
A Bit-Parallel Filtering Algorithm to Solve the Approximate String
Matching Problem

Chia Shin Ou and R. C. T. Lee

Department of Computer Science

National Tsing Hua University
d9662836@oz.nthu.edu.tw and rctlee@ncnu.edu.tw

Abstract

There are many algorithms to solve the

exact string matching problem and the
approximate string matching problem. One kind
approach of them is so-called filtering approach.
This kind approach is used to decrease the
searching time in scanning by obtaining the
preprocessing. One of the filtering is called
Approximate Boyer-Moore Algorithm which is
proposed by Tarhio and Ukkonen. The
Approximate Boyer-Moore Algorithm spent
O((k+c)m) time in preprocessing where c is the
size of the alphabet. In this paper, we present a
bit-parallel filtering technique which is based on
the Approximate Boyer-Moore Algorithm and
spents O(cm) time. The result will be useful when
we solve the text with multiple patterns or with
long pattern.

1 Introduction

Consider the approximate string matching (ASM)
problem. The edit distance [12, 14] between two
strings A and B, denoted as ed(A, B), is defined as the
minimum number of insertions, deletions and
substitutions needed to transform string A to string B.
The ASM Problem is , given a text T = t1t2…tn, P =
p1p2…pm and an error bound k, to find all such j that
the edit distance between some substring of T ending
at position i and P is at most k. The classic algorithm
to solve the ASM problem is according to the
dynamic programming approach [8] in O(mn). Let C
be a m + 1 by n + 1 matrix such that C(i, j) is the
minimum edit distance between p1p2…pj and any
substring of T ending at position i. The dynamic
programming table C can be obtained by the
following recursive formula:

=+−−
+−
+−

=
1 else 0then if)1,1(

1)1,(

1),1(

min),(

ji ptjiC

jiC

jiC

jiC ,

where 0 ≤ i ≤ n and 1 ≤ j ≤ m, and C(i, 0) = 0 for 0 ≤ i
≤ n.

Landau and Vishkin [4], Galil and Park [2], and
Ukkonen and Wood [14] also proposed different
improved algorithms for [8] in O(kn) time. Myers [6]
gave a new algorithm by using the bit-parallel
approach to obtain the dynamic programming table
which has good performance in practical and can be
done in O(mn/w) time.

Filtering algorithm [7,9,10,11] is a good issue to
decreasing the processing time in scanning the text.
One of the filtering algorithm [11] is Approximate
Boyer-Moore (ABM) Algorithm which is used to
solve the ASM problem. The ABM Algorithm has
good performance in moderate patterns with small
error bound k and large alphabet size. In our paper,
we proposed a bit-parallel filtering algorithm to
improve the ABM algorithm.

2 Approximate Boyer-Moore
Algorithm

The Approximate Boyer-Moore (ABM) Algo-
rithm contained two phases: filtering and checking.
The filtering phase is to evaluate every diagonal h of
the dynamic programming table C whether entries in
the diagonal h need to be computed. After the
filtering phase, the value of needless entries of C will
be set by ∞. Then, the checking phase is to compute
the remained entries of C. The checking phase can be
done by using the dynamic programming approach
[8]. Hence, in our paper, we just focus the phase in
filtering.

The ABM Algorithm, although an approximate
string matching algorithm, is related to the exact
string matching algorithms, namely Boyer and
Moore Algorithm [1] and Horspool Algorithm [3]. In
fact, if we consider that the error bound k is equal to
0, the ABM Algorithm reduces to the Horspool
Algorithm. Most of them start with some kind of
pairwise character comparison. Consider a window
W = w1w2…wm of a text string T and a pattern P =
p1p2…pm. Suppose wm ≠ pm, we know there is no
exact matching between P and W and a shifting is
now needed. In approximate string matching, we
cannot make such a conclusion. Let us consider the
case such that T = acttgta and P = acttgt. If we

The 31st Workshop on Combinatorial Mathematics and Computation Theory

88

compare t7 and p6, we will find out that t7 ≠ p6. We
may correctly conclude that we need at least 1
operation to make t7 ≠ p6. We then compare t6 with p5
and we will find out that t6 ≠ p5. However, we cannot
claim that ed(T, P) ≥ 2, because by inserting an a
after p6, we will make P identical to T. In fact, in this
case, ed(T, P) = 1.

To facilitate our discussion, denote S(i, j) to be
the substring sisi+1…sj of S and let us define the
k-environment of pj as given the pattern P= p1p2…pm,
the k-environment of pj, denoted as Ek(j), is P(j–k,
j+k). Note that each ti is aligned with a pj. For
instance, t2 is aligned with p3. In this case, every ti is
in its corresponding E1(j) under the condition that k =
1. For instance, t6 = t is in E1(7) = tc and t2 = c is in
E1(3) = ctt. We can also prove that ed(T, P) = 1 = k.
In this case, we can see that t2 = c is not in its
corresponding C(1, 3) = atg and t4 = t is not in C(1, 5)
= gcg. We can also prove that ed(T, P) > k = 1.

