
Path Consistency with Minimum Edges

Chia-Jung Chang
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan

Abstract

The PC (Path Consistency) algorithm can be
used to infer an undirected graph where the nodes
represent the measured variables and the edges in-
dicate the causality between these variables. How-
ever, its result depends on the order of the pairs
of variables examined. To avoid this problem, we
model this problem as an optimization problem and
call it the PCME (Path Consistency with Mini-
mum Edges) problem. The input of the PCME
problem contains an initial undirected graph and a
set of removal rules. Each rule can explain the re-
lationship, represented as an edge, between a pair
of nodes by some other specific path(s) connecting
the two nodes. One edge can be removed if the re-
lationship it represents is explained by a removal
rule and the existence of the specific path(s). The
problem is to find the minimum number of edges
explaining all the edges in the initial undirected
graph. We prove the NP-hardness of the problem
and give a polynomial-time greedy algorithm with
the best possible approximation ratio, unless NP
has slightly super-polynomial time algorithms.

1 Introduction

A causal graph is a directed or an undirected
graph where nodes represent measured variables
and edges indicate the causality between pairs
of variables. The PC (Path Consistency) algo-
rithm [6] is for inferring a causal graph according
to the conditional independence relations among
measured variables. It is based on the idea that
the high depencency between two nodes might be
due to the direct cause-and-effect relationship, or
the indirect relationship (a affects b and b affects c,
but a and c also have high correlation). The PC al-
gorithm is to remove the indirect relationships and
to build a graph with only direct relationships. It
starts from an undirected complete graph. Only
the edges with high correlation (or mutual infor-
mation) endpoints are maintained. One edge can

be removed if there are alternative path(s) and
the two endpoints are conditionally independent.
In the last step, it assigns directions for some re-
maining edges according to the removed edges. It
has been applied to infer gene regulatory networks
using microarray expression data [5, 9].

In this article, we only consider the undirected
part of the algorithm, which is the removal of the
unwanted edges. Since the removal of one edge
might depend on the existence of other edges, the
inferred graph is affected by the order of the pairs
of variables tested for the conditional indepen-
dence. Steck [7] introduced the idea of ambigu-
ous regions, which indicate maximal sets of inter-
dependent edges. In the Hugin tool implemen-
tation [4], the ambiguities can be solved by user
interaction, which requires prerequisite knowledge
for the underlying structure. Abellán et al. [1] also
proposed an algorithm that removes the edges fol-
lowing an order given by a Bayesian score. How-
ever, in previous works, the problem is not well
modelled.

According to the Occam’s razor theory, the
graph with the minimum number of edges tends to
be correct. Therefore, we model the original prob-
lem as an optimization problem. We say that the
high depencency between two nodes can be ex-
plained by a graph if there is an edge between
them or there are alternative path(s) with cer-
tain criteria (defined later). The problem becomes
finding the graph with the minimum number of
edges that can explain the depencency for all pairs
of variables. We prove it to be an NP-hard prob-
lem and give a log |E| approximation algorithm,
where |E| is the number of edges in the zero order
PC graph (explained later). We also prove the ap-
proximation ratio is the best possible unless NP
has slightly super-polynomial time algorithms.

In the following, we introduce the PC algorithm
and its problem of inter-dependency. Then, we
give a formal definition of the PCME (Path Con-
sistency with Minimum Edges) problem and its
pre-processing steps. In Section 2, we shrink the
solution space of the PCME problem and prove

The 31st Workshop on Combinatorial Mathematics and Computation Theory

208

its NP-hardness by reducing the Set Cover prob-
lem [3] to it. In Section 3, we transform the PCME
problem to another problem similar to the Set
Cover problem by labelling the edges according to
their roles in the removal rules and give a greedy
algorithm to solve it. In Section 4, we prove the
approximation ratio of the greedy algorithm. The
discussion and the conclusion are in Section 5 and
Section 6, respectively.

The PC Algorithm

The PC algorithm requires a method to cal-
culate the conditional independence of two vari-
ables on a small set (usually one or two) of other
variables. For example, the partial correlation co-
efficient and the conditional mutual information
can be used to measure the conditional indepen-
dence [5, 9]. A threshold is then set to tell if two
nodes are conditional independent or not. The
choice of the measurement of conditional inde-
pendence or the threshold is independent of our
problem. We denote the CI (conditional inde-
pendence) of two variables i and j on a set S as
CI(i, j|S) = {T,F}.

