Complexity of the contraction mapping principle with noises

Ying-Chi Lin

Gang-Jiun Fan*

Chun-Der Chang[†]

Ren-He Hsiao[‡]

Ching-Lueh Chang[§]

Abstract

Chang and Lyuu [1] show that given oracle access to a finite metric space (M, d) and a contraction mapping $f: M \to M$ on it, the fixed point of f can be found in an expected number of $O(\sqrt{|M|})$ queries. We show, for each positive function $\epsilon: \mathbb{Z}^+ \to \mathbb{R}$, that their result does not generalize to the case where the distance queries may have an arbitrary error in $[-\epsilon(|M|), \epsilon(|M|)]$.

1 Introduction

A set M endowed with a distance function $d: M \times M \to \mathbb{R}$ is a metric space if the following conditions hold for all $x, y, z \in M$:

- $d(x,y) \ge 0;$
- d(x, y) = 0 if and only if x = y;
- d(x, y) = d(y, x);
- $d(x,y) + d(y,z) \ge d(x,z)$.

If there exists $\rho \in (0,1)$ with $d(f(x), f(y)) \leq \rho d(x, y)$ for all $x, y \in M$, then we call f a contraction mapping on (M, d).

Theorem 1 ([2]). Any contraction mapping $f: M \to M$ on a complete metric space (M, d) has a unique fixed point.

Chang and Lyuu [1] show how to find the fixed of a contraction mapping in expected sublinear time.

[§]Department of Computer Science and Engineering & Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Taiwan. Email: clchang@saturn.yzu.edu.tw **Theorem 2** ([1]). Given oracle access to a finite metric space (M, d) and a contraction mapping $f: M \to M$ on it, the fixed point of f can be found with an expected number of $O(\sqrt{|M|})$ oracle queris, where each query may ask for d(x, y) or f(x) for any $x, y \in M$.

However, the sublinear-time algorithm of Chang and Lyuu needs precise distance queries. Using Chang and Lyuu's technique [1, Theorem 11], we show that their result does not generalize to the case of imprecise distance queries.

2 Hardness of finding fixed points with imprecise queries

Let A be an algorithm for finding a fixed point with only $q = q(n) \leq 0.1n$ queries even when each distance query has an arbitrary noise in $[-\epsilon(|M|), \epsilon(|M|)]$, where $\epsilon \colon \mathbb{Z}^+ \to \mathbb{R}$ is a positive function. Define $g \colon \{0, 1, \ldots, n-1\} \to \{0, 1, \ldots, n-1\}$ by

$$g(x) \stackrel{\text{def.}}{=} (x - 1 \mod n)$$

for $x \in \{0, 1, \dots, n-1\}$.

Denote by **1** the constant function with the value of 1. For $0 \le i \le n-1$,

$$X_i \stackrel{\text{def.}}{=} \begin{cases} 1, & \text{if one of the queries of } A^{g,1} \text{ is } i, \\ 0, & \text{otherwise.} \end{cases}$$

As A makes no more than q queries, $\sum_{i=0}^{n-1} X_i \leq q$. By the linearity of expectation, $\sum_{i=0}^{n-1} E[X_i] \leq q$. By the averaging argument, there exists $i^* \in \{0, 1, \ldots, n-1\}$ with $E[X_{i^*}] \leq 0.1$. This and X_{i^*} being a Bernoulli trial imply

 $\Pr\left[\text{ one of the queries of } A^{g,1} \text{ is } i^*\right] = \mathbb{E}[X_{i^*}] \le 0.1.$ (1)

For all
$$x, y \in \{0, 1, \dots, n-1\},$$

$$\hat{d}(x, y) \stackrel{\text{def.}}{=} 1 - \frac{\epsilon}{2^{(x-i^*) \mod n + (y-i^*) \mod n}},$$

where $(x-i^*) \mod n$ and $(y-i^*) \mod n$ are taken to be in $\{0, 1, \ldots, n-1\}$. The following lemma is immediate.

^{*}Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan. Email: s993323@mail.yzu.edu.tw

[†]Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan. Email: s993329@mail.yzu.edu.tw

[‡]Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan. Email: s1001527@mail.yzu.edu.tw

Lemma 1. For all $x, y \in \{0, 1, ..., n-1\}$,

$$1 - \epsilon \le \hat{d}(x, y) \le 1.$$

By inequality (1) and Lemma 1,

$$\Pr\left[\text{ one of the queries of } A^{g,\hat{d}+\delta} \text{ is } i^*\right] \leq 0.1$$

for some real-valued function δ with $\operatorname{Im}(\delta) \subseteq [-\epsilon, \epsilon]$.

For $x \in \{0, 1, \dots, n-1\}$,

$$h(x) \stackrel{\text{def.}}{=} \begin{cases} x - 1 \mod n, & \text{if } x \neq i^*, \\ i^*, & \text{otherwise} \end{cases}$$

Lemma 2. h is a contraction mapping on $(\{0, 1, \ldots, n-1\}, \hat{d}).$

As g and h differ only at i^* ,

$$\Pr\left[\text{ one of the queries of } A^{g,\hat{d}+\delta} \text{ is } i^*\right] \leq 0.1$$

implies

$$\Pr\left[\text{ one of the queries of } A^{h,\hat{d}+\delta} \text{ is } i^*\right] \le 0.1. (2)$$

By the assumption that A finds a fixed point whenever there is one even if each query has an arbitrary noise in $[-\epsilon, \epsilon]$,

$$\Pr\left[\text{ one of the queries of } A^{h,\hat{d}+\delta} \text{ is } i^*\right] = 1,$$

a contradiction to inequality (2).

The following theorem summarizes our findings.

Theorem 3. Let $\epsilon: \mathbb{Z}^+ \to \mathbb{R}$ be a positive function and A be any algorithm. Assume that for each finite metric space (M, d), contradiction mapping $f: M \to M$ on (M, d) and each function $\delta: M \times$ $M \to \mathbb{R}$ with $\operatorname{Im}[\delta] \subseteq [-\epsilon(|M|), \epsilon(|M|)]$, $A^{f,d+\delta}$ finds the fixed point of f. Then the worst-case (over all f, d and δ) expected (over the random coin tosses of A) query complexity of A is $\Omega(|M|)$.

Acknowledgments

Ching-Lueh Chang is supported in part by the National Science Council under grant NSC101-2221-E-155-015-MY2 and the Ministry of Economic Affairs under grant 102-E0616.

References

- C.-L. Chang and Y.-D. Lyuu. Optimal bounds on finding fixed points of contraction mappings. *Theoretical Computer Science*, 411(16– 18):1742–1749, 2010.
- [2] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.