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Abstract

Methods for finding molecular sites in molecular
docking simulation is proposed in the paper. The
method distinguishes the surface/inside atoms of
the receptor by selecting a suitable distance max-
imizing the standard deviation of corresponding
neighboring degrees of the molecules. With vari-
ous considerations and different set ups of the un-
derlying parametric spaces, the searching space for
the docking simulation problem can be significantly
reduced.

The method is implemented upon the widely
employed automated molecular docking simula-
tion software package, AutoDock. Experiments
are set up to test upon Japanese encephalitis re-
lated biomolecules in virology research. In aver-
age, the proposed k-gridbox algorithm is about 2.3
flods faster. Hadoop MapReduce frameworks are
used in our experiments to parallelize the under-
lying massive computation works corresponding to
ligand-receptor pairs examined under the experi-
ment. The experiment shows that the proposed
method is much more efficient comparing to the
general parametric set ups.
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1 Introduction

The large number of structural investigations
on medically relevant proteins [1] reflects the gen-
eral recognition that the structure of a poten-
tial drug target is very precious knowledge; how-
ever, designing a new drug poses a great chal-
lenge. Computer-aided drug design techniques,
especially the molecular docking simulation, can
now be effective in reducing costs and speeding
up drug discovery [2, 7].

Progress in functional genomics and structural
studies on biological macromolecules are produc-
ing more and more potential therapeutic tar-
gets, but also increases the importance of small
molecule docking and virtual screening of candi-
date compounds algorithms. [24, 3]. Usually, the
first step in the molecular docking is to find the po-
sition of the space and the conformation matched.
In molecular docking, the receptor is possibly a
biological protein or biomolecule, and the ligand
is possibly a different protein, medicine or com-
pound. Molecular docking simulation is often used
as a method for virtual screen by setting a protein
to match a group of compounds, and report the
final best compound [2].

Protein structures play critical roles in vital bio-
logical functions [16]. To date, there are more than
98,300 protein structures [1] determined by the ad-
vances in X-ray crystallography and NMR spec-
troscopy to date, molecular biologists these days
proceed in the direction of analyzing and classi-
fying these protein structures in order to discover
the interaction with ligand and receptors.

In 1894s, Fischer [14] proposed “lock and key”
model. The enzyme and the substrate has specific
geometric shapes that will fit exactly into one an-
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other. This mode explains enzyme specificity, but
fails to explain the transition of the enzyme. In
1958s, Koshland [25] proposed molecular recogni-
tion process concept of induced fit, when receptor
and ligand combined with each other, receptor will
selected an optimal binding conformation with lig-
and.

Molecular docking simulation is a method for
computer-aided drug design (CADD). It simulate
the interaction between a protein receptor and a
drug ligand by calculating the energy of interac-
tion between them, and then search the optimal
binding sites in most stable state.

There have been several Public domain pack-
ages proposed in molecular docking simulation, in-
clude AutoDock [18], DOCK [26], Flex [9], Glide
[15], GOLD [37], RosettaDock [11], SLIDE [39],
Surflex [22] and AutoDock Vina [36]. Some
analysis and visualization methods of molecular
docking are importance step for Evaluation re-
sults, include AutoDockTool [24], DockingServer
[3], POLYVIEW-MM [33], ViewDock [32], vsLab
[2, 7].

Blind docking is a docking strategy when the
binding site is unknown, it is necessary to set up
big gridbox to put entire macromolecule. Rigid-
body docking does not change the shape of the
ligand and receptor; it only change the position
and rotate angle, spending much less compute
time then flexible docking. Flexible docking per-
mit conformation change, it is more accurate to
observation the interaction of the ligand and re-
ceptor. However, Flexible docking cost huge time
for computation.

Hadoop [38] is a software framework intended
to support data-intensive distributed applications.
It is able to process petabytes of data with thou-
sands of nodes. Hadoop supports MapReduce
programming model [35] for writing applications
that process large data set in parallel on Cloud
Computing environment. Recently, Hadoop has
been applied in various domains in bioinformatics
[34, 12].