There are a little bit difference for the steps of
the PC algorithm between different applications
and we adopted the steps in [9]. It starts from
a complete undirected graph Gc = (V,E) with
nodes V representing the measured variables and
edges E representing the causalities. Then,

1. Set n = 0

2. For each edge e(i, j) ∈ E, let Adj(i, j) =
{k|e(i, k) ∈ E and e(j, k) ∈ E}. If there ex-
ists a set S ⊆ Adj(i, j) satisfying |S| = n and
CI(i, j|S) = T, remove e(i, j) from E.

3. Set n = n+ 1

4. Repeat step 2 and 3 until there is no edge
e(i, j) ∈ E with |Adj(i, j)| ≥ n

A zero-order PC graph is the graph obtained
after the iteration of n = 0. It is a graph where an
edge indicates the node-node dependency (corre-
lation or mutual information) is higher than some
threshold. Usually the iteration stops after n = 2
and the algorithm results in a second-order PC
graph; therefore, in many applications, the itera-
tion time is assigned in the first place [5, 9].

Sometimes the removal of one edge may depend
on the existence of another removable edge. For
example, assume Figure 1(a) is a zero-order PC
graph and CI(1, 2|3) = T , CI(1, 4|3) = T and

CI(1, 3|2) = T . The removal of e(1, 2) depends on
the existence of e(1, 3) and e(2, 3), while the re-
moval of e(1, 3) depends on the existence of e(1, 2)
and e(2, 3). We say that the edges e(1, 2) and
e(1, 3) are inter-dependent on each other.

Figure 1: An example of inter-dependency

The order of testing CI for the pairs of nodes
is thus important. If we test e(1, 3) first, we will
remove e(1, 3) since 2 ∈ Adj(1, 3) and CI(1, 3|2) =
T . Both e(1, 2) and e(1, 4) are irremovable after
e(1, 3) is removed because Adj(1, 2) and Adj(1, 4)
are then empty. The algorithm will end up with
Figure 1(b). On the other hand, if we test e(1, 2)
first and remove it, we will find e(1, 3) is irremov-
able, and e(1, 4) is removable. Now the algorithm
results in Figure 1(c). We regard it as a better
solution because it uses fewer edges to explain all
the edges of the zero-order PC graph. We model
the problem as an optimization problem.

The Path Consistency with Minimum
Edges Problem

The idea is to list all possible rules for removing
edges and to choose the minimum number of edges
to remove all the other edges using these rules. We
name the pair of the initial undirected graph (the
zero-order PC graph) and the set of rules the PC
region.

Definition 1. The PC Region

A PC region has the form (G,R) whereG = (V,E)
is an undirected graph and R is a set of what we
call as “removal rules”. A removal rule has the
form ((i, j), S) where

1. i, j ∈ V and e(i, j) ∈ E,

2. S ⊆ Adj(i, j) = {k|e(i, k) ∈ E and e(j, k) ∈
E} and |S| ≥ 1,

3. CI(i, j|S) = T

A removal rule ((i, j), S) means that when all the
edges from i to S and from j to S exist, e(i, j) is
removable.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

209

We define the order of a removal rule as its |S|.
For a first order removal rule ((i, j), k), the two
edges e(i, k) and e(j, k) should be maintained to
remove e(i, j). We also define the order of a PC
region as the maximum order among its removal
rules. The order is a constant (i.e. 1 or 2) in most
applications. Figure 2 gives an illustration of a
first order PC region.

Figure 2: An example of a first order PC region

For a rule ((i, j), S), we name an edge with one
endpoint in S and the other endpoint in {i, j}
as the “explanatory edges” and name the edge
e(i, j) as the “dependent edge”, because the ob-
served dependency between nodes i and j can be
explained by the rule and the existence of the ex-
planatory edges and e(i, j) is thus removable. Sim-
ply put, the PCME problem is to find a minimum
set of edges which can explain the relationships
for all edges in the original graph, either by the
selected edges themselves or by their explanatory
edges.

Problem 1. The PCME Problem

Given a PC region (G,R), find the minimum set
of edges Emin ⊆ E such that for all e ∈ E, either
e ∈ Emin or there is a rule r ∈ R such that e is its
dependent edge and all its explanatory edges are
in Emin.