Let us assume that we have two strings with the
same length and the error bound k is already
specified. Then we examine each ti to see whether ti
is in C(k, i). If one ti is not in C(k, i), we cannot
perform any insertion or deletion to change pi to ti.
But, we can perform a substitution. If (k + 1) ti’s are
not in C(k, i)’s, we have to perform (k + 1)
substitutions. Thus we have ed(T, P) > k. From the
above discussion, we can have the following Lemma:

Lemma 1. [] Given an error bound k and two strings
T = t1t2…tm and P = p1p2…pm, if there are more than
k ti’s not in E(k, i)’s, ed(T, P) > k.

For finding ti fast, the filtering phase need to

precompute table Bad(j, x), 1≤ j ≤ m, x ∈ Σ, such that
Bad(j , x) = true if and only if x does not appear in
k-environment Ej.

Lemma 1 can obviously be used as a filtering
scheme. In the following, we shall show a very
interesting rule of the ABM Algorithm: the shifting
rule of the filtering phase. The shifting is based upon
the following rule.

In the ABM Algorithm, the shifting is based upon
Horspool algorithm. Consider the suffix W(m–k, m)
of the window W, if a shifting is needed, this
substring of the new window will be aligned with a
corresponding substring P(i, k) in P. According to
Boyer and Moore algorithm, there must exist at least
one pair of characters in W(m–k, m) and P(i, k) which
exactly match with each other.

Consider the case, W = agtcccta and P = agtcgcta.
Suppose k = 1 and we have to shift. After shifting,
W(m – k, m) = W(7, 8) = ta will be aligned with P(i,
i+k) = P(i, i+1) for some i. Thus we have to make
sure that after the shift, among the two characters of

W(7, 8), namely t and a, at least one character of
them will be exactly matched with its corresponding
character in P(i, i+1). If we want to match t, 4 steps
are needed. If we want to match a, 7 steps are needed.
We choose the minimum of them, which is 4.

To facilitate our shifting mechanism, in the
following, we shall give the Dj table of the ABM
Algorithm defined as follows: Given an alphabet set
Σ = {x1, x2, … , xσ} and pattern P with length m, we
create a table, denoted as Dj table of P, containing σ
entries where σ is the alphabet size. Each entry stores
the location of the rightmost xi, 1 ≤ i ≤ σ, in P(1, m –
j) counted from location m – j, if it exists. If xi does
not exist in P(1, m – j), store m in the entry.

For instance, let P = gcagagag and Σ ={a, c, g, t}.
Then the Dj tables, for j = 1 and j = 2, are as follows:

Table 1. D1 and D2 tables for P = gcagagag

The 1D Table

a c g t
1 6 2 8

The 2D Table

a c g t
2 5 1 8

Consider window W(1, m), P(1, m) and an error

bound k. Let dj = Dj(tm–j+1), for j = 1 to j = k + 1. Then
the number of steps needed to shift is d = min{ d1,
d2, … , dk+1}.

Consider the case, T = cctcgcaagagc, P =
gcagagag and an error bound k = 1. In this case, W =
cctcgcaa, d1 = D1(wm) = D1(a) = 1 and d2 = D2(wm – 1)
= D2(a) = 2. Thus the number of shifts is d = min{ d1,
d2} = min{1, 2} = 1. We would shift one step.

It can be easily seen that if we shift less than d steps
where d is defined by the shifting rule.

The filtering algorithm is shown in the following:

Algorithm 2 Filtering Phase of Approximate
Boyer-Moore Algorithm
Construct the Dj table and the Bad(j, x) for 1 ≤ j ≤ m
and x ∈ Σ;
i := m;
while i ≤ n do begin
 r := i; j := m;
 bad :=0;
 d := m;
 while j > k and bad ≤ k do begin
 if j ≥ m – k then d := min(d, dk[i, tr]);
 if Bad(j, tr) then bad := bad + 1;
 j := j – 1; r := r – 1;
 end;

The 31st Workshop on Combinatorial Mathematics and Computation Theory

89

 if bad ≤ k then
mark entries C(0, i – m – k), … , C(0, i –
m + k);

 i := i + max(k + 1, d);end

3 Our Bit-Parallel Filtering Algorithm

Our bit-parallel filtering algorithm is based on
ABM algorithm. The main idea of filtering phase of
ABM algorithm is to determine whether ti exists in
k-environment of pj or not. To achieve this idea in
bit-parallel, we obtained the incident vector IV
defined as follows: Given a string S = s1s2…sn and a
character x, IVS[x] = (IVS[ti](1), IVS[ti](2), … ,
IVS[ti](n)) where IVS[ti](j) = 1 if sj = x and IVS[ti](j) =
0 if otherwise. For instance, let P = aacag. Then
IVP[a] = (1,1,0,1,0), IVP[c] = (0,0,1,0,0) and IVP[g] =
(0,0,0,0,1). According to Lemma 1, we redefined our
filtering scheme as follows:

Lemma 4: Given an error bound k and two strings T
= t1t2…tm and P = p1p2…pm, if there are more than k
ti’s such that for all i – k ≤ j ≤ i + k, IVP[ti](j) = 0,
ed(T, P) > k.

