A short note on finding the limit of a sequence computed by a DFA *

Ren-He Hsiao, Mu-Jung Tsai and Ching-Lueh Chang Department of Computer Science and Engineering (all authors) Innovation Center for Big Data and Digital Convergence (Ching-Lueh Chang) Yuan Ze University, Taoyuan, Taiwan {s1001527, s1003348}@mail.yzu.edu.tw, clchang@saturn.yzu.edu.tw

Abstract

We prove a folklore result regarding the limit of any sequence computed by a deterministic finite automaton. We do not know of the result, albeit folklore, being proven elsewhere.

1 Introduction

The Bolzano-Weierstrass theorem states that every bounded sequence in a finite-dimensional Euclidean space has a converging subsequence [1]. In particular, every bounded sequence of real numbers has an accumulation point. We are interested in finding an accumulation point (or the limit if it exists) of a sequence computed by a machine. It is folklore that given a deterministic finite automaton (DFA) M with outputs, $\lim_{n\to\infty} M(1^n)$ an accumulation point of the exists and can be found in linear time, where $M(1^n)$ is interpreted as a sequence of digits after the radix point and thus $M(1^n) \in [0,1]$ for each $n \in \mathbb{Z}^+$. This short note presents a complete proof, which we do not find elsewhere, of this folklore result.

A DFA with outputs is a finite state machine with an initial state and several directed arrows between states. Each directed arrow is labeled with a character. When a DFA gets an input, it will read one character at a time and follow the arrow labeled with that character until the input is exhausted. We can also assign some output to each arrow of a DFA. So, when going through an arrow, the DFA outputs.

2 Finding limits of sequences computed by DFAs

This short note proves the following folklore theorem, for which we do not know of a written proof elsewhere.

Theorem 1. Given a deterministic finite automaton (DFA) M with at most one output character assigned to each arrow,

 $lim M(1^n)$

exists and can be found in time linear in the number of states of M, where $M(1^n)$ is interpreted as a sequence of digits after the radix point and thus $M(1^n) \in [0,1]$ for each $n \in \mathbb{Z}^+$. **Proof.** Write m for the number of states of M. By the pigeonhole principle, there exist positive integers h, $k \le m + 1$ such that 1^h and 1^{h+k} lead M to the same state, say q. Denote by s the output of M on 1^k , assuming that M starts from the state q. Now, for $t \in \mathbb{Z}^+$, $M(1^{h+kt})$ equals $M(1^h)$ concatenated with t copies of s. Therefore,

 $\lim M(1^{h+kt}) = 0.M(1^{h})ss...,$

where the $\vec{strings}$ in the right-hand side above are concatenated by juxtaposition. This implies

 $\lim_{n \to \infty} M(1^n) = 0. M(1^h) ss ...,$

because $M_{(1^{q})}^{n}$ is a substring of $M(1^{r})$ whenever $q \leq r$.

To find positive integers h, $k \le m + 1$ such that 1^{h} and 1^{h+k} lead M to the same state, it suffices to simulate M on 1^{m+1} until a state is repeated. Once h and k are determined, it is easy to find s in O(m) time.

We propose the following question: Is it true that given a deterministic pushdown automaton M with outputs and $\epsilon > 0$, an accumulation point of $\{M(1^n)\}_{n=0}^{\infty}$ can be approximated to within an additive error of ϵ ?

3 Conclusions

We provide a proof for the folklore result that, given a DFA M with outputs,

$\lim M(1^n)$

exists and can be found in time linear in the number of states of M. We are interested in whether a similar result holds when M is a deterministic pushdown automaton instead.

Acknowledgments

Ching-Lueh Chang is supported in part by the National Science Council under grant

NSC101-2221-E-155-015-MY2 and the Ministry of Economic Affairs under grant 102-E0616.

References

[1] W. Rudin. *Principles of Mathematical Analysis*. McGraw--Hill, 3rd edition, 1976.