2 Method and Materials

2.1 Molecular Docking Simulation

The main idea of molecular docking algorithm
for finding a lowest energy (LE) between two sets
of points before utilizing the scoring function pro-
cedure to fine-tune the final result is by adjusting

Figure 1: An illustration of the docking result of
ligand, IL-1β, and receptor, TLR4, (with PDB ID:
6I1B and 2Z62) by AutoDockTool [24].

the suitable parameter sets by ways of searching
the underlying parametric space.

AutoDock

AutoDock is a automated molecular docking simu-
lation software package since 1990. AutoDock uses
Genetic Algorithm (GA) [17, 20], Lamarckian Ge-
netic Algorithm (LGA) [31] in finding the lowest
energy, and the used the Amber molecular force
field scoring function [13]. AutoDock is now ver-
sion 4.2, include two program with autodock and
autogrid. Autogrid pre-calculates a set of grids
which describing the target protein and autodock
performs the docking of the ligand to these grids.
Figure 1 shows the example of docking result. The
force field evaluation function of AutoDock4.2 is
described as the following: [30, 21]
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AMBER force field

In molecular docking simulation, molecular force
field is an important part to evaluate the docking
result. The traditional force field include AMBER
force field [13, 21], CHARMM force field [6, 5, 29]
and MMFF94 [19].

AMBER force field is one the most widely used
force field functions, which is suitable for the treat-
ment of biological macromolecules. Many main-
stream molecular modeling software use the AM-
BER force field, and AutoDock use AMBER force
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field as prototype of the force field function. The
AMBER force field function is described as the
following: [13, 10]
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∑
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The first term is the bonds (bond strength), the
interaction between the bond atoms. The second
term is angle (bond angle), the total value of all
bond angle of the atoms. The third term is di-
hedrals, the energy change when bond rotation.
The forth term is non-bonded interaction (non-
bonded), the interaction of all atom of the bond
distance at least three atom of both molecular;
use the Coulomb potential [13] to describe electro-
static interactions, and using Lennard-Jones po-
tential [28] describe van der Waals forces

GA

Genetic algorithm (GA) [17, 20] is a search heuris-
tic that mimics the process of natural selection.
This heuristic (also sometimes called a meta-
heuristic) is routinely used to generate useful so-
lutions to optimization and search problems. Ge-
netic algorithms belong to the larger class of evo-
lutionary algorithms (EA), which generate solu-
tions to optimization problems using techniques
inspired by natural evolution, such as inheritance,
mutation, selection, and crossover.

LGA

LGA [31] use to search the best binding site with
ligand and receptor. LGA is an algorithm which
is compose by GA and Local search(LS). GA is re-
sponsible for global search and then optimization
of energy through LS.

Rigid-body Docking

In the rigid-body docking, the molecular con-
formation does not change. Only change in
the spatial position and rotate angle of the
molecule. rigid-bosy docking is the most simpli-
fication method and the computation is relatively
small. Useful on macromolecule docking.

Semi-flexible Docking

In the semi-flexible docking, allow the small
molecule change their conformation in the dock-
ing process, but it is usally fixed the conforma-
tion of the macromolecule. The small molecule
usually fixed bond lengths, bond angles of some
non-critical parts. Semi-flexible docking method
consider the computation and the predictive abil-
ity of the model, is one of the widely used docking
method.

Flexible Docking

In the flexible docking, allow both molecules
(ligand-receptor) change their conformation freely
in the docking process, the computation growing
exponentially due to the atom numbers. It is
huge computation in the flexible docking. Flex-
ible docking is useful in accurate identification the
interaction of molecular docking and the consider-
ation is the huge computation time.

Protein-Protein Docking

In the protein-protein docking, ligand and recep-
tor are both macromolecule. It is really hard
to perform a flexible docking on protein-protein
docking. The rigid-body docking is suitable for
the protein-protein docking.

2.2 Global-grid method

Given the requested ligand-receptor pair, the
idea is to consider the whole space outside the re-
ceptor in order to obtain a reasonable final docking
position for placement of the corresponding ligand.
Thus, the general method Global-grid, is to
build a global grid frames outside the given recep-
tor. That is, Global-grid method builds a large
enough box containing receptor and leave enough
space for further possible ligand movement. The
Global-grid method is to make sure user ob-
taining the full examined result. See Figure 2 for
an illustration of the Global-grid algorithm.

