
P-mixed domination: a unified approach to mixed domination

and various domination-related problems in trees†

Chuan-Min Lee
Department of Computer and Communication Engineering

Ming Chuan University
5 De Ming Rd., Guishan District, Taoyuan County 333, Taiwan.

Tel: +886-3-350-7001 ext.3432
Fax: +886-3-359-3876

Email: joneslee@mail.mcu.edu.tw

Abstract

The literature is extensive on algorithms and
complexity results for the problems of dominating
or covering vertices or edges by other vertices
or edges. For any one of these dominating or
covering problems, we observe that no matter
what the definition or concept is, it is almost
always solvable in linear time for trees. In this
paper, we attempt to bring together a number of
recent ideas in the study of domination-related
problems into a single framework for trees. To
do so, we introduce the notion of P-mixed dom-
ination and present a linear-time algorithm to
solve the P-mixed domination problem in trees.
Our algorithm gives a unified approach to mixed
domination and various dominating and covering
problems for trees.

Keywords: Algorithm; Domination; Mixed dom-
ination; Strong elimination ordering; Tree;

1 Introduction

All graphs in this paper are simple, i.e., fi-
nite, undirected, and without self-loops or multi-
ple edges. Let G = (V,E) be a graph with vertex
set V and edge set E. Unless stated otherwise, it is
understood that |V | = n and |E| = m. The vertex
and edge sets of G are also referred to as V (G) and
E(G), respectively. For an element x ∈ V ∪E, it is
either a vertex or an edge in G. For simplicity, we
also call it an element in G. Two distinct vertices

†This research was partially supported under Research
Grants NSC-101-2221-E-130-013 and NSC-102-221-E-130-
004.

u and v of G are adjacent if (u, v) is an edge of G.
Two distinct edges e1 and e2 of G are adjacent if
they have an endvertex in common. If a vertex v
is connected to another vertex by an edge e, then
we say that v is incident to e. Likewise, we say
that the edge e is incident to v.

For any vertex v of a graph G = (V,E), the
open neighborhood of v in G is NG(v) = {u ∈
V |(u, v) ∈ E} and the closed neighborhood of v in
G is NG[v] = NG(v)∪{v}. The degree of a vertex v
in G is degG(v) = |NG(v)|. For an element x ∈ V ∪
E, the mixed neighborhood of x in G is Nm

G (x) =
{y ∈ V ∪ E | y is adjacent or incident to x}. The
mixed closed neighborhood of x in G is Nm

G [x] =
Nm

G (x)∪{x}. For any vertex v ∈ V , we use EG(v)
to denote the set of edges incident to v. Given two
vertices u and v of G, the distance between them,
denoted by dG(u, v), is defined as the number of
edges in a shortest path between them in G. If
W ⊆ V , then G[W] denotes the subgraph of G
induced by W .

A mixed dominating set of a graph G = (V,E)
is a subset D of V ∪ E such that |Nm

G [x] ∩ D| ≥
1 for every element x ∈ V ∪ E. The mixed
domination number of G, denoted by γm(G), is
the minimum cardinality of a mixed dominat-
ing set of G. The mixed domination problem is
to find a mixed dominating set of G of mini-
mum cardinality. It has a practical application
of placing phase measurement units to monitor
the states of an electric power system [20], and
has been studied or discussed in papers and books
[1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 18, 20].

Apart from the mixed domination problem, the
literature is extensive on algorithms and complex-
ity results for the problems of dominating or cover-
ing vertices or edges by other vertices or edges (cf.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

156

[5, 10, 11]). For any one of these domination
or covering problems, we observe that no matter
what the definition or concept is, it is almost al-
ways solvable in linear time for trees. Motivated
by the observation and the recent works on mixed
domination in trees [12, 20], we attempt to develop
a unified approach to mixed domination and vari-
ous well-known domination and covering problems
for trees. To do so, we give an alternative way to
define a mixed dominating set and introduce the
notion of P-mixed domination as below.

Mixed dominating sets can be expressed in
terms of functions. Suppose that G = (V,E) is
a graph and Y is a subset of real numbers. Let
f : V ∪E → Y be a function of G which assigns to
each x ∈ V ∪ E a value in Y . The set Y is called
the weight set of f . We let f(S) =

∑
u∈S f(u) for

any subset S of V ∪ E and let w(f) = f(V ∪ E)
be the weight of f . A mixed dominating set can
be viewed as a function f : V ∪ E → {0, 1} such
that f(Nm

G [x]) ≥ 1 for every x ∈ V ∪ E. The
function f is called a mixed dominating function
and γm(G) = min{w(f) | f is a mixed dominating
function of G}.

Definition 1. Let G = (V,E) be a simple graph.
Let I1 and Fr be fixed integers, and let ` and d be
fixed positive integers such that Fr = I1+`·d. Sup-
pose that Y is the set {I1, I1 + d, I1 + 2d, . . . , I1 +
(`−1) ·d} and P is a labeling function assigning to
each element x ∈ V ∪E a label P(x) = (t(x), k(x)),
where t(x) ∈ Y ∪ {Fr} and k(x) is a fixed integer.
For an element x in G, it is called a free element
if t(x) = Fr. Otherwise, it is called a restrictive
element . A P-mixed dominating function of G is
a function f : V ∪ E → Y satisfying the following
two conditions: (1) f(x) = t(x) if t(x) 6= Fr, and
(2) f(Nm

G [x]) ≥ k(x) for every element x ∈ V ∪E.
The P-mixed domination number ofG, denoted by
γPm(G), is the minimum weight of a P-mixed dom-
inating function of G. The P-mixed domination
problem is to find a P-mixed dominating function
of G of minimum weight.

In this paper, we present a linear-time algo-
rithm to solve the P-mixed domination problem
in trees. According to the definition, the P-mixed
domination includes the domination, k-tuple dom-
ination, {k}-domination, signed domination, mi-
nus domination, edge domination, vertex cover,
and edge cover problems as special cases.

In a generic tree, we can fix a vertex of the
tree to be the root and turn the tree into a rooted
one. Clearly, this can be done in O(n) time. We
may therefore consider only the rooted trees in this

paper.

