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Abstract 

 
There are many algorithms to solve the 

exact string matching problem and the 
approximate string matching problem. One kind 
approach of them is so-called filtering approach. 
This kind approach is used to decrease the 
searching time in scanning by obtaining the 
preprocessing. One of the filtering is called 
Approximate Boyer-Moore Algorithm which is 
proposed by Tarhio and Ukkonen. The 
Approximate Boyer-Moore Algorithm spent 
O((k+c)m) time in preprocessing where c is the 
size of the alphabet. In this paper, we present a 
bit-parallel filtering technique which is based on 
the Approximate Boyer-Moore Algorithm and 
spents O(cm) time. The result will be useful when 
we solve the text with multiple patterns or with 
long pattern.  

 
1  Introduction 
 

Consider the approximate string matching (ASM) 
problem. The edit distance [12, 14] between two 
strings A and B, denoted as ed(A, B), is defined as the 
minimum number of insertions, deletions and 
substitutions needed to transform string A to string B. 
The ASM Problem is , given a text T = t1t2…tn, P = 
p1p2…pm and an error bound k, to find all such j that 
the edit distance between some substring of T ending 
at position i and P is at most k. The classic algorithm 
to solve the ASM problem is according to the 
dynamic programming approach [8] in O(mn). Let C 
be a m + 1 by n + 1 matrix such that C(i, j) is the 
minimum edit distance between p1p2…pj and any 
substring of T ending at position i. The dynamic 
programming table C can be obtained by the 
following recursive formula: 
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where 0 ≤ i ≤ n and 1 ≤ j ≤ m, and C(i, 0) = 0 for 0 ≤ i 
≤ n. 
 

Landau and Vishkin [4], Galil and Park [2], and 
Ukkonen and Wood [14] also proposed different 
improved algorithms for [8] in O(kn) time. Myers [6] 
gave a new algorithm by using the bit-parallel 
approach to obtain the dynamic programming table 
which has good performance in practical and can be 
done in O(mn/w) time.  
 

Filtering algorithm [7,9,10,11] is a good issue to 
decreasing the processing time in scanning the text. 
One of the filtering algorithm [11] is Approximate 
Boyer-Moore (ABM) Algorithm which is used to 
solve the ASM problem. The ABM Algorithm has 
good performance in moderate patterns with small 
error bound k and large alphabet size. In our paper, 
we proposed a bit-parallel filtering algorithm to 
improve the ABM algorithm. 
 
2  Approximate Boyer-Moore 
Algorithm 
 

The Approximate Boyer-Moore (ABM) Algo- 
rithm contained two phases: filtering and checking. 
The filtering phase is to evaluate every diagonal h of 
the dynamic programming table C whether entries in 
the diagonal h need to be computed. After the 
filtering phase, the value of needless entries of C will 
be set by ∞. Then, the checking phase is to compute 
the remained entries of C. The checking phase can be 
done by using the dynamic programming approach 
[8]. Hence, in our paper, we just focus the phase in 
filtering. 
 

The ABM Algorithm, although an approximate 
string matching algorithm, is related to the exact 
string matching algorithms, namely Boyer and 
Moore Algorithm [1] and Horspool Algorithm [3]. In 
fact, if we consider that the error bound k is equal to 
0, the ABM Algorithm reduces to the Horspool 
Algorithm. Most of them start with some kind of 
pairwise character comparison. Consider a window 
W = w1w2…wm of a text string T and a pattern P = 
p1p2…pm. Suppose wm ≠ pm, we know there is no 
exact matching between P and W and a shifting is 
now needed. In approximate string matching, we 
cannot make such a conclusion. Let us consider the 
case such that T = acttgta and P = acttgt. If we 
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compare t7 and p6, we will find out that t7 ≠ p6. We 
may correctly conclude that we need at least 1 
operation to make t7 ≠ p6. We then compare t6 with p5 
and we will find out that t6 ≠ p5. However, we cannot 
claim that ed(T, P) ≥ 2, because by inserting an a 
after p6, we will make P identical to T. In fact, in this 
case, ed(T, P) = 1. 
 