2.3 k-gridbox algorithm

Here we propose method that reduces the
searching space for the docking simulation pro-
cess by finding subspaces of the surface of the
given receptor. The idea is to distinguish the sur-
face/inside atoms of the receptor, and identifying
hot spots relevant to the given ligand. Please refer
to Figure 3 for an illustration of the k-gridbox
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Global-grid(L,R, r, p, s)

Input: L,R is the ligand and receptor.
r : The resolution of these grids
p : The probe number
s : The magnification factor of the ligand size

Output: pos : The resulting position (conformation) of the ligand
E : The lowest energy of the result

1 Let box b = (s · xL + xR, s · yL + yR, s · zL + zR), where (xL, yL, zL), (xR, yR, zR) being bonding box of L and R
2 Execute preparegpf.py to prepare the grid parameter file .gpf file by parameters (L,R, r, p, b)
3 Execute preparedpf.py to prepare the docking parameter file .dpf file by parameters (L,R)
4 Execute autogrid on the .gpf � the output of autogrid is the .fld, .map and .xyz files.
5 Execute autodock on the .dpf � the output of autodock is the reslut file .dlg.
6 Obtain the best (pos,E) from the .dlg file, and return (pos,E)

Figure 2: The Global-grid method.

algorithm. The idea is to selecting a suitable dis-
tance maximizing the standard deviation of cor-
responding neighboring degrees of the molecules.
With various considerations and different set ups
of the underlying parametric spaces, the searching
space for the docking simulation problem can be
significantly reduced.

Detecting surface atoms

The idea is to partition atoms of a receptor into
surface points and inside points so that it is possi-
ble to intelligently place the corresponding ligand
into suitable places nearing to surfaces of a re-
ceptor. The inside atoms are those crowded atoms
with sufficient number of neighboring atoms, while
surface atoms are those having fewer neighboring
atoms. However, the neighboring relation is de-
fined by a suitable distance. Setting the cut-off
distance by an extremely small meaning that ev-
ery atom is isolated, while an overly large distance
resulting every atom pair being neighbor to each
other. The trick is to pick the right distance that
produces the most informative neighboring num-
bers.

Let A be the set of atoms of a receptor. Given
a distance d ∈ R+ and x ∈ A, denote the neighbor
number of x by Nd(x) = |{y | |x− y| ≤ d, y ∈
A}|. The neighbor number list of A is denoted by
G(d,A) = 〈Nd(x)|x ∈ A〉, and let σ(G(d,A)) be
the standard deviation of G(d,A).

Here we consider the distance maximizing the
standard deviation of corresponding neighboring
degrees of molecules of the receptor. Let d∗ be
the distance such that

d∗ = argmax
d
{σ(G(d,A))};

then we can use d∗ to obtain neighbor number list
G(d∗, A); the list is used to to distinguish whether

an atom is a surface or inside atom.

We use standard deviation (σ) to distinguish
the surface/inside atoms of a given receptor, σ
shows the dispersion or variation from the aver-
age exists [4]. A low σ indicates these values are
similar and a high σ indicates these values are less
similar.

Once the distance d∗ is set, the neighbor num-
ber for each atom is decided. An arbitrary per-
centile value, 10%, is set to be the cut-off value
for deciding the inside atoms. That is, x is an in-
side atom if and only if Nd∗(x) is ranked among
the top (highest) 10% among the neighbor number
list G(d∗, A). Let the set of surface (inside) atoms
be S (D); we define ‘(S,D)← GetSurface(R)’,
as depicted in in Figure 3.

Gridbox placement

The k-gridbox algorithm is to find a suitable
docking site nearing to a surface atom x ∈ S and
build its corresponding gridbox. First step, use
the ligand box multiply β; β′ : (βxL, βyL, βzL)
to choose the atom si which has the most neigh-
bor sj atoms in the box β′, and then delete the
(si, sj) atoms for next box. Second step, use top
ten percent of D atoms who is most close to si
atom to push out the point by α value (Figure 4)
and set as the gridcenter. Do the first and sec-
ond step k times to get k boxes. Last step, set a
gridbox g on these gridcenter and start preparing
these gridcenter by preparegpf.py and then start
autogrid and autodock.