2 An O(n2)-time algorithm for P-
mixed domination in rooted trees

Let G = (V,E) be a graph. A clique is a
subset of pairwise adjacent vertices of V . A ver-
tex v is simplicial if all vertices of NG[v] form a
clique. The ordering v1, v2, . . . , vn of the vertices
of V is a perfect elimination ordering of G if for all
i ∈ {1, . . . , n}, vi is a simplicial vertex of the sub-
graph Gi of G induced by {vi, vi+1, . . . , vn}. For
each vertex v ∈ {vi, vi+1, . . . , vn}, let Ni[v] de-
note the closed neighborhood of v in Gi. Rose [17]
showed the characterization that a graph is chordal
if and only if it has a perfect elimination ordering.
A perfect elimination ordering is called a strong
elimination ordering if it has the following prop-
erty:

For each i ≤ j ≤ k if vj , vk ∈ Ni[vi] in Gi, then
Ni[vj] ⊆ Ni[vk].

Farber [8] showed that a graph is strongly chordal
if and only if it admits a strong elimination or-
dering. Currently, the fastest algorithm takes
O(m log n) time [16] or O(n2) time [19] to rec-
ognize a strongly chordal graph and give a strong
elimination ordering.

The total graph of a graph G, denoted by T (G),
has V (G) ∪ E(G) as its vertex set, and two ver-
tices of T (G) are adjacent if and only if they are
adjacent or incident to each other in G. Then
each element x in a graph G is the vertex x in
T (G), and the mixed closed neighborhood of x in
G is equivalent to the closed neighborhood of x in
T (G).

It can be shown that the total graph of a tree
is a strongly chordal graph by using the Farber’s
forbidden subgraph characterization of strongly
chordal graphs [8].

Let H = (VH, EH) be a tree rooted at r.
Let p be the number of the elements in G, i.e.,
p = |VH ∪ EH|. For each vertex v ∈ VH, the
level of v is defined as λ(v) = dH(v, r), and for
each edge e = (u, v) of G, the level of e is de-
fined as λ(e) = 1

2 (λ(u) + λ(v)). For any two dis-
tinct vertices u, v ∈ VH, u is called the parent
of v if (u, v) ∈ EH and λ(u) = λ(v) − 1. If u
is the parent of v, then v is called a child of u.
A level transversal ordering of H is an ordering
x1, x2, . . . , xp of the elements of VH∪EH arranged
in non-increasing levels of them. Clearly, xp is the
root.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

157

A level transversal ordering of a rooted tree can
be computed by breadth first search in O(n) time.
Ales̆ and Bac̆́ık [3] showed that a level transversal
ordering of a rooted tree H is a strong elimination
ordering of the vertices in T (H).

Algorithm PMD(H,P, I1, `, d))

1: for i = 1 to p do
2: if t(xi) = Fr then
3: f(xi)← I1 + (`− 1) · d;
4: else
5: f(xi)← t(xi);
6: end if
7: end for
8: for i = 1 to p do
9: if k(xi) > f(Nm

G [xi]) then
10: stop and return the infeasibility of the

problem;
11: end if
12: end for
13: for i = 1 to p do
14: if t(xi) = Fr then
15: M ← min{f(Nm

G [xj]) − k(xj)|xj ∈
Nm

G [xi]};
16: f(xi)← max{I1, I1 +(d`− M

d e−1) ·d};
17: end if
18: end for
19: return the function f ;

We give Algorithm PMD to find a P-mixed
dominating function of a rooted tree of minimum
weight. The algorithm takes H, P, I1, `, and d as
inputs. Input H represents a rooted tree H with
a level transversal ordering x1, x2, . . . , xp, where
p = |V (H) ∪ E(H)|. Inputs `, d, I1 are fixed
integers and `, d > 0. Let Fr = I1 + `d. The
weight set Y is assumed to be the set {I1, I1 +
d, I1 + 2d, . . . , I1 + (`− 1) · d}. Input P represents
a labeling function which assigns to every element
x ∈ V (H) ∪ E(H) a label P(x) = (t(x), k(x)),
where t(x) ∈ Y ∪ {Fr} and k(x) is a fixed integer.

It can be easily verified that the running time
of Algorithm PMD is O(n2). The correctness of
Algorithm PMD can be proved by the arguments
similar to those for proving the correctness of the
algorithm for the labeled domination on strongly
chordal graphs [13].

3 A linear-time algorithm for P-
mixed domination in rooted trees

Based on Algorithm PMD, we develop an algo-
rithm, called IPMD, to solve the P-mixed domina-

tion problem for rooted trees in O(n) time. Algo-
rithm IPMD contains four procedures: Initial-
ization, Verification, MComputation, and
Update. We show how to design these four pro-
cedures in this section.

Algorithm IPMD(H,P, I1, `, d))

1: Initialization(H,P, I1, `, d));
2: Verification(f);
3: for i = 1 to p do
4: if t(xi) = Fr then
5: Mcomputation(xi, f);
6: f(xi)← max{I1, I1 +(d`− M

d e−1) ·d};
7: Update(xi, f);
8: end if
9: end for

10: return the function f ;

Throughout the section, we use H = (VH, EH)
to denote a rooted tree with a level transversal
ordering x1, x2, . . . , xp, where p = |VH ∪ EH|. If
an element xi in H is an edge, let xi = (xi1 , xi2)
and let xi2 be the parent of xi1 . Clearly, i1 < i2
and λ(i1) > λ(i2).

Suppose that Y is a subset of real numbers
and f : VH ∪ EH → Y is a function of H which
assigns a value of Y to an element x in H .
For each vertex xi of H, we let (1) vf (xi) =
f(NH[xi]), (2) ef (xi) = f(EH(xi)), (3)nf (xi) =
min{f(Nm

H [xj])− k(xj) | xj ∈ NH[xi] and j ≤ i},
and (4)mf (xi) = min{f(Nm

H [xj]) − k(xj) | xj ∈
EH(xi) and j < i}.

Lemma 1. Suppose that Y is a subset of real
numbers. Let f : VH ∪ EH → Y be a function of
H. The following statements are true.

(1) If an element xi is a vertex of H, then
f(Nm

H [xi]) = vf (xi) + ef (xi).

