The 31st Workshop on Combinatorial Mathematics and Computation Theory

A Bit-Paralle Filtering Algorithm to Solve the Approximate String
Matching Problem

Chia Shin Ouand R. C. T. Lee
Department of Computer Science

National Tsing Hua University
d9662836@o0z.nthu.edu.tw and rctlee@ncnu.edu.tw

Abstract

There are many algorithms to solve the
exact string matching problem and the
approximate string matching problem. One kind
approach of them is so-called filtering approach.
This kind approach is used to decrease the
searching time in scanning by obtaining the
preprocessing. One of the filtering is called
Approximate Boyer-Moore Algorithm which is
proposed by Tarhio and Ukkonen. The
Approximate Boyer-Moore Algorithm spent
O((k+c)m) time in preprocessing where ¢ is the
size of the alphabet. In this paper, we present a
bit-parallel filtering technique which is based on
the Approximate Boyer-Moore Algorithm and
spents O(cm) time. The result will be useful when
we solve the text with multiple patterns or with
long pattern.

1 Introduction

Consider the approximate string matching (ASM)
problem. The edit distance [12, 14] between two
stringsA andB, denoted asdA, B), is defined as the
minimum number of insertions, deletions and
substitutions needed to transform stritp stringB.
The ASM Problem is , given a teXt= tit,...t,, P =
p:P>...pPm and an error bounkl to find all such that
the edit distance between some substring efding

at positioni andP is at mosk. The classic algorithm
to solve the ASM problem is according to the
dynamic programming approach [8] @(mn). Let C

be am + 1 byn + 1 matrix such tha€(i, j) is the
minimum edit distance betweemp,...p; and any
substring of T ending at position. The dynamic
programming tableC can be obtained by the
following recursive formula:

Ci{-1j)+1
C(,j))=mincC {,j-D+1 '
C(i-1j-)+if t =p; thenCelse

where 0<i <nand 1<j <m, andC(i, 0) = 0 for O<i
<n.

88

Landau and Vishkin [4], Galil and Park [2], and
Ukkonen and Wood [14] also proposed different
improved algorithms for [8] iD(kn) time. Myers [6]
gave a new algorithm by using the bit-parallel
approach to obtain the dynamic programming table
which has good performance in practical and can be
done inO(mn'w) time.

Filtering algorithm [7,9,10,11] is a good issue to
decreasing the processing time in scanning the text.
One of the filtering algorithm [11] is Approximate
Boyer-Moore (ABM) Algorithm which is used to
solve the ASM problem. The ABM Algorithm has
good performance in moderate patterns with small
error boundk and large alphabet size. In our paper,
we proposed a bit-parallel filtering algorithm to
improve the ABM algorithm.

2 Approximate Boyer-Moore
Algorithm

The Approximate Boyer-Moore (ABM) Algo-
rithm contained two phasegltering and checking
The filtering phase is to evaluate every diagdnaf
the dynamic programming tab{& whether entries in
the diagonalh need to be computed. After the
filtering phase, the value of needless entrie€ ofill
be set byw. Then, the checking phase is to compute
the remained entries & The checking phase can be
done by using the dynamic programming approach
[8]. Hence, in our paper, we just focus the phase in
filtering.

The ABM Algorithm, although an approximate
string matching algorithm, is related to the exact
string matching algorithms, namely Boyer and
Moore Algorithm [1] and Horspool Algorithm [3]. In
fact, if we consider that the error boukds equal to
0, the ABM Algorithm reduces to the Horspool
Algorithm. Most of them start with some kind of
pairwise character comparison. Consider a window
W = wyw;,...wW,, of a text stringT and a patterdP =
P1P2...Pm SUPPOSEW,Z Pm We know there is no
exact matching betweeld and W and a shifting is
now needed. In approximate string matching, we
cannot make such a conclusion. Let us consider the
case such thal = acttgta and P = acttgt If we

The 31st Workshop on Combinatorial Mathematics and Computation Theory

comparet; andps, we will find out thatt; Z ps. We
may correctly conclude that we need at least 1
operation to makée # ps. We then comparg with ps

and we will find out thats # ps. However, we cannot
claim thatedT, P) > 2, because by inserting an
afterps, we will makeP identical toT. In fact, in this
caseedT, P) = 1.

To facilitate our discussion, deno8éi, j) to be
the substringss.;...§ of S and let us define the
k-environment ofy; as given the pattef= p,p,...pm,
the k-environment ofp;, denoted a€5(j), is P(j—k,
j+k). Note that each; is aligned with ap. For
instancet, is aligned withps. In this case, everyis
in its corresponding(j) under the condition th&t=
1. For instancetg = t is in E(7) =tc andt, = cis in
E;(3) =ctt. We can also prove thatT, P) = 1 =k.
In this case, we can see that= c is not in its
corresponding:(1, 3) =atg andt, =tis not inC(1, 5)
= gcg We can also prove that(T, P) >k = 1.

