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Abstract

Let T = (V, F ) be a spanning tree of a simple
connected graph G = (V,E). It forms a cycle C
by adding an edge e ∈ E \ F to T . Let num(e) =
|C|−1. We say that the robustness number of T is
R(T ) =

∑
e∈E\F num(e). The robustest spanning

tree problem of G is to find a spanning tree T with
minimum R(T ) among all possible spanning trees
of G. We propose linear-time algorithm for solving
this problem on block graphs.

1 Introduction

Let G = (V,E) be a connected simple graph.
A spanning tree T = (V, F ) of G is a tree con-
taining all vertices of G. Spanning trees are im-
portant because we can obtain some information
about the original graph from some special span-
ning trees. Spanning trees also play an important
role in designing efficient routing algorithms and
many problems can be solved approximately by
using spanning trees. For various requirements,
there are many different types of spanning trees,
e.g., minimum spanning trees, minimum diameter
spanning trees, maximum leaf spanning trees, and
so on. The minimum spanning tree problem is one
of the most typical and well-known problems. It
has applications in the computer and communica-
tion network design, wiring connections, telephone
networks, transportation network linking, and so
on [4, 5, 6, 16].

For network communication systems, messages
are frequently routed along a minimum diameter
spanning tree of the network [12]. The diameter of
a graph is the longest shortest path among all pos-
sible shortest paths of the graph. The minimum
diameter spanning tree problem is to find a span-
ning tree of G with the minimum diameter among
all possible spanning trees. To solve this problem,
a simple algorithm is to find the center c of G by
using the Kariv-Hakimi algorithm [2, 3, 17], and

then obtain a spanning tree by doing breadth-first
search algorithm from c [9]. Figures 1 and 2 show
an example of the graph G1 and its minimum di-
ameter spanning tree, respectively.

Figure 1: The graph
G1.

Figure 2: A mini-
mum diameter span-
ning tree of G1.

The maximum leaf spanning tree problem is to
find a spanning tree whose number of leaves is
maximum among all possible spanning trees. This
problem has been widely studied and is known to
be an NP-complete problem [7]. This problem
has applications in networking [8], circuit layout
[14] and an interesting application mentioned in
[13]. Since this problem is NP-complete, several
approximation algorithms have been proposed. In
[15], Solis-Oba gave a linear-time 2-approximation
algorithm. Also Gakuen-nishimachi and Nishi-ku
proposed a branch-and-bound algorithm in [11].
Li and Toulouse try to solve this problem on grid
graphs and make some contribution [10]. They
showed that for an n×m grid graph where n < 4,
the maximum number of leaves of a spanning tree
is known. They also showed how to construct
these maximum leaf spanning trees. They gave
some constructions of spanning trees with a large
number of leaves, and then showed the construc-
tion for grid graphs with 6 rows is optimal. There
is a directed version of this problem [1]. Figures 3
and 4 show an example of graph G2 and its max-
imum leaf spanning tree, respectively.

Note that in some cases, like the graph G1, its
minimum diameter spanning tree (Figure 2) is also
its maximum leaf spanning tree. In some cases,
the maximum leaf spanning tree is also equal to
our robust spanning tree.

Since T is a spanning tree, by adding any edge
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Figure 3: The graph
G2.

Figure 4: A maxi-
mum leaf spanning
tree of G2.

e ∈ E \ F to T , there is a cycle C in the resulting
graph. Let num(e) = |C| − 1. We say that the
robustness number of T is R(T ) =

∑
e∈E\F

num(e).

The robustest spanning tree problem is to find a
spanning tree T with minimum R(T ) among all
possible spanning trees of G. We denote R(G) to
be the minimum R(T ). Figures ??, 5, and 6 show
some examples. The meaning of the robustest
spanning tree is that the edges of this spanning
tree are robust so that they cannot be replaced
easily.

Figure 5: Spanning
tree T1 of K4 with
R(T1) = 6.

Figure 6: Spanning
tree T2 of K4 with
R(T2) = 7.

When we study this problem, we find that the
robustest spanning tree is very similar to the max-
imum leaf spanning tree in many graphs, like K4

and K5.
Thus, we are interested that whether these two

spanning spanning tree problems are the same in
any graph. However, it is not. A counter-example
is shown in Figure 7. The maximum leaf spanning
tree of G (Figure 9) is not the robustest spanning
tree of G (Figure 8) because R(G) = R(T3) = 10.

2 Block Graphs

A block of G is a biconnected component. A
graph G is called a block graph if each block of G
is a clique. Figure 10 shows an example. A vertex
v in G is a cut vertex if the removal of v makes
the resulting graph disconnected.

Figure 7: A graph G.

Figure 8: The robust spanning tree T3 of G with
R(T3) = 10.

It is easy to check that a star is the robustest
spanning tree for a clique. Thus our algorithm try
to make each block of block graph G become a
star in the resulting spanning tree. Our algorithm
is as follows.

Algorithm RST-Block
Data: A block graph G = (V,E)
Result: A robustest spanning tree of G

Initially, all the vertices and edges are
marked with 0;
Choose a vertex u arbitrarily and mark it
with 1;
Initial an empty queue Q, and enqueue u
into Q;
while Q 6= φ do

Dequeue one vertex u from Q;
Mark every 0-vertex v of N(u) with 1
and the edges (u, v) with 1;
if v is a cut vertex then

Enqueue v into Q;

return the tree forming by all the
1-vertices and the 1-edges;

It is obvious that the time complexity is O(n+
m) where n = |V | and m = |E| because each
vertex v will be visited at most O(|N(v)|) times.

Theorem 1. Algorithm RST-Block solves the ro-
bustest spanning tree problem on block graphs.
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Figure 9: The maximum leaf spanning tree T4 of
G with R(T4) = 11.

Figure 10: A block graph G.

Proof. For each block B, there are |B|−1 edges in
the spanning tree exactly. In our algorithm, any
extra edge produces a C3 which is the best possible
for an optimal solution. Therefore, our algorithm
solve the problem for block graphs.

Now, we use an example to explain our algo-
rithm. Given a block graph shown in Figure 10,
we process cliques one by one.

First, we process the first block. We choose an
arbitrary vertex to be the center of star as shown
in Figure 11. This star will be a part of our span-
ning tree.

Then we process the second and third blocks.
The results are shown in Figures 12 and 13, re-
spectively.

Note that some blocks contain only two vertex.
It means that these blocks are already a star. So
we can directly process the final block as shown in
Figure 14.

3 Conclusion

In this paper, we propose a new problem called
the robustest spanning tree problem. We design a
linear-time algorithm for solving this problem on

Figure 11: Form a star for the first block.

Figure 12: Form a star for the second block.

block graphs. Our algorithm is based on the pro-
cess of a clique. However, we do not know how to
extend it to interval graphs. Further, we conjec-
ture that the robustest spanning tree problem is
NP-hard on general graphs.
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Figure 13: Form a star for the third block.

Figure 14: Form a star for the final block.
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