(2) If an element xi is an edge of H, then
f(Nm

H [xi]) = ef (xi1) + ef (xi2) − f(xi) +
f(xi1) + f(xi2).

Proof. The statements can be easily verified ac-
cording to the definitions. 2

We design a procedure, called Initialization,
to initialize a function f of H and to set the values
of vf (xi), ef (xi), nf (xi), and mf (xi) for each ver-
tex xi in H according to the initialized function f
and their definitions. These values will be used for
designing the procedures Verification, MCom-
putation, and Update to make them more effi-
ciently.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

158

Procedure Initialization(H,P, I1, `, d)

1: for i = 1 to p do
2: if t(xi) = Fr then
3: f(xi)← I1 + (`− 1) · d;
4: else
5: f(xi)← t(xi);
6: end if
7: end for
8: for each vertex xi ∈ VH do
9: vf (xi)← f(NH[xi]); ef (xi)← f(EH(xi));

10: end for
11: for each vertex xi ∈ VH do
12: nf (xi) ← {f(Nm

H [xj]) − k(xj) | xj ∈
NH[xi] and j ≤ i};

13: mf (xi) ← {f(Nm
H [xj]) − k(xj) | xj ∈

EH(xi) and j < i};
14: end for

Theorem 1. Steps 1–7 of Procedure Initial-
ization are equivalent to Steps 1–7 of Algorithm
PMD, and the running time of this procedure is
O(n).

Proof. It can be easily observed that Steps 1–7 of
Procedure Initialization are equivalent to Steps
1–7 of Algorithm PMD.

Since H is a tree, p = |VH∪EH| = 2n−1. Steps
1–7 can be done in O(n) time. For any vertex xi
of H, |NH[xi]| = degH(xi) + 1 and |EH(xi)| =
degH(xi). Therefore, vf (xi) and ef (xi) can be
computed in O(degH(xi) + 1) time for each ver-
tex xi ∈ VH.

Since the values of vf (xi) and ef (xi) have been
computed in Steps 8–10 for each vertex xi ∈ VH,
by Lemma 1, we know that f(Nm

H [xj]) can be
computed in O(1) time for each element xj in H.
Therefore, nf (xi) and mf (xi) can be computed in
O(degH(xi)+1) time for each vertex xi ∈ VH. The
total amount of time to run Steps 8–14 is

O

(∑
xi∈VH

(degH(xi) + 1)

)
= O(n+m) = O(n).

Hence, the running time of Procedure Initial-
ization is O(n). 2

Based on Lemma 1, we design Procedure Veri-
fication to check whether the function f , initial-
ized by Procedure Initialization, is a P-mixed
dominating function of H. We have the following
theorem.

Theorem 2. The steps of Procedure Verifica-
tion are equivalent to Steps 8–12 of Algorithm

Procedure Verification(f)

1: for i = 1 to p do
2: if xi ∈ VH and k(xi) > vf (xi) + ef (xi)

or xi ∈ EH and k(xi) > ef (xi1) + ef (xi2) −
f(xi) + f(xi1) + f(xi2) then

3: stop and return the infeasibility of the
problem;

4: end if
5: end for

PMD, and the running time of this procedure is
O(n).

For each iteration of Steps 13–18, Algorithm
PMD computes a value, M , in Step 15 if the con-
dition for the if-statement in Step 14 is true. In
Algorithm IPMD, we design a procedure called
Mcomputation to compute M for each element
xi in H with t(xi) = Fr. Since xi is either a vertex
or an edge ofH, Procedure MComputation deals
with the case for xi ∈ VH in Steps 1–10 and deals
with the case for xi ∈ EH in Steps 11–21. Steps
1–10 of the procedure are based on Lemma 2 and
Steps 11–21 are based on Lemma 3.

Procedure Mcomputation(xi, f)

1: if xi is a vertex of H then
2: if xi is the root of H then
3: M ← min{nf (xi),mf (xi)};
4: else
5: let xi′ be the parent of xi and let xt =

(xi, xi′);
6: m1 ← vf (xi′) + ef (xi′)− k(xi′);
7: m2 ← ef (xi)+ef (xi′)−f(xt)+f(xi)+
f(xi′)− k(xt);

8: M ← min{nf (xi),mf (xi),m1,m2};
9: end if

10: end if
11: if xi is an edge of H then
12: let xi = (xi1 , xi2) of H, where xi2 is the

parent of xi1 ;
13: m1 ← min{vf (xi1) + ef (xi1) −

k(xi1), vf (xi2) + ef (xi2)− k(xi2)};
14: if xi2 is the root of H then
15: M ← min{mf (xi1),mf (xi2),m1};
16: else
17: let xi′2 be the parent of xi2 and let xt =

(xi2 , xi′2);
18: m2 ← ef (xi2) + ef (xi′2) − f(xt) +

f(xi2) + f(xi′2)− k(xt);
19: M ← min{mf (xi1),mf (xi2),m1,m2};
20: end if
21: end if

The 31st Workshop on Combinatorial Mathematics and Computation Theory

159

Lemma 2. Assume that f is a P-mixed domi-
nating function of H. Let xi be a vertex of H and
let M = min{f(Nm

H [xj]) − k(xj) | xj ∈ Nm
H [xi]}.

The following statements are true.

(1) Suppose that xi is the root of H. Then, M =
min{nf (xi),mf (xi)}.

(2) Suppose that xi is not the root of H. Let xi′
be the parent of xi and let xt = (xi, xi′). Let
m1 = vf (xi′) + ef (xi′)− k(xi′) and let m2 =
ef (xi)+ef (xi′)−f(xt)+f(xi)+f(xi′)−k(xt).
Then, M = min{nf (xi),mf (xi),m1,m2}.

Proof. (1) By definition, Nm
H [xi] = NH[xi] ∪

EH(xi). Since xi is the root of H, j ≤ i for any
vertex xj ∈ NH[xi], and j < i for any edge xj ∈
EH(xi). We have M = min{f(Nm

H [xj]) − k(xj) |
xj ∈ Nm

H [xi]} = min{f(Nm
H [xj]) − k(xj) | xj ∈

NH[xi] ∪ EH(xi)} = min{nf (xi),mf (xi)}.
(2) Note that Nm

H [xi] = NH[xi] ∪ EH(xi).
For each element xj ∈ Nm

H [xi] \ {xt, xi′},
the index j is smaller than or equal to i.
Therefore, min{f(Nm

H [xj]) − k(xj) | xj ∈
Nm

H [xi] \ {xt, xi′}} = min{nf (xi),mf (xi)}. We
have M = min{f(Nm

H [xj]) − k(xj) | xj ∈
Nm

H [xi]} = min{nf (xi),mf (xi), f(Nm
H [xi′]) −

k(xi′), f(Nm
H [xt])− k(xt)}.