Let us assume that we have two strings with the
same length and the error bourd is already
specified. Then we examine eagho see whethet;
is in C(k, i). If onet; is not inC(k, i), we cannot
perform any insertion or deletion to chargeto t;.
But, we can perform a substitution. K€ 1) t's are
not in C(k, i)’s, we have to performk(+ 1)
substitutions. Thus we haw(T, P) > k. From the
above discussion, we can have the following Lemma:

Lemma 1. [] Given an error bounll and two strings
T = tytp...tm andP = pyp,...pm, if there are more than
kt’s notinE(k, i)'s, edT, P) > k.

For finding t; fast, the filtering phase need to
precompute tabl8ad(j, x), 1<j <m, X € X, such that
Badj , x) = true if and only if x does not appear in
k-environmeng;.

Lemma 1 can obviously be used as a filtering
scheme. In the following, we shall show a very
interesting rule of the ABM Algorithm: the shifting
rule of the filtering phase. The shifting is based upon
the following rule.

In the ABM Algorithm, the shifting is based upon
Horspool algorithm. Consider the suffi’d(m-k, m)

W(7, 8), namelyt and a, at least one character of
them will be exactly matched with its corresponding
character irP(i, i+1). If we want to match, 4 steps
are needed. If we want to matah7 steps are needed.
We choose the minimum of them, which is 4.

To facilitate our shifting mechanism, in the
following, we shall give theD; table of the ABM
Algorithm defined as follows: Given an alphabet set
Y = {Xy, Xa ... , X,} and patterrP with lengthm, we
create a table, denoted Rstable ofP, containings
entries where is the alphabet size. Each entry stores
the location of the rightmost, 1<i <g, in P(1, m—

j) counted from locatiom — j, if it exists. Ifx, does
not exist inP(1, m—j), storemin the entry.

For instance, léP = gcagagagandX ={a, c, g, t}.
Then theD; tables, fof = 1 andj = 2, are as follows:

Table 1.D; andD, tables forP = gcagagag

The D, Table
ajc|g]|t
1/6[2]|8

The D, Table
ajc|glt
2|5]1|8

Consider windowM1, m), P(1, m) and an error
boundk. Letd, = Dj(tnj+1), forj=1toj =k+ 1. Then
the number of steps needed to shifdis min{d;,
dy, ..., Ot}

Consider the caseT cctcgcaagagce P
gcagagagand an error bounki= 1. In this caseN =
cctcgcaad; = Dy(wy) =Dy(a) = 1 anddy, = Do(Wi,—1)
= D,(a) = 2. Thus the number of shiftsds= min{d,,
d>} = min{1, 2} = 1. We would shift one step.

It can be easily seen that if we shift less tbasteps
whered is defined by the shifting rule.

The filtering algorithm is shown in the following:

Algorithm 2 Filtering Phase of Approximate
Boyer-M ooreAlgorithm

of the window W, if a shifting is needed, this
substring of the new window will be aligned with a
corresponding substrinB(i, K) in P. According to

Boyer and Moore algorithm, there must exist at least

one pair of characters W(m—k, m) andP(i, k) which
exactly match with each other.

Consider the cas#Y = agtccctaandP = agtcgcta
Supposek = 1 and we have to shift. After shifting,
W(m -k, m) = W(7, 8) =ta will be aligned withP(i,
i+k) = P(i, i+1) for somei. Thus we have to make

sure that after the shift, among the two characters of

89

Construct theD; table and théad(j, x) for 1<j<m
andx € %;
whilei <ndobegin
r:=i; j:=m;
bad:=0;
d:=m
whilej >k andbad< k do begin
if j > m—kthen d :=min(d, di, t]);
if Bad(j, t;) thenbad := bad+ 1,
j=j—-1; r:=r-1,
end;

if bad<kthen
mark entrieC(0,i —m—Kk), ... ,C(0, i —
m+K);

i :=i+maxk+1,d)end

3 Our Bit-Paralld Filtering Algorithm

Our bit-parallel filtering algorithm is based on
ABM algorithm. The main idea of filtering phase of
ABM algorithm is to determine whethérexists in
k-environment ofp; or not. To achieve this idea in
bit-parallel, we obtained the incident vectdy
defined as follows: Given a strir§=s;S;...5, and a
characterx, IVdXx] = (IV4t](1), IVdt1(2), ... ,
IV]t](n)) wherelVdt](j) = 1 if 5 = x andIV{t](j) =
0 if otherwise. For instance, |& = aacag Then
IVe[a] = (1,1,0,1,0)JVe[c] = (0,0,1,0,0) andVp[g] =
(0,0,0,0,1). According to Lemma 1, we redefined our
filtering scheme as follows:

Lemma 4: Given an error bounk and two stringg
= tit,.. .t andP = pip,...pm, if there are more thak
t’'s such that for ali —k <j <i +k, IVp[t](j) = O,
edT, P) > k.