3 Experiments

In order to tuning the best parameters
(k, β, g, α) (Figure 4), we use the MapReduce
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k-gridbox(L,R, r, k, β, g, α, p)

Input: L,R is the ligand and receptor.
r : The resolution of these grids
k : The limit of the box generate
β : The magnification factor of the ligand size use to find the maximun degree candidate
g : The magnification factor of the ligand size use to build the grid box
α : The distance factor use to push the grid box
p : The probe number

Output: pos : The resulting position (conformation) of the ligand
E : The lowest energy of the result

1 Get the surface/inside atom list: (S,D)← GetSurface(R).
2 Let the box size of L be bL = (xL, yL, zL)
3 Use the S with β · bL to find the maximum degree box and delete those si’s being inside the box k times
4 Get the top three atoms closest to the box from D, and use these atoms to push the grid-box by α factor
5 Set up k gridboxes, B = {b1, b2..., bk}, each with size g · bL
6 Prepare .gpf and .dpf for each box bi ∈ B by preparegpf.py and preparedpf.py, and then start autogrid and autodock

7 The result is inside k .dlg file; get the best (pos,E) from k .dlg

8 return (pos,E)

GetSurface(R) is the function that use to distinguish the surface/inside atoms by σ strategy.

Figure 3: The k-gridbox algorithm.

framwork to reduce the time of waiting each result.
It it cost a lot of time. Tuning each parameter we
need at least 4 hours for 32 nodes, the total com-
putation time is 128 hour. The ligand-receptor
pair is 36 set of 6 ligand (1IL6, 1ITB, 2LY4,
2TUN, 2YRQ, 6I1B) [8, 23] of TNF-α, IL-1β, IL-
6 and HMGB1, and 6 receptor (1QU6, 1ZIW,
2A0Z, 2Z62, 2Z7X, 2Z80) [27], toll-like recep-
tor (TLR), double-stranded RNA-activated pro-
tein kinase (PKR) are member of pattern recog-
nition receptors [27]. Both ligand and receptor is
macromolecule (protein). In tuning parameter ex-
periments, we fixed resolution r = 1 and probe
number p = 50000.

3.1 Tuning environment and data
source

The experiments are performed on one NFS
server and four IBM blade server in the Provi-
dence University Cloud Computation Laboratory.
Each server is equipped with two Quad-Core Intel
Xeon 2.26GHz CPU, 24G RAM, and 296G disk
under the Ubuntu version 12.4 with the virtu-
alization platform KVM/QEMU. Under the cur-
rent system environment, we create 32 virtual ma-
chines by KVM; each virtual machine is set to one
core CPU, 1G RAM, and 10G disk running un-
der the O.S. Ubuntu version 12.04 with Hadoop
version 1.21 MapReduce platform. Each virtual
machine is responsible for one map operation and
one reduce operation. The total number of the
map/reduce operations is up to 32 respectively.

The Protein structure data sources are gath-

ered from the Protein Data Bank [1]; it main-
tains this single archive of macromolecule struc-
tural data freely and publicly available to the
global community. These protein structure data
are downloaded from the wwPDB’s ftp server
(ftp://ftp.wwpdb.org/), where the number of pro-
tein structure data is 97,980. We download 6 lig-
and and 6 receptor as 36 set data are treated as
the testing data for our experiments.

3.2 Hadoop MapReduce framework

Hadoop is a software framework for coordinat-
ing computing nodes to process distributed data
in parallel. Hadoop adopts the map/reduce paral-
lel programming model, to develop parallel com-
puting applications. The standard map/reduce
mechanism has been applied in many successful
Cloud computing service providers, such as Yahoo,
Amazon EC2, IBM, Google and so on. An appli-
cation developed by Map/Reduce is composed of
Map stage and Reduce stage (optionally). Figure
5 illustrates the Map/Reduce framework. Input
data will be split into smaller chunks correspond-
ing to the number of Maps. Output of Map stage
has the format of 〈key, value〉 pairs. Output from
all Map nodes, 〈key, value〉 pairs, are classified by
key before being distributed to Reduce stage. Re-
duce stage combines value by key. Output of Re-
duce stage are 〈key, value〉 pairs where each key
is unique.