By Lemma 1, f(Nm
H [xi′]) = vf (xi′) +

ef (xi′) and f(Nm
H [xt]) = ef (xi) + ef (xi′) −

f(xt) + f(xi) + f(xi′). Therefore, M =
min{nf (xi),mf (xi),m1,m2}. 2

Lemma 3. Assume that f is a P-mixed domi-
nating function of H. Let xi be an edge (xi1 , xi2)
of H, where xi2 is the parent of xi1 . Let M =
min{f(Nm

H [xj]) − k(xj) | xj ∈ Nm
H [xi]} and let

m1 = min{vf (xi1) + ef (xi1) − k(xi1), vf (xi2) +
ef (xi2) − k(xi2)}. The following statements are
true.

(1) Suppose that xi2 is the root of H. Then, M =
min{mf (xi1),mf (xi2),m1}.

(2) Suppose that xi2 is not the root of H.
Let xi′2 be the parent of xi2 and xt =
(xi2 , xi′2). Let m2 = ef (xi2) + ef (xi′2) −
f(xt) + f(xi2) + f(xi′2) − k(xt). Then, M =
min{mf (xi1),mf (xi2),m1,m2}.

Proof. (1) By definition, Nm
H [xi] = EH(xi1) ∪

EH(xi2) ∪ {xi1 , xi2}. Note that EH(xi1) ∩
EH(xi2) = {xi}. Since xi2 is the root of H,
j < i1 for any element xj ∈ EH(xi1) \ {xi}, and
j < i2 for every element xj ∈ EH(xi2). We have
M = min{f(Nm

H [xj]) − k(xj) | xj ∈ Nm
H [xi]} =

min{f(Nm
H [xj])−k(xj) | xj ∈ EH(xi1)∪EH(xi2)∪

{xi1 , xi2}} = min{mf (xi1),mf (xi2), f(Nm
H [xi1])−

k(xi1), f(Nm
H [xi2]) − k(xi2)}. By Lemma 1, we

know that f(Nm
H [xi1]) = vf (xi1) + ef (xi1) and

f(Nm
H [xi2]) = vf (xi2) + ef (xi2) . Hence, M =

min{mf (xi1),mf (xi2),m1}.
(2) By definition, Nm

H [xi] = EH(xi1) ∪
EH(xi2) ∪ {xi1 , xi2}. Note that EH(xi1) ∩
EH(xi2) = {xi}. For each element xj ∈
Nm

H [xi] \ {xi1 , xi2 , xt}, j < i1 or j < i2.
Therefore, min{f(Nm

H [xj]) − k(xj) | xj ∈
Nm

H [xi] \ {xi1 , xi2 , xt}} = min{mf (xi1),mf (xi2)}.
We have M = min{f(Nm

H [xj]) − k(xj) | xj ∈
Nm

H [xi]} = min{mf (xi1),mf (xi2), f(Nm
H [xi1]) −

k(xi1), f(Nm
H [xi2]) − k(xi2), f(Nm

H [xt]) − k(xt)}.
By Lemma 1, we know that f(Nm

H [xi1]) =
vf (xi1) + ef (xi1), f(Nm

H [xi2]) = vf (xi2) +
ef (xi2), and f(Nm

H [xt]) = ef (xi2) + ef (xi′2) −
f(xt) + f(xi2) + f(xi′2). Hence, M =
min{mf (xi1),mf (xi2),m1,m2}. 2

Theorem 3. Procedure MComputation is
equivalent to Step 15 of Algorithm PMD, and the
running time of this procedure is O(1).

Proof. It can be easily verified that the running
time of Procedure MComputation is O(1).

For any element xi in H, it is either a vertex or
an edge. By Lemmas 2 and 3, Procedure MCom-
putation is equivalent to Step 15 of Algorithm
PMD. 2

By Lemmas 2–3, we design Procedure
Mcomputation to compute M . However,
for each i-th iteration of Steps 3–9, Algo-
rithm IPMD replaces the value of f(xi) with
max{I1, I1 + (d`− M

d e − 1) · d} if t(xi) = Fr. We
therefore design a procedure called Update to
make sure that both at the beginning and at the
end of each iteration of Steps 3–9, the function
f satisfies the following conditions for each
vertex xj in H: (1) vf (xj) = f(NH[xj]),
(2) ef (xj) = f(EH(xj)), (3)nf (xj) =
min{f(Nm

H [xk])−k(xk) | xk ∈ NH[xj] and k ≤ j},
and (4)mf (xj) = min{f(Nm

H [xk]) − k(xk) | xk ∈
EH(xj) and k < j}.

Note that Algorithm IPMD changes only the
value of f(xi) at each i-th iteration of Steps 3–
9. Since xi is either a vertex or an edge of H,
Procedure Update deals with the case for xi ∈ VH
in Steps 2–29 and deals with the case for xi ∈ EH
in Steps 30–55. Steps 2–29 of the procedure are
based on Lemma 4 and Steps 30–55 are based on
Lemma 5.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

160

Procedure Update(xi, f)

1: B ← max{I1, I1 + (d`− M
d e − 1) · d};

2: if xi is a vertex of H then
3: for each vertex xj ∈ NH[xi] do
4: vf (xj)← vf (xj)− (I1 +(`−1) ·d)+B;
5: end for
6: if there exists a vertex xi′′ such that xi′′ is

the parent of the parent of xi then
7: W ← NH[xi] ∪ {xi′′};
8: else
9: W ← NH[xi];

10: end if
11: for each vertex xj ∈W do
12: if xj is a child of xi then
13: nf (xj) ← min{nf (xj), vf (xj) +

ef (xj)− k(xj)};
14: end if
15: if xj is the vertex xi then
16: nf (xj)← nf (xj)−(I1+(`−1) ·d)+
B;