Detecting the PC Region

It takes polynomial time to detect the PC re-
gion with a constant order. Given the measure-
ment of multiple variables, we can take the follow-
ing steps to detect the PC region (G,R):

1. Find the zero-order PC graph G0 with the PC
algorithm and let G = G0.

2. Set n = 1 and the removing rules R = {}.

3. For each e(i, j) ∈ E, let Adj(i, j) =
{k|e(i, k) ∈ E and e(j, k) ∈ E}.

4. For each e(i, j) ∈ E, find all sets S ⊆ Adj(i, j)
satisfying |S| = n and CI(i, j|S) = T. Join
the rule ((i, j), S) to R for each S. Then set
Adj(i, j) = Adj(i, j)−

⋃
S.

5. Set n = n+ 1.

6. Repeat the steps 4 and 5 until there is no
e(i, j) with |Adj(i, j)| ≥ n or n reaches the
threshold.

The threshold of n equals the order of the PC
region. The PC region produced by this process
is the input of the original PCME problem.

2 NP-hardness of the PCME Prob-
lem

Before proving its NP-hardness, we first shrink
the solution space by labelling the edges in E with
four categories. The categories are important for
both the proof of its NP-hardness and the greedy
algorithm. We define the categories according the
roles of the edges in the removal rules.

Shrinking the Solution Space by La-
belling the Edges

The first category E1 contains the edges that
don’t appear as dependent edges in any rules.
They must be maintained because there is no rule
to remove them. The edges e(2, 5), e(2, 6), e(3, 4)
and e(3, 5) in Figure 2 are in E1. The second
category E2 contains the edges that only appear
as dependent edges and at least one of their re-
moval rules’ explanatory edges are all in E1. Since
their explanatory edges are maintained, the con-
nection of the edges have been explained. They
should be removed directly because the removal
of no edge depends on them. The edge e(5, 6) in
Figure 2 is in E2. The third category E3 con-
tains the edges appear as both explanatory and
dependent edges and at least one of their rules’
explanatory edges are all in E1. The relationships
of the edges have been explained as in E2, but
since they are the explanatory edges of some other
edges, the existence of them can explain and may
remove their dependent edges. The edge e(2, 3)
in Figure 2 is in E3. The edges left are in the
fourth category E4. The edges e(1, 2), e(1, 3)
and e(1, 4) in Figure 2 are in E4. It is trivial that
it takes linear time to label the edges.

In a PC region, the selection of the edges in E1

and E2 is certain. The optimization of the PCME

The 31st Workshop on Combinatorial Mathematics and Computation Theory

210

problem only depends on the selection of the edges
in E3 and E4, so the solution space can be limited
to the union of E3 and E4.

Problem 2. The Stage 2 PCME Problem
Given the labelled edges of the original PCME
problem, the new problem is to find the minimum
number of edges Emin ⊆ E3 +E4 such that for all
e ∈ E4, either e ∈ Emin or there is a rule r ∈ R
such that e is its dependent edge and all its ex-
planatory edges are in Emin + E1.

The solution of the original PCME problem is
the union of the solution of the stage 2 PCME
problem and E1. From now on, the solution space
and the solution follow the definition of the stage
2 PCME problem.

Proof of NP-hardness

In this subsection, we prove that the Set Cover
problem [3] can be reduced to the PCME prob-
lem. Since the Set Cover problem is NP-Complete,
the PCME problem is NP-hard.

Definition 2. The Set Cover Problem
Given a universe U of n element {1, ..., n} and m
covering sets of elements CS = {s1, ..., sm} whose
union is U , find a minimum subset of CS whose
union is also U .

Figure 3 gives an example of the set cover prob-
lem, in which U = {1, ..., 5} and CS = {a, b, c, d}.
We can choose the sets b and c to cover the uni-
verse {1...5}.

Figure 3: (a) An example of the set cover problem
(b) The transformation of the set cover problem to
the PCME problem (without showing the removal
rules). Only the selection of the dash lines should
be considered.

Given the universe of n elements U = {1...n}
and the collection of m sets CS = {s1...sm}, the
idea is to construct a PC region (G,R) and to map
the solution of its PCME problem to the solution
of the set cover problem.

G starts with a centroid node vc and R starts
with an empty set. Then,

1. Add m nodes corresponding to the m sets
{s1...sm}. (We call them the set nodes.)

2. Add edges from vc to all the set nodes (the
set edges).

3. Add a node vo and add edges from vo to vc
and to the set nodes.

4. Add rules ((vc, si), vo) for all the set nodes si.

5. Add n nodes corresponding to the n elements
{1...n} (the element nodes).

6. Add edges from node vc to all the element
nodes (the element edges).

7. For each covering set si and for each element
k ∈ si , add the edge e(si, k) and the rule
((vc, k), si).

The edges added in step 3 and 7 belong to
E1 because they are not the dependent edges of
any removal rules. They must be selected, so we
only consider the set edges and the element edges,
which belong to E3 and E4, respectively. Fig-
ure 3(b) illustrates the transformation of the set
cover problem in Figure 3(a).

