3-rainbow Dominations on Sierpiński Graphs

In this section, we proceed by giving upper bounds of the 3-rainbow domination number of Sierpiński Graphs S(n, m) while $m \ge 3$. First, We give algorithm C to provide a 3RDF of S(2, m) for $m \ge 3$.

Algorithm C

Input: a Sierpiński graph S(2, m) for $m \ge 3$ Output: A 3RDF of S(2, m)Step 1. $D \leftarrow \emptyset$ Step 2. $D \leftarrow D \cup 11$ with $c\{1\} \cup 32$ with $c\{1\}$ Step 3. $D \leftarrow D \cup j2$ with $c\{1\}$ for $j \in \{4, 5, ..., m\}$ Step 4. $D \leftarrow D \cup 13$ with $c\{2\} \cup 22$ with $c\{2\}$ Step 5. $D \leftarrow D \cup j3$ with $c\{2\}$ for $j \in \{4, 5, ..., m\}$ Step 6. $D \leftarrow D \cup 21$ with $c\{3\} \cup 33$ with $c\{3\}$ Step 7. $D \leftarrow D \cup j1$ with $c\{3\}$ for $j \in \{4, 5, ..., m\}$

Proof. There are m S(1, m) in a S(2, m). When m =3, it is easy to verify that algorithm C provide a 3RDF of S(2, 3) by Figure 5 (a). When $m \ge 4$, there are a vertex i^2 with $c\{1\}$, a vertex i^3 with $c\{2\}$ and a vertex *j*1 with $c\{3\}$ in each $S_i(1, m)$ for $j \in \{4, 5, ..., m\}$, thus all non-color vertices are dominated beside the ones of $S_1(1, m)$, $S_2(1, m)$ and $S_3(1, m)$. In $S_1(1, m)$, the non-color vertex 12 can be dominated by the vertex 11 with $c\{1\}$, the vertex 13 with c{2} and the vertex 21 with c{3}, and the other non-color vertex 1j can be dominated by the vertex 11 with $c\{1\}$, the vertex 13 with c{2} and the vertex j1 with c{3} while $j \in$ $\{4, 5, \dots, m\}$. The non-color vertices in $S_2(1, m)$ and $S_3(1, m)$ can be dominated by the similar way. Finally, all non-color vertices are dominated and the weight of 3RDF of S(2, m) is 3m - 3.

For example, Figure 5(a) and 5(b) shows 2-rainbow dominations of S(2, 3) and S(2, 6), respectively.

By applying Lemma 5 recursively on Lemma 8, we have the following lemma.

Lemma 9 $\gamma_{r3}(S(n, m)) \le 3(m-1)m^{n-2}$ for $n \ge 3$.

We summarize Lemmas 2, 8 and 9 as follows.

Theorem 10 Some upper bounds of $\gamma_{r3}(S(n, m))$ are shown as below, which $m \ge 3$.

$$\gamma_{r3}(S(n,m)) \leq \begin{cases} 3, & \text{if } n = 1, \\ 3(m-1)m^{n-2}, & \text{otherwise} \end{cases}$$

Figure 5: 3-rainbow dominations of S(2, 3) and S(2, 6). The vertex with $c\{1\}$, the vertex with $c\{2\}$ and the vertex with $c\{3\}$ are filled with slashes, backslashes and vertical line, respectively.

5 Conclusion

In this paper, we study 2 and 3-rainbow domination on Sierpiński Graphs. Then, we design some algorithms to produce 2RDFs and 3RDFs of S(n, m), and the weights of these rainbow domination functions are upper bounds on $\gamma_{rk}(S(n, m))$. As a future work, we will try to prove the lower bounds on $\gamma_{rk}(S(n, m))$.

References

- M. Ali, M. T. Rahim, M. Zeb, and G. Ali, On 2-rainbow domination of some families of graphs, International Journal of Mathematics and Soft Computing 1 (2011) 47-53.
- [2] B. Brešar, M.A. Henning, D.F. Rall, Paired-domination of Cartesian products of graphs and rainbow domination, Electronic

Notes in Discrete Mathematics 22 (2005) 233-237.

- [3] B. Brešar, M.A. Henning, D.F. Rall, Rainbow domination in graphs, Taiwanese Journal of Mathematics 12 (1) (2008) 213-225.
- [4] B. Brešar, T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Applied Mathematics 155 (2007) 2394-2400.
- [5] G.J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Applied Mathematics 158 (2010) 8-12.
- [6] S. Fujita, M. Furuya, C. Magnant, k-Rainbow domatic numbers, Discrete Applied Mathematics 160 (2012) 1104-1113.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork, 1998.
- [8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, NewYork, 1998.
- [9] A.M. Hinz, S. Klavžar, U. Milutinović, D. Parisse, C. Petr, Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence. Eur. J. Combin. 26, 693-708 (2005).
- [10] S. Klavžar, U. Milutinović, Graphs S(n, k) and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47, 95-104 (1997).
- [11] D. Meierling, S.M. Sheikholeslami, L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph Applied Mathematics Letters, 24(10), 1758-1761 (2011).
- [12] K.J. Pai, Y.C. Jhou, Upper Bounds on the 2-rainbow Domination Number of Grids, Proceeding of the 29th Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2012), April 27 - 28, Taipei, Taiwan, (2012) pp. 69-72.
- [13] K.J. Pai, R.Y. Wu, T.W. Liu, 2-rainbow Domination on Cylinders and Tori, Proceeding of the 30th Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2013), April 26 - 27, Hualien, Taiwan, (2013) pp. 163-170.
- [14] D. Romik, Shortest paths in the Tower of Hanoi graph and finite automata. SIAM Journal on Discrete Math. 20, 610-622 (2006).

- [15] T.K. Šumenjak, D.F. Rall, A. Tepeh, Rainbow domination in the lexicographic product of graphs, Combinatorics (2012), arXiv:1210.0514.
- [16] C.L. Tong, X.H. Lin, Y.S. Yang, M.Q. Lou, 2-rainbow domination of generalized Petersen graphs P(n, 2), Discrete Applied Mathematics 157 (2009) 1932-1937.
- [17] Y. Wu, N. J. Rad, Bounds on the 2-rainbow domination number of graphs, Graphs and Combinatorics, DOI 10.1007/s00373-012-1158-y.
- [18] Y. Wu and H. Xing, Note on 2-rainbow domination and Roman domination in graphs, Applied Math. Letter 23 (2010) 706-709.
- [19] G. Xu, 2-rainbow domination of generalized Petersen graphs P(n, 3), Discrete Applied Mathematics 157 (2009) 2570-2573.