17: mf (xj) ← mf (xj) − (I1 + (` − 1) ·
d) + B;

18: end if
19: if xj is the parent of xi then
20: let xt = (xi, xj);
21: nf (xj) ← min{nf (xj), vf (xj) +

ef (xj)− k(xj), vf (xi) + ef (xi)− k(xi)};
22: mf (xj) ← min{mf (xj), ef (xi) +

ef (xj)− f(xt) + B + f(xj)− k(xt)};
23: end if
24: if xj is the parent of the parent of xi

then
25: let xi′ be the parent of xi;
26: nf (xj) ← min{nf (xj), vf (xi′) +

ef (xi′)− k(xi′)};
27: end if
28: end for
29: end if
30: if xi is an edge of H then
31: let xi = (xi1 , xi2) be an edge of H, where

xi2 is the parent of xi1 ;
32: for each vertex xj ∈ {xi1 , xi2} do
33: ef (xj)← ef (xj)− (I1 + (`−1) ·d) +B;
34: end for
35: if there exists a vertex xi′2 such that xi′2 is

the parent of xi2 then
36: W ← {xi1 , xi2 , xi′2};
37: else
38: W ← {xi1 , xi2};
39: end if
40: for each vertex xj ∈W do
41: if xj = xi1 then
42: nf (xj) ← min{nf (xj), vf (xj) +

ef (xj)− k(xj)};
43: mf (xj) ← mf (xj) − (I1 + (` − 1) ·

d) + B;
44: end if
45: if xj = xi2 then
46: nf (xj) ← min{nf (xj), vf (xi1) +

ef (xi1)− k(xi1), vf (xj) + ef (xj)− k(xj)};
47: mf (xj) ← mf (xj) − (I1 + (` − 1) ·

d) + B;
48: end if
49: if xj is the parent of xi2 then
50: let xt = (xi2 , xj);
51: nf (xj) ← min{nf (xj), vf (xi2) +

ef (xi2)− k(xi2)};
52: mf (xj) ← min{mf (xj), ef (xi2) +

ef (xj)− f(xt) + f(xi2) + f(xj)};
53: end if
54: end for
55: end if

Lemma 4. Assume that Algorithm IPMD runs
and does not stop in Step 2. Let Y = {I1, I1 +
d, . . . , I1 + (` − 1) · d} and let f : VH ∪ EH → Y
be the function of H at the beginning of the i-th
iteration of Steps 3–9. Let xi be a vertex of H with
t(xi) = Fr and let f ′ : VH∪EH → Y be a function
of H such that f ′(xi) = B = max{I1, I1 + (d` −
M
d e− 1) · d} and f ′(xj) = f(xj) for every element
xj ∈ VH∪EH \{xi}. The following statements are
true.

(1) For each vertex xj ∈ VH, ef ′(xj) = ef (xj).

(2) For each vertex xj ∈ VH, vf ′(xj) = vf (xj) −
(I1+(`−1) ·d)+B if xj ∈ NH[xi]. Otherwise,
vf ′(xj) = vf (xj).

(3) If there exists a vertex xi′′ such that xi′′ is
the parent of the parent of xi, then let W =
NH[xi] ∪ {xi′′}. Otherwise, let W = NH[xi].
For each vertex xj ∈ VH \ W , nf ′(xj) =
nf (xj) and mf ′(xj) = mf (xj).

(4) Let xj be a vertex in W . The following state-
ments are true.

(4.1) Suppose that xj is a child of xi. Then,
mf ′(xj) = mf (xj) and nf ′(xj) =
min{nf (xj), vf ′(xj) + ef (xj)− k(xj)}.

(4.2) Suppose that xj is the vertex xi. Then,
mf ′(xj) = mf (xj)− (I1 + (`− 1) · d) +B
and nf ′(xj) = nf (xj)−(I1+(`−1)·d)+B.

(4.3) Suppose that xj is the parent of
xi. Let xt = (xi, xj). Then,
nf ′(xj) = min{nf (xj), vf ′(xj) +

The 31st Workshop on Combinatorial Mathematics and Computation Theory

161

ef (xj)− k(xj), vf ′(xi) + ef (xi)− k(xi)},
and mf ′(xj) = min{mf (xj), ef (xi) +
ef (xj)− f(xt) + B + f(xj)− k(xt)}.

(4.4) Suppose that xj is the parent of the par-
ent of xi. Let xi′ be the parent of xi.
Then, mf ′(xj) = mf (xj) and nf ′(xj) =
min{nf (xj), vf ′(xi′) + ef (xi′)− k(xi′)}.

Proof. (1) Note that f ′(xk) = f(xk) for every
element xk ∈ VH∪EH\{xi}. Let xj be a vertex of
H. By definition, ef ′(xj) = f ′(EH(xj)). Since xi
is a verex, xi 6∈ EH(xj) and thus ef ′(xj) = ef (xj).

(2) Let xj be a vertex of H. By definition,
vf ′(xj) = f ′(NH[xj]). If xi 6∈ NH[xj], then
vf ′(xj) = vf (xj). We now suppose that xi ∈
NH[xj]. Note that f(xi) = I1 + (` − 1) · d at
the beginning of the i-th iteration of Steps 3–
9 in Algorithm IPMD. Then, f ′(xi) = f(xi) −
(I1 + (` − 1) · d) + B. Since f ′(xk) = f(xk) for
every element xk ∈ VH ∪ EH \ {xi}, we have
vf ′(xj)−f ′(xi) = vf (xj)−f(xi). Hence, vf ′(xj) =
vf (xj)− (I1 + (`− 1) · d) + B.

(3) Let xj be a vertex in VH \ W .
Note that nf ′(xj) = min{f ′(Nm

H [xk]) −
k(xk) | xk ∈ NH[xj] and k ≤ j} and
mf ′(xj) = min{f ′(Nm

H [xk]) − k(xk) | xk ∈
EH(xj) and k < j}. By the definition of W ,
it can be easily verified that for any ele-
ment xk ∈ NH[xj] ∪ EH(xj) with k ≤ j,
Nm

H [xk] does not contain the vertex xi. Hence,
nf ′(xj) = nf (xj) and mf ′(xj) = mf (xj).