Lemma 1. Any solution of the set cover problem
can be transformed to a solution of its correspond-
ing PCME problem with the same size.

Proof. Given a solution of the set cover problem,
we can select the set edges corresponding to the
sets in the solution. All the other set edges and the
element edges are removed. Any set edge e(vc, si)
can be removed because it belongs to E3. All the
element edges can be removed because any ele-
ment k is covered by some set si in the solution and
the element edge e(vc, k) can thus be explained by
the rule ((vc, k), si) and the existence of e(si, k),
which belongs to E1, and e(vc, si), which is se-
lected as described.

Lemma 2. Any solution of the constructed
PCME problem can be transformed to a solution
of the original set cover problem with fewer or the
same size.

Proof. We first prove that for any solution of this
PCME problem, we can find another solution us-
ing only the set edges and having fewer or equal
number of edges. When there is still element edges
in the solution, pick one of them, say e(vc, k).
Since the element k is in some set, say si, we can
replace e(vc, k) with e(vc, si) as another solution.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

211

The element edges e(vc, k) can be explained by
the rule ((vc, k), si) and the existence of e(si, k)
and e(vc, si).

Since there are no element edges in the solution,
every element edge e(vc, k) should be explained
by at least one rule ((vc, k), si) and the existence
of the set edge e(vc, si). This means k ∈ si by
definition and we choose si into the solution of
the set cover problem. Since every k is covered,
the collection of the sets corresponding to the set
edges is a solution of the set cover problem.

It is trivial that all the reduction and the trans-
formation steps run in polynomial time. The num-
ber of the selected E3 edges for the solution of this
PCME problem is exactly the same as the number
of sets for the solution of the set cover problem.
We thus prove that the PCME problem is NP-
hard.

Theorem 3. The PCME problem is an NP-hard
problem

3 A Greedy Algorithm

In Section 2, we mention that the solution space
of the PCME problem is limited to the edges in
E3 and E4. In Figure 4, we illustrate the stage 2
PCME problem of Figure 2.

Figure 4: The transformation of the PCME prob-
lem in Figure 2

The nodes in the top layer represent the solu-
tion space, the edges in E3 and E4. The nodes
in the down layer represent the edges in E4, the
relationships of which are still not explained. The
rectangles in the middle layer represent the re-
moval rules with dependent edges in E4. Each
removal rule rectangle has links to the top nodes
representing its explanatory edges and a link to
the down node representing its dependent edge.

There are also links between the top nodes and the
down nodes when they represent the same edges.

A down node can be covered by the selection of
a top node with a link to it, or by the activation
of a rectangle with a link to it. A rectangle is
activated iff all top nodes with links to it are all
selected. For example, to cover the down node
e1,2, one can select the top node e1,2 or both the
top nodes e2,3 and e1,3.

There are rectangles connecting to only one top
nodes; because its other explanatory edges are in
E1 and have already been selected. For example,
the rule ((1, 4), 3) has only one top node e1,3 be-
cause its explanatory edge e3,4 is in E1. The edges
in E3 are in the top layer but not in the down
layer because they have been explained by their
explanatory edges. For example, the edge e2,3 has
been explained because its explanatory edges e2,5
and e3,5 of the rule ((2, 3), 5) are in E1.

There are removal rules not in the rectangles.
The explanatory edges of these rules are all in
E1 and the rules are thus activated; therefore, we
don’t have to put them in the illustration.

Problem 3. An Alternative Description of the
Stage 2 PCME Problem

The PCME problem is to select the minimum
number of the top nodes to cover all the down
nodes, either by the selection of the top node rep-
resenting the same edge, or by activating the rect-
angle that has a link to the down node. A rectan-
gle is activated iff all the top nodes with links to
it are selected.

We propose a greedy algorithm in Algorithm 1.