Hadoop cluster includes a single master and
multiple slave nodes. The master node consists of
a jobtracker, tasktracker, namenode, and datan-
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Figure 4: Experiments tested on various settings of parameters {k, β, g, α}. Results suggest that the
ligand box magnifying factor β shall be reasonably set around 0.8, and the pushing distance for the
ligand grid-box shall be set to 0.3. The CPU time needed for these experiments takes approximately 430
machine-hours.

Figure 5: The left figure shows the orignal grid-box position; the figure on the right shows the grid-box
is pushed out of the molecular surface by α factor.
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ode. A slave node, as computing node, con-
sists of a datanode and tasktracker. The job-
tracker is the service within Hadoop that farms out
Map/Reduce tasks to specific nodes in the cluster,
ideally the nodes that have the data, or at least
are in the same rack. A tasktracker is a node in
the cluster that accepts tasks; Map, Reduce and
Shuffle operations from a jobtracker.

Hadoop Distributed File System (HDFS) is the
primary file system used by Hadoop framework.
Each input file is split into data blocks that are
distributed on datanodes. Hadoop also creates
multiple replicas of data blocks and distributes
them on datanodes throughout a cluster to en-
able reliable, extremely rapid computations. The
namenode serves as both a directory namespace
manager and a node metadata manager for the
HDFS. There is a single namenode running in the
HDFS architecture.

3.3 Time analysis on Map/Reduce
framework

The MapReduce framework for the molecular
docking analysis. Assume that the number of com-
pute node is n and the number of ligand-receptor
pairs lines is p in the ligand-receptor pairs list file,
the p lines will become p map tasks and send to
hadoop by streaming program. Each computing
node receives a map and then performs the anal-
ysis work. When a node completes the map task,
the node passes the score to the Reduce and re-
ceives next map task to compute unless the total
map are finished. Generally, each node will be
assigned to deal with p/n maps.

Therefore, Reduce will have p evaluation scores.
The evaluation score is described in the previ-
ous section 2.1. The reduce operation writes the
molecular docking pair evaluation scores line by
line to the output file on NFS.

3.4 Performance

It is shown in Figure 6 that the experiments
testing the cost/performance of k-gridbox algo-
rithm under various parametric settings (k, β, g, α)
versus the Global-grid method. The total CPU
time needed for these experiments takes approxi-
mately 684 machine-hours. The experiment sug-
gests that the k-gridbox algorithm spends sig-
nificantly less computation time comparing to the
general Global-grid method by reduction in the
grid-box searching space. In average, the proposed
k-gridbox algorithm is about 2.3 folds faster
comparing to the general Global-grid method.
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Figure 6: Performance of the k-gridbox algo-
rithm under various parametric settings (k, β, g, α)
versus the Global-grid method. These results
are tested upon 36 different ligand-receptor pairs.
Points with the same color are linked with different
setting by various probe numbers. The CPU time
needed for these experiments takes approximately
684 machine-hours.
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(blue) that achieves similar lowest energy values.
In average, the proposed k-gridbox algorithm is
about 2.3 folds faster.
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To avoid the time delay, our web service pro-
vides user access keys for user to check the result
later on after they submit the desired query. User
can come back and check the result once tasks are
finished by the system.

4 Concluding Remarks

In this paper, we proposed an algorithm to dis-
tinguish the surface/inside atoms (S,D), and then
choose the best si who has the most neighbor sj in
box β′to place the gridbox. While we set a good
parameter (k, β, g, α), we will get a better lowest
energy value competitive with the Global-grid
method. In average, the proposed k-gridbox al-
gorithm is about 2.3 folds faster.

In the future, we will perform more experiments
to find better algorithms for better results in the
same computation time and investigate algorith-
mic methods for discovering bioinformatics func-
tions, and try to parallelize these methods to pro-
vide more perspectives for biologists to improve
the performance of these computation frameworks
on for analyzing the increasingly huge bioinfor-
matics data.
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