(4) For each vertex xj ∈ W , by def-
inition, nf ′(xj) = min{f ′(Nm

H [xk]) −
k(xk) | xk ∈ NH[xj] and k ≤ j} and
mf ′(xj) = min{f ′(Nm

H [xk]) − k(xk) | xk ∈
EH(xj) and k < j}. We consider the following
four cases.

Case 1: xj is a child of xi. It can be easily
verified that for any edge xk ∈ EH(xj) with k < j,
Nm

H [xk] does not contain the vertex xi. Therefore,
f ′(Nm

H [xk])−k(xk) = f(Nm
H [xk])−k(xk). We have

mf ′(xj) = mf (xj).
We now consider a vertex xk ∈ NH[xj]

with k ≤ j. If k < j, then Nm
H [xk]

does not contain the vertex xi. Therefore,
f ′(Nm

H [xk]) − k(xk) = f(Nm
H [xk]) − k(xk). If

k = j, then f ′(Nm
H [xk]) − k(xk) = f ′(Nm

H [xj]) −
k(xj) and Nm

H [xk] contains the vertex xi. By
Lemma 1, and Statements (1) and (2) of this
lemma, f ′(Nm

H [xj]) − k(xj) = vf ′(xj) + ef ′(xj) −
k(xj) = vf ′(xj) + ef (xj) − k(xj) ≤ vf (xj) +
ef (xj) − k(xj) = f(Nm

H [xj]) − k(xj). There-
fore, nf ′(xj) = min{f ′(Nm

H [xk]) − k(xk) | xk ∈
NH[xj] and k ≤ j} = min{nf (xj), f

′(Nm
H [xj]) −

k(xj)} = min{nf (xj), vf ′(xj) + ef (xj)− k(xj)}.
Case 2: xj is the vertex xi. For any element

xk ∈ NH[xj]∪EH(xj) with k ≤ j, Nm
H [xk] contains

the vertex xi. Note that f(xi) = I1 + (`− 1) · d at
the beginning of the i-th iteration of Steps 3–9 in
Algorithm IPMD. We have f ′(Nm

H [xk])− k(xk) =
f(Nm

H [xk])− (I1 + (`− 1) · d) + B − k(xk) for any
element xk ∈ NH[xj]∪EH(xj) with k ≤ j. Hence,
mf ′(xj) = mf (xj) − (I1 + (` − 1) · d) + B and
nf ′(xj) = nf (xj)− (I1 + (`− 1) · d) + B.

Case 3: xj is the parent of xi. Clearly, i < j.
Let xk be a vertex in NH[xj] with k ≤ j. If
k 6= i, j, then Nm

H [xk] does not contain the vertex
xi. Therefore, f ′(Nm

H [xk])−k(xk) = f(Nm
H [xk])−

k(xk). If k = i or k = j, then Nm
H [xk] con-

tains the vertex xi. By Lemma 1, we know that
f ′(Nm

H [xj]) − k(xj) = vf ′(xj) + ef ′(xj) − k(xj),
and f ′(Nm

H [xi])−k(xi) = vf ′(xi)+ef ′(xi)−k(xi).
By Statements (1) and (2) of this lemma, vf ′(xi)+
ef ′(xi)−k(xi) = vf ′(xi)+ef (xi)−k(xi) ≤ vf (xi)+
ef (xi) − k(xi), and vf ′(xj) + ef ′(xj) − k(xj) =
vf ′(xj)+ef (xj)−k(xj) ≤ vf (xj)+ef (xj)−k(xj).
Hence, nf ′(xj) = min{nf (xj), vf ′(xj) + ef (xj) −
k(xj), vf ′(xi) + ef (xi)− k(xi)}.

We now consider an edge xk in EH(xj) with
k < j. Recall that xt = (xi, xj). Clearly,
t < j. If k 6= t, then Nm

H [xk] does not contain
the vertex xi. Therefore, f ′(Nm

H [xk]) − k(xk) =
f(Nm

H [xk]) − k(xk). If k = t, then f ′(Nm
H [xk]) −

k(xk) = f ′(Nm
H [xt]) − k(xt) and Nm

H [xk] con-
tains the vertex xi. Note that f ′(xi) = B, and
f ′(x) = f(x) for every element x ∈ VH ∪ EH \
{xi}. By Lemma 1 and Statement (1) of this
lemma, f ′(Nm

H [xt]) − k(xt) = ef ′(xi) + ef ′(xj) −
f ′(xt)+f ′(xi)+f ′(xj)−k(xt) = ef (xi)+ef (xj)−
f(xt) + B + f(xj) − k(xt) ≤ f(Nm

H [xt]) − k(xt).
Hence, mf ′(xj) = min{f ′(Nm

H [xk])− k(xk) | xk ∈
EH(xj) and k < j} = min{mf (xj), f

′(Nm
H [xt]) −

k(xt)} = min{mf (xj), ef (xi) + ef (xj) − f(xt) +
B + f(xj)− k(xt)}.

Case 4: xj is the parent of the parent xi′ of xi.
For any edge xk ∈ EH(xj) with k < j, it can be
easily verified that Nm

H [xk] does not contain the
vertex xi. Therefore, mf ′(xj) = mf (xj).

We now consider a vertex xk ∈ NH[xj] with
k ≤ j. Clearly, xi′ ∈ NH[xj] and i′ < j. If
xk 6= xi′ , then Nm

H [xk] does not contain the vertex
xi. Therefore, f ′(Nm

H [xk])−k(xk) = f(Nm
H [xk])−

k(xk). If xk = xi′ , then f ′(Nm
H [xk]) − k(xk) =

f ′(Nm
H [xi′]) − k(xi′) and Nm

H [xi′] contains the
vertex xi. By Lemma 1, and Statements (1)
and (2) of this lemma, f ′(Nm

H [xi′]) − k(xi′) =
vf ′(xi′) + ef ′(xi′) − k(xi′) = vf ′(xi′) + ef (xi′) −
k(xi′) ≤ f(Nm

H [xi′]) − k(xi′). Hence, nf ′(xj) =

The 31st Workshop on Combinatorial Mathematics and Computation Theory

162

min{nf (xj), vf ′(xi′) + ef (xi′)− k(xi′)}. 2

Lemma 5. Assume that Algorithm IPMD runs
and does not stop in Step 2. Let Y = {I1, I1 +
d, . . . , I1+(`−1)·d} and let f : VH∪EH → Y be the
function of H at the beginning of the i-th iteration
of Steps 3–9. Let xi = (xi1 , xi2) be an edge of H
such that t(xi) = Fr and xi2 is the parent of xi1 .
Let f ′ : VH ∪ EH → Y be a function of H such
that f ′(xi) = B = max{I1, I1 + (d`− M

d e − 1) · d}
and f ′(xj) = f(xj) for every element xj ∈ VH ∪
EH \ {xi}. The following statements are true.