Algorithm 1 A Greedy Algorithm

1: Set scores for the top nodes as 1/(the number
of extra down nodes it can cover)

2: while Not all down nodes are covered do
3: Select one top node vmin with the mini-

mum score.
4: Delete vmin, the explained down nodes and

the rectangles connecting to them.
5: Adjust score for the top nodes.
6: Add vmin to the solution
7: end while

Taking Figure 4 for example, in the beginning,
the score of e1,2 is 1 because the selection of it only
cover its corresponding down node. It can cover
e1,3 only after the selection of e2,3. The algorithm
selects e1,3 into its solution because its score is
minimum:1/2. It can cover e1,3 and e1,4.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

212

For each iteration of the greedy algorithm, the
score of a top node may increase because some
down nodes have been explained. For example,
the score of e1,4 rises from 1/2 to ∞ after the se-
lection of e1,3. The score of a top node may also
decrease because all the other explanatory edges
are selected for some rectangles. For example, the
score of e2,3 drops from ∞ to 1 because it can
explain e1,2 with the rule ((1, 2), 3) after the selec-
tion of e1,3. We give an illustration in Figure 5(a)
after the first iteration .

Figure 5: (a)The data structure after the selection
of e1,3 (b)The result of the greedy algorithm on
Figure 2

The union of the edges in the solution of the
greedy algorithm and the edges in E1 is the final
solution of the PCME problem. Figure 5 is the
result of the labelling and the greedy algorithm
for the PCME problem in Figure 2.

Complexity

Let |Eamb| = |E3 + E4| and |Ramb| be the
number of removal rules having their dependent
edges in E4 (i.e. the rectangles). The top nodes
can be stored in a heap map data structure, so
each operation for extracting the minimum one
or for adjusting the score of one node runs in
O(log |Eamb|) time. In an iteration, let R be the
rectangles to which the deleted top node vmin have
links. The number of top nodes to be adjusted is
O(|R|) since we assume that the order of the PC
region is constant. In addition, the total number
of links between the top nodes and the rectangles
is in O(|Ramb|) due to the same reason. Since
the links between vmin and R are used only for
this iteration, the total number of operations is in
O(|Ramb|). Therefore, the time complexity of the
greedy algorithm is in O(|Ramb| log |Eamb|).

4 Approximation

The proof of the approximation of the greedy
algorithm for the PCME problem is similar to that
for the set cover problem in [8], except the follow-
ing lemma.

Lemma 4. In Algorithm 1, there are always top
nodes that can cover at least one down node.

Proof. Each down node has a top node represent-
ing the same edge. Before all the down nodes
are covered, at least the top nodes correspond-
ing the uncovered down nodes can cover the down
nodes.

With this lemma, we can define the price of the
down nodes for the greedy algorithm as: 1/(the
number of the down nodes covered in the same it-
eration). The sum of the prices of all the down
nodes are thus equal to the number of selected
edges using the greedy algorithm, which we de-
note as Ngre. We denote the number of the se-
lected edges for the optimal solution as Nopt. It is
noted that the greedy algorithm always select the
top node minimizing the price for each individual
covered down node.

Theorem 5. The approximation ratio of the
greedy algorithm for the simplified PCME prob-
lem is ln |E4|.

Proof. We order the down nodes as the order of
the iterations they are covered. The ordered prices
are denoted as (C1, ..., C|E4|). In the iteration cov-
ering the k-th down node, there are more than
|E4| − k + 1 down nodes uncovered. We can al-
ways choose the Nopt top nodes of the optimal
solution to cover all the uncovered down nodes.
The price of the uncovered down nodes are thus
at most Nopt/(|E4|−k+1). Since Ck is minimum
in the iteration, Ck ≤ Nopt/(|E4| − k + 1).

Ngre =
∑|E4|

k=1 Ck ≤ Nopt

∑|E4|
k=1

1
k ≤ Nopt(ln |E4|+

1).
The proof is thus completed.

Theorem 6. ln |E4| is the best-possible approx-
imation ratio for the simplified PCME problem,
unless NP has slightly super-polynomial time al-
gorithms.

Proof. The proof is based on the inapproximabil-
ity of the set cover problem. The set cover prob-
lem with n elements has lnn approximation ra-
tio as its threshold, unless NP has slightly super-
polynomial time algorithms (e.g. nO(log log n)) [2].

The 31st Workshop on Combinatorial Mathematics and Computation Theory

213

The transformation in Section 3 can transform the
set cover problem to a PCME problem with n
edges labelled as E4. If we can find an algorithm
with approximation ratio better than ln |E4|, the
solution can be directly applied to the original set
cover problem. Since the sizes of the solutions of
both problems are the same and |E4| = n, we now
have an algorithm for the set cover problem with
approximation ratio better than lnn, which con-
tradicts the fact.