We need bit-parallel operation to check, in vector
IVP[ti], whether there exists a 1 between locations i –
k and i + k in IVP[ti]. To achieve this, we first define
an auxiliary vector B = (B(1), B(2), … , B(n)) in
which all bits are 0’s, except that B(j) = 1 for all

kijki +≤≤− . Consider the case where i = 3, k

= 2 and n = 10. Vector B will be (0, 1, 1, 1, 1, 1, 0, 0,
0, 0).

To detect the existence of 1’s between locations

i – k and i + k in IVP[ti], we can use the logical &
operation on vectors IVP[ti] and B. If such 1’s exists
in IVP[ti], this operation keeps the bit within locations
i – k and i + k in IVP[ti]. For instance, IVP[ti] = (1, 0, 0,
1, 0, 0, 0, 1, 1, 0) and B = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0),
(IVP[ti] & B) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0). It shows
that ti = p4. If IVP[ti] = (0, 0, 0, 0, 0, 1, 0, 1, 1, 0) and
B = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0), (IVP[ti] & B) = (0, 0, 0,
0, 0, 0, 0, 0, 0, 0). It shows that there is no ti which
exists between locations i – k and i + k in IVP[ti].
Hence, we can use the bit-parallel operation (IVP[ti]
& B) to confirm whether ti exists between locations
i – k and i + k in IVP[ti].

The bit-parallel filtering algorithm is shown in
the following:

Algorithm 2: Bit-parallel Filtering Approach
based on Approximate Boyer-Moore Algorithm
Construct the Dj table;
for all x ∈ Σ do begin

B := 1k+10m–k+1;
 for j = 1 to m do begin

if (IVP[x] & B) = 0m then Bad(j, x) =
true;

 else Bad(i, x) = false;
 B >> 1;
 if j ≤ k then B := B | 1;
 end for
end for
i := m;
while i ≤ n do begin
 r := i; j := m;
 bad :=0;
 d := m;
 while j > k and bad ≤ k do begin
 if j ≥ m – k then d := min(d, dk[i, tr]);
 if Bad(j, tr) then bad := bad + 1;
 j := j – 1; r := r – 1;
 end;
 if bad ≤ k then

mark entries C(0, i – m – k), … , C(0, i –
m + k);

 i := i + max(k + 1, d);
end

5 Conclusion

 In this paper, we proposed a bit-parallel
filtering algorithm which is based on the
Approimate Boyer-Moore Algorithm. Our filtering
algorithm can decrease the preprocessing time to
O(cm). The result will be useful when we solve
the text with multiple patterns or with long pattern
and also can be used to determine the article
plagiarism.

References

[1] R. Boyer and S. Moore. A fast string searching
algorithm. Communications of the ACM, 20, 1977,
pp.75-96.
[2] Z. Galil and Z. Park. An improved algorithm
for approximate string matching. SIAM journal on
Computing, 19, 1990, pp.989-999.
[3] N. Horspool. Practical fast searching in strings.
Software Practice & Experience, 1980, pp.501-506.
[4] G. Landau and U. Vishkin. Fast parallel and
serial approximate string matching. Journal of
Algorithms, 10, 1989, pp.157-169.
[5] R. C. T. Lee, S. S. Tseng, R. C. Chang, and Y. T.
Tsai. Introduction to the Design and Analysis of
Algorithms. McGraw-Hill Education, 2005.
[6] G. Myers. A fast bit-vector algorithm for
approximate string matching based on dynamic
programming. Journal of the ACM, 46, 1999,
pp.395-415.
[7] G. Navarro and R. Baeza-Yates. Very fast and
Simple approximate string matching. Information
Processing Letters, 72, 1999, pp.65-70.
[8] P. H. Sellers. String Matching with Errors.
Journal of Algorithms, 20, 1980, pp.443-453.
[9] E. Sutinen and J. Tarhio. On using q-gram

The 31st Workshop on Combinatorial Mathematics and Computation Theory

90

locations in approximate string matching. In
Proceeding of the 7th Annual Symposium on
Combinatorial Pattern Matching, Springer-Verlag,
Berlin, 1995, pp.50-61.
[10] J. Takaoka. Approximate pattern matching with
samples. In Proceedings of ISAAC. Springer-Verlag,
Berlin, 1994, pp.234-242.
[11] J. Tarhio and E. Ukkonen. Approximate
Boyer-Moore String Matching, SIAM Journal on
Computing, 22, 1993, pp.243-260.
[12] E. Ukkonen. Finding Approximate patterns in
strings. Journal of Algorithms, 6, 1985, pp.100-118.
[13] R. Wagner and M. Fischer. The string-tostring
correction problem. Journal of the ACM, 21, 1975,
pp. 168-173.
[14] S. Wu and U. Manber, Fast Text Searching:
Allowing Errors, Communications of the ACM, 35,
1992, pp.83-91.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

91