(1) For each vertex xj ∈ VH, vf ′(xj) = vf (xj).

(2) For each vertex xj ∈ VH, ef ′(xj) = ef (xj) −
(I1 + (`− 1) · d) +B if xj ∈ {xi1 , xi2}. Other-
wise, ef ′(xj) = ef (xj).

(3) If there exists a vertex xi′2 such that xi′2 is
the parent of xi2 , then let W = {xi1 , xi2 , xi′2}.
Otherwise, let W = {xi1 , xi2}. For each ver-
tex xj ∈ VH \ W , nf ′(xj) = nf (xj) and
mf ′(xj) = mf (xj).

(4) Let xj be a vertex in W . The following state-
ments are true.

(4.1) Suppose that xj = xi1 . Then, nf ′(xj) =
min{nf (xj), vf (xj) + ef ′(xj) − k(xj)},
and mf ′(xj) = mf (xj) − (I1 + (` − 1) ·
d) + B.

(4.2) Suppose that xj = xi2 . Then, nf ′(xj) =
min{nf (xj), vf (xi1) + ef ′(xi1) −
k(xi1), vf (xj) + ef ′(xj) − k(xj)} and
mf ′(xj) = mf (xj)− (I1 +(`−1) ·d)+B.

(4.3) Suppose that xj is the parent of xi2 .
Let xt = (xi2 , xj). Then, nf ′(xj) =
min{nf (xj), vf (xi2) + ef ′(xi2)− k(xi2)}
and mf ′(xj) = min{mf (xj), ef ′(xi2) +
ef (xj)− f(xt) + f(xi2) + f(xj)}.

Proof. (1) Note that f ′(xk) = f(xk) for every
element xk ∈ VH ∪ EH \ {xi}. Let xj be a vertex
of H. By definition, vf ′(xj) = f ′(NH[xj]). Since
the edge xi is not in NH[xj], vf ′(xj) = vf (xj).

(2) Let xj be a vertex of H. By definition,
ef ′(xj) = f ′(EH(xj)). If xi 6∈ EH(xj), then
ef ′(xj) = ef (xj). We now suppose that xi ∈
EH(xj). Then either xj = xi1 or xj = xi2 . Note
that f(xi) = I1 + (` − 1) · d at the beginning of
the i-th iteration of Steps 3–9 in Algorithm IPMD.
Then, f ′(xi) = f(xi)− (I1 + (`− 1) · d) +B. Since
f ′(xk) = f(xk) for every element xk ∈ VH ∪ EH \
{xi}, we have ef ′(xj) − f ′(xi) = ef (xj) − f(xi).
Hence, ef ′(xj) = ef (xj)− (I1 + (`− 1) · d) + B.

(3) Let xj be a vertex in VH \ W .
Note that nf ′(xj) = min{f ′(Nm

H [xk]) −
k(xk) | xk ∈ NH[xj] and k ≤ j} and
mf ′(xj) = min{f ′(Nm

H [xk]) − k(xk) | xk ∈
EH(xj) and k < j}. By the definition of W ,
it can be easily verified that for any element
xk ∈ NH[xj] ∪ EH(xj) with k ≤ j, Nm

H [xk] does
not contain the edge xi. Hence, nf ′(xj) = nf (xj)
and mf ′(xj) = mf (xj).

(4) For each vertex xj ∈ W , by def-
inition, nf ′(xj) = min{f ′(Nm

H [xk]) −
k(xk) | xk ∈ NH[xj] and k ≤ j} and
mf ′(xj) = min{f ′(Nm

H [xk]) − k(xk) | xk ∈
EH(xj) and k < j}. We consider the following
three cases.

Case 1: xj = xi1 . For any edge xk ∈ EH(xj)
with k < j, Nm

H [xk] contain the edge xi. Note
that f(xi) = I1 + (` − 1) · d at the beginning of
the i-th iteration of Steps 3–9 in Algorithm IPMD.
Then, f ′(xi) = f(xi)− (I1 + (`− 1) · d) +B. Since
f ′(x) = f(x) for every element x ∈ VH∪EH\{xi},
f ′(Nm

H [xk])−f ′(xi) = f(Nm
H [xk])−f(xi). We have

f ′(Nm
H [xk])− k(xk) = f(Nm

H [xk])− (I1 + (`− 1) ·
d) + B − k(xk). Therefore, mf ′(xj) = mf (xj) −
(I1 + (`− 1) · d) + B.

We now consider a vertex xk ∈ NH[xj] with
k ≤ j. If k < j, then Nm

H [xk] does not contain
the edge xi. Therefore, f ′(Nm

H [xk]) − k(xk) =
f(Nm

H [xk]) − k(xk). If k = j, then f ′(Nm
H [xk]) −

k(xk) = f ′(Nm
H [xj]) − k(xj) and Nm

H [xk] con-
tains the edge xi. By Lemma 1, f ′(Nm

H [xj]) −
k(xj) = vf ′(xj) + ef ′(xj) − k(xj). By Statements
(1) and (2) of this lemma, we know that vf ′(xj) +
ef ′(xj) − k(xj) = vf (xj) + ef ′(xj) − k(xj) ≤
vf (xj) + ef (xj) − k(xj). Therefore, nf ′(xj) =
min{nf (xj), vf (xj) + ef ′(xj)− k(xj)}.