5 Discussion

The Ambiguous Regions

For the PC problem, the sets of connected inter-
dependent edges are called ambiguous regions [7].
The removal of one edge only depends on the
edges in the same ambiguous region. Therefore,
we can divide the original PCME problem into
un-intersected ambiguous regions.

Given a PC region (G,R), at first, we group
the removal rules in R by intersection of their
edges, including the explanatory and the depen-
dent edges. For each group, the union of the
edges of the removal rules is a connected undi-
rected graph. The pair of the graph and the re-
moval rules is a smaller PC region. We can solve
the PCME problem for each PC region separately.

There are edges not in any of the ambiguous
regions. The removal of no edge depends on them
and there is no rule to remove them. The combina-
tion of the solutions for all the ambiguous regions
and these irremovable edges is an undirected graph
that is the solution of the original PCME problem.

By splitting the PC region into smaller
ambiguous regions, we can improve the time
complexity of the greedy algorithm, which
is O(|Ramb| log(max(|Eamb|))) now, where
max(|Eamb|) is the maximum |Eamb| = |E3 + E4|
among all ambiguous regions. The approximation
ration is also better and is now lnmax(|E4|),
where max(|E4|) is the maximum |E4| among all
ambiguous regions.

The Edge Weights

In some applications, the edges have weights
on them, for example, the degree of independence.
One might ask to construct a graph to explain all
edges with the edges having the minimum sum of

weights. The original PCME problem is a special
case where the weights of all edges are the same.

We can also solve the weighted PCME problem
by adapting the greedy algorithm. We change the
score of a top node as (the edge weight)/(the orig-
inal score) and always select the top node with
minimum score into the solution. The proof of
its approximation ratio is almost the same, except
the price for each down node become (the weight
of selected top nodes)/(the number of down nodes
explained in the same iteration).

6 Conclusion

The result of the PC algorithm is affected by
the order of testing the pairs of variables. In this
article, we model the problem as an optimization
problem called the PCME problem. The prob-
lem is to find a graph with the minimum number
of edges that can explain the conditional depen-
dency for all pairs of nodes. We prove that it is
an NP-hard problem and give a polynomial time
greedy algorithm and prove its approximation ra-
tio, which is the best possible one, unless NP has
slightly super-polynomial time algorithms.

Acknowledgements

Chia-Jung Chang was supported in part by
NSC grants 100-2221-E-002-131-MY3 and 101-
2221-E-002-063-MY3. I would like to thank Pro-
fessor Kun-Mao Chao for his valuable advice.

References

[1] Joaqúın Abellán, Manuel Gómez-Olmedo, and
Serafn Moral. Some Variations on the PC Al-
gorithm. In Probabilistic Graphical Models,
pages 1–8, 2006.

[2] Uriel Feige. A Threshold of lnn for Ap-
proximating Set Cover. Journal of the ACM,
45(4):634–652, July 1998.

[3] Michael R. Garey and David S. Johnson. Com-
puters and Intractability. Freeman, New York,
1979.

[4] Anders L. Madsen, Michael Lang, Uffe B.
Kjrulff, and Frank Jensen. The Hugin Tool

The 31st Workshop on Combinatorial Mathematics and Computation Theory

214

for Learning Bayesian Networks. In In Pro-
ceedings of 7th European Conference on Sym-
bolic and Quantitative Approaches to Reason-
ing with Uncertainty, pages 594–605, 2003.

[5] Shigeru Saito and Katsuhisa Horimoto. Co-
expressed Gene Assessment Based on the Path
Consistency Algorithm: Operon Detention in
Escherichia Coli. In International Conference
on Systems, Man and Cybernetics, pages 4280–
4286. IEEE, October 2009.

[6] Peter Spirtes, Clark N. Glymour, and Richard
Scheines. Causation, Prediction, and Search.
MIT Press, second edition, 2000.

[7] H. Steck. Constraint-Based Structural Learn-
ing in Bayesian Networks using Finite Data
Sets. Ph.D. Thesis, Der Technischen Univer-
sität München, Munich, Germany, 2001.

[8] Vijay V. Vazirani. Approximation Algorithms.
Springer-Verlag, Berlin, 2001.

[9] Xiujun Zhang, Xing-Ming Zhao, Kun He,
Le Lu, Yongwei Cao, Jingdong Liu, Jin-Kao
Hao, Zhi-Ping Liu, and Luonan Chen. In-
ferring Gene Regulatory Networks from Gene
Expression Data by Path Consistency Algo-
rithm Based on Conditional Mutual Infor-
mation. Bioinformatics (Oxford, England),
28(1):98–104, January 2012.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

215