To facilitate our discussion, denote S(i, j) to be 
the substring sisi+1…sj of S and let us define the 
k-environment of pj as given the pattern P= p1p2…pm, 
the k-environment of pj, denoted as Ek(j), is P(j–k, 
j+k). Note that each ti is aligned with a pj. For 
instance, t2 is aligned with p3. In this case, every ti is 
in its corresponding E1(j) under the condition that k = 
1. For instance, t6 = t is in E1(7) = tc and t2 = c is in 
E1(3) = ctt. We can also prove that ed(T, P) = 1 = k. 
In this case, we can see that t2 = c is not in its 
corresponding C(1, 3) = atg and t4 = t is not in C(1, 5) 
= gcg. We can also prove that ed(T, P) > k = 1. 
 

Let us assume that we have two strings with the 
same length and the error bound k is already 
specified. Then we examine each ti to see whether ti 
is in C(k, i). If one ti is not in C(k, i), we cannot 
perform any insertion or deletion to change pi to ti. 
But, we can perform a substitution. If (k + 1) ti’s are 
not in C(k, i)’s, we have to perform (k + 1) 
substitutions. Thus we have ed(T, P) > k. From the 
above discussion, we can have the following Lemma: 
 
Lemma 1. [] Given an error bound k and two strings 
T = t1t2…tm and P = p1p2…pm, if there are more than 
k ti’s not in E(k, i)’s, ed(T, P) > k. 

 
For finding ti fast, the filtering phase need to 

precompute table Bad(j, x), 1≤ j ≤ m, x ∈ Σ, such that 
Bad(j , x) = true if and only if x does not appear in 
k-environment Ej. 
 

Lemma 1 can obviously be used as a filtering 
scheme. In the following, we shall show a very 
interesting rule of the ABM Algorithm: the shifting 
rule of the filtering phase. The shifting is based upon 
the following rule. 
 

In the ABM Algorithm, the shifting is based upon 
Horspool algorithm. Consider the suffix W(m–k, m) 
of the window W, if a shifting is needed, this 
substring of the new window will be aligned with a 
corresponding substring P(i, k) in P. According to 
Boyer and Moore algorithm, there must exist at least 
one pair of characters in W(m–k, m) and P(i, k) which 
exactly match with each other. 
 

Consider the case, W = agtcccta and P = agtcgcta. 
Suppose k = 1 and we have to shift. After shifting, 
W(m – k, m) = W(7, 8) = ta will be aligned with P(i, 
i+k) = P(i, i+1) for some i. Thus we have to make 
sure that after the shift, among the two characters of 

W(7, 8), namely t and a, at least one character of 
them will be exactly matched with its corresponding 
character in P(i, i+1). If we want to match t, 4 steps 
are needed. If we want to match a, 7 steps are needed. 
We choose the minimum of them, which is 4. 
 

To facilitate our shifting mechanism, in the 
following, we shall give the Dj table of the ABM 
Algorithm defined as follows: Given an alphabet set 
Σ = {x1, x2, … , xσ} and pattern P with length m, we 
create a table, denoted as Dj table of P, containing σ 
entries where σ is the alphabet size. Each entry stores 
the location of the rightmost xi, 1 ≤ i ≤ σ, in P(1, m – 
j) counted from location m – j, if it exists. If xi does 
not exist in P(1, m – j), store m in the entry. 
 

For instance, let P = gcagagag and Σ ={a, c, g, t}. 
Then the Dj tables, for j = 1 and j = 2, are as follows: 
 

Table 1. D1 and D2 tables for P = gcagagag 
 

The 1D  Table 

a c g t 
1 6 2 8 

 

The 2D  Table 

a c g t 
2 5 1 8 

 
Consider window W(1, m), P(1, m) and an error 

bound k. Let dj = Dj(tm–j+1), for j = 1 to j = k + 1. Then 
the number of steps needed to shift is d = min{ d1, 
d2, … , dk+1}. 
 

Consider the case, T = cctcgcaagagc, P = 
gcagagag and an error bound k = 1. In this case, W = 
cctcgcaa, d1 = D1(wm) = D1(a) = 1 and d2 = D2(wm – 1) 
= D2(a) = 2. Thus the number of shifts is d = min{ d1, 
d2} = min{1, 2} = 1. We would shift one step. 
 
It can be easily seen that if we shift less than d steps 
where d is defined by the shifting rule. 
 