We need bit-parallel operation to check, in vector
IVp[t], whether there exists a 1 between locations
k andi + k in IVp[t]. To achieve this, we first define
an auxiliary vectorB = (B(1), B(2), ... , B(n)) in
which all bits are 0's, except th&(j) = 1 for all
I —Kk < j <i+K. Consider the case where 3, k

=2 andn = 10. VectoB will be (0, 1,1,1,1,1,0,0,
0, 0).

To detect the existence of 1's between locations

i — kandi + k in IVp[t], we can use the logical &
operation on vectorB/p[t] and B. If such 1's exists
in IVp[t], this operation keeps the bit within locations
i —kandi +kin IVp[t]. For instancelVg[t] = (1, 0, O,
1,0,0,0,1,2,0)an@8=(0,1,1,1,1,1,0,0,0,0),
(IVp[t] & B)=(0,0,0, 1, 0,0, 0, 0, 0, 0). It shows
thatt; = ps. If IVR[t] =(0,0,0,0,0, 1,0, 1, 1, 0) and
B=(0,1,1,1,1,1,0,0,0, 0)Ve[t] & B) =(0, 0, O,
0,0,0,0,0, 0, 0). It shows thdtere is na; which
exists between locationis— k andi + k in IVp[t].
Hence, we can use the bit-parallel operatidp[(]

& B) to confirm whethet; exists between locations
i—kandi +kin IVp[t].

The bit-parallel filtering algorithm is shown in
the following:

Algorithm 2: Bit-parallel Filtering Approach
based on Approximate Boyer-Moore Algorithm

Construct théd; table;
for all x € X do begin
B:= 1k+lom—k+1;
for j = 1 tomdo begin
if (IVe[x] & B) = 0" then Bad(j, X) =
true;

90

The 31st Workshop on Combinatorial Mathematics and Computation Theory

else Badi, X) =falseg;
B>>1;
ifj<kthenB:=B|1;
end for
end for
i=m;
whilei <ndobegin
r:=i; j:=m
bad:=0;
d:=m;
whilej >k andbad< k do begin
if j >m—Kkthen d :=min(d, d{i, t]);
if Bad(j, t;) thenbad:=bad+ 1;
j=i-1, r=r-1,
end;
if bad< kthen
mark entrie<C(0,i —m—K), ... ,C(0, i —
m + K);
i :=i+maxk+1,d);
end

5 Conclusion

In this paper, we proposed a bit-parallel
filtering algorithm which is based on the
Approimate Boyer-Moore Algorithm. Our filtering
algorithm can decrease the preprocessing time to
O(cm). The result will be useful when we solve
the text with multiple patterns or with long pattern
and also can be used to determine the article
plagiarism.

References

[1] R. Boyer and S. Moore. A fast string searching
algorithm. Communications of the AGM20, 1977,
pp.75-96.

[2] Z. Galil and Z. Park. An improved algorithm
for approximate string matchinglAM journal on
Computing 19, 1990, pp.989-999.

[3] N. Horspool. Practical fast searching in strings.
Software Practice & Experienc&980, pp.501-506.

[4] G. Landau and U. Vishkin. Fast parallel and
serial approximate string matchinglournal of
Algorithms 10, 1989, pp.157-169.

[5] R.C.T.Lee, S.S.Tseng, R. C. Chang, and Y. T.
Tsai. Introduction to the Design and Analysis of
Algorithms.McGraw-Hill Education 2005.

[6] G. Myers. A fast bit-vector algorithm for
approximate string matching based on dynamic
programming. Journal of the ACM 46, 1999,
pp.395-415.

[71 G. Navarro and R. Baeza-Yates. Very fast and
Simple approximate string matchindgnformation
Processing Letterg2, 1999, pp.65-70.

[8] P. H. Sellers. String Matching with Errors.
Journal of Algorithms20, 1980, pp.443-453.

[91 E. Sutinen and J. Tarhio. On using g-gram

The 31st Workshop on Combinatorial Mathematics and Computation Theory

locations in approximate string matchingn
Proceeding of the "7 Annual Symposium on
Combinatorial Pattern Matching Springer-Verlag,
Berlin, 1995, pp.50-61.

[10] J. Takaoka. Approximate pattern matching with
samples.In Proceedings of ISAAGSpringer-Verlag,
Berlin, 1994, pp.234-242.

[11] J. Tarhio and E. Ukkonen. Approximate
Boyer-Moore String MatchingSIAM Journal on
Computing 22, 1993, pp.243-260.

[12] E. Ukkonen. Finding Approximate patterns in
strings.Journal of Algorithms6, 1985, pp.100-118.
[13] R. Wagner and M. Fischer. The string-tostring
correction problemJournal of the ACM21, 1975,
pp. 168-173.

[14] S. Wu and U. Manber, Fast Text Searching:
Allowing Errors, Communications of the AGNB5,
1992, pp.83-91.

91