The filtering algorithm is shown in the following: 
 
Algorithm 2 Filtering Phase of Approximate 
Boyer-Moore Algorithm 
Construct the Dj table and the Bad(j, x) for 1 ≤ j ≤ m 
and x ∈ Σ; 
i := m; 
while i ≤ n do begin 
 r := i;  j := m; 
 bad :=0; 
 d := m; 
 while j > k and bad ≤ k do begin 
  if j ≥ m – k then d := min(d, dk[i, tr]); 
  if Bad(j, tr) then bad := bad + 1; 
  j := j – 1;  r := r – 1; 
 end; 
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 if bad ≤ k then 
mark entries C(0, i – m – k), … , C(0, i – 
m + k); 

 i := i + max(k + 1, d);end 
 
3 Our Bit-Parallel Filtering Algorithm 
 

Our bit-parallel filtering algorithm is based on 
ABM algorithm. The main idea of filtering phase of 
ABM algorithm is to determine whether ti exists in 
k-environment of pj or not. To achieve this idea in 
bit-parallel, we obtained the incident vector IV 
defined as follows: Given a string S = s1s2…sn and a 
character x, IVS[x] = (IVS[ti](1), IVS[ti](2), … , 
IVS[ti](n)) where IVS[ti](j) = 1 if sj = x and IVS[ti](j) = 
0 if otherwise. For instance, let P = aacag. Then 
IVP[a] = (1,1,0,1,0), IVP[c] = (0,0,1,0,0) and IVP[g] = 
(0,0,0,0,1). According to Lemma 1, we redefined our 
filtering scheme as follows:  

 
Lemma 4: Given an error bound k and two strings T 
= t1t2…tm and P = p1p2…pm, if there are more than k 
ti’s such that for all i – k ≤ j ≤ i + k, IVP[ti](j) = 0, 
ed(T, P) > k. 
 

We need bit-parallel operation to check, in vector 
IVP[ti], whether there exists a 1 between locations i – 
k and i + k in IVP[ti]. To achieve this, we first define 
an auxiliary vector B = (B(1), B(2), … , B(n)) in 
which all bits are 0’s, except that B(j) = 1 for all 

kijki +≤≤− . Consider the case where i = 3, k 

= 2 and n = 10. Vector B will be (0, 1, 1, 1, 1, 1, 0, 0, 
0, 0).  

 
To detect the existence of 1’s between locations 

i – k and i + k in IVP[ti], we can use the logical & 
operation on vectors IVP[ti] and B. If such 1’s exists 
in IVP[ti], this operation keeps the bit within locations 
i – k and i + k in IVP[ti]. For instance, IVP[ti] = (1, 0, 0, 
1, 0, 0, 0, 1, 1, 0) and B = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0), 
(IVP[ti] &  B) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0). It shows 
that ti = p4. If IVP[ti] = (0, 0, 0, 0, 0, 1, 0, 1, 1, 0) and 
B = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0), (IVP[ti] &  B) = (0, 0, 0, 
0, 0, 0, 0, 0, 0, 0). It shows that there is no ti which 
exists between locations i – k and i + k in IVP[ti]. 
Hence, we can use the bit-parallel operation (IVP[ti] 
& B) to confirm whether ti exists between locations 
i – k and i + k in IVP[ti]. 
 

The bit-parallel filtering algorithm is shown in 
the following: 
 
Algorithm 2: Bit-parallel Filtering Approach 
based on Approximate Boyer-Moore Algorithm 
Construct the Dj table; 
for all x ∈ Σ do begin 

B := 1k+10m–k+1; 
 for j = 1 to m do begin 

if (IVP[x] & B) = 0m then Bad(j, x) = 
true; 

  else Bad(i, x) = false; 
   B >> 1; 
  if j ≤ k then B := B | 1; 
 end for  
end for 
i := m; 
while i ≤ n do begin 
 r := i;  j := m; 
 bad :=0; 
 d := m; 
 while j > k and bad ≤ k do begin 
  if j ≥ m – k then d := min(d, dk[i, tr]); 
  if Bad(j, tr) then bad := bad + 1; 
  j := j – 1;  r := r – 1; 
 end; 
 if bad ≤ k then 

mark entries C(0, i – m – k), … , C(0, i – 
m + k); 

 i := i + max(k + 1, d); 
end 
 
5  Conclusion 
 
 In this paper, we proposed a bit-parallel 
filtering algorithm which is based on the 
Approimate Boyer-Moore Algorithm. Our filtering 
algorithm can decrease the preprocessing time to 
O(cm). The result will be useful when we solve 
the text with multiple patterns or with long pattern 
and also can be used to determine the article 
plagiarism.   
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