Case 2: xj = xi2 . For any vertex xk ∈
NH[xj] \ {xi1 , xj} with k < j, Nm

H [xk] does not
contain the edge xi. Therefore, f ′(Nm

H [xk]) −
k(xk) = f(Nm

H [xk]) − k(xk). If xk = xi1 or
xk = xj , then Nm

H [xk] contains the edge xi. By
Lemma 1, we know that f ′(Nm

H [xi1]) − k(xi1) =
vf ′(xi1) + ef ′(xi1) − k(xi1), and f ′(Nm

H [xj]) −
k(xj) = vf ′(xj) + ef ′(xj) − k(xj). By Statements
(1) and (2) of this lemma, vf ′(xi1) + ef ′(xi1) −
k(xi1) = vf (xi1) + ef ′(xi1) − k(xi1) ≤ vf (xi1) +
ef (xi1) − k(xi1), and vf ′(xj) + ef ′(xj) − k(xj) =
vf (xj)+ef ′(xj)−k(xj) ≤ vf (xj)+ef (xj)−k(xj).
Hence, nf ′(xj) = min{nf (xj), vf (xj) + ef ′(xj) −
k(xj), vf (xi1) + ef ′(xi1)− k(xi1)}.

We now consider an edge xk in EH(xj) with
k < j. Clearly, xi ∈ Nm

H [xk]. Note that f(xi) =
I1 + (` − 1) · d at the beginning of the i-th iter-
ation of Steps 3–9 in Algorithm IPMD. We have

The 31st Workshop on Combinatorial Mathematics and Computation Theory

163

f ′(Nm
H [xk])− k(xk) = f(Nm

H [xk])− (I1 + (`− 1) ·
d) + B − k(xk). Hence, mf ′(xj) = mf (xj)− (I1 +
(`− 1) · d) + B.

Case 3: xj is the parent of xi2 . Let xk be
a vertex in NH[xj] with k ≤ j. If k 6= i2, then
Nm

H [xk] does not contain the edge xi. Therefore,
f ′(Nm

H [xk])− k(xk) = f(Nm
H [xk])− k(xk). If k =

i2, then f ′(Nm
H [xk])−k(xk) = f ′(Nm

H [xi2])−k(xi2)
and Nm

H [xk] contains the edge xi. By Lemma 1,
f ′(Nm

H [xi2])−k(xi2) = vf ′(xi2)+ef ′(xi2)−k(xi2).
By Statements (1) and (2) of this lemma, we
know that vf ′(xi2) + ef ′(xi2)− k(xj) = vf (xi2) +
ef ′(xi2)−k(xj) ≤ vf (xi2)+ef (xi2)−k(xi2). There-
fore, nf ′(xj) = min{nf (xj), vf (xi2) + ef ′(xi2) −
k(xi2)}.

We now consider an edge xk in EH(xj) with
k < j. Recall that xt = (xi2 , xj). Clearly,
t < j. If k 6= t, then Nm

H [xk] does not contain
the edge xi. Therefore, f ′(Nm

H [xk]) − k(xk) =
f(Nm

H [xk]) − k(xk). If k = t, then f ′(Nm
H [xk]) −

k(xk) = f ′(Nm
H [xt]) − k(xt) and Nm

H [xk] con-
tains the edge xi. Note that f ′(xi) = B, and
f ′(x) = f(x) for every element x ∈ VH ∪ EH \
{xi}. By Lemma 1 and Statement (2) of this
lemma, f ′(Nm

H [xt])− k(xt) = ef ′(xi2) + ef ′(xj)−
f ′(xt) + f ′(xi2) + f ′(xj) − k(xt) = ef ′(xi2) +
ef (xj) − f(xt) + f(xi2) + f(xj) − k(xt). Hence,
mf ′(xj) = min{f ′(Nm

H [xk]) − k(xk) | xk ∈
EH(xj) and k < j} = min{mf (xj), f

′(Nm
H [xt]) −

k(xt)} = min{mf (xj), ef ′(xi2) + ef (xj)− f(xt) +
f(xi2) + f(xj)− k(xt)}. 2

Theorem 4. Assume that Algorithm IPMD runs
and does not stop in Step 2. Let Y = {I1, I1 +
d, . . . , I1 + (` − 1) · d} and let f : VH ∪ EH → Y
be the function of H at the beginning of the i-th
iteration of Steps 3–9. Let xi be an element in H
with t(xi) = Fr. Both at the beginning and at the
end of each iteration of Steps 3–9, the function f
satisfies the following conditions for each vertex xj
in H:

(1) vf (xj) = f(NH[xj]),

(2) ef (xj) = f(EH(xj)),

(3) nf (xj) = min{f(Nm
H [xk]) − k(xk) | xk ∈

NH[xj] and k ≤ j}, and

(4) mf (xj) = min{f(Nm
H [xk]) − k(xk) | xk ∈

EH(xj) and k < j}.

Proof. Clearly, the function f at the beginning
of the first iteration of Steps 3–9 satisfies the four
conditions for each vertex xj in H. We assume
that the function f at the beginning of the i-th

iteration of Steps 3–9 satisfies the four conditions
for each vertex xj in H. By Lemmas 4 and 5, we
know that through Procedure Update, the new
function f obtained by changing the value of f(xi)
in Step 6 also satisfies the four conditions for each
vertex xj in H at the end of the i-th iteration of
Steps 3–9. Note that the function f at the end of
the i-th iteration of Steps 3–9 is the function f at
the beginning of the (i + 1)-th iteration. Hence,
the theorem holds. 2

The following theorem can be easily verified.

Theorem 5. For each element xi in H with
t(xi) = Fr, the running time of Procedure Update
is O(degH(xi)) if xi ∈ VH, and O(1) if xi ∈ EH.

Theorem 6. Algorithm IPMD finds a P-mixed
dominating function of a rooted tree H of mini-
mum weight in O(n) time.

Proof. By Theorems 1–4, Algorithm IPMD is
equivalent to Algorithm PMD and thus the func-
tion f returned from Step 10 of Algorithm IPMD
is a P-mixed dominating function of H of mini-
mum weight.

Note that |VH| = n and |EH| = m = n− 1. By
Theorems 1–3 and Theorem 5, the running time
of Algorithm IPMD is

O

(∑
xi∈VH

(degH(xi) + 1)

)
= O(2m+ n) = O(n).

2

References

[1] Y. Alavi, M. Behzad, L.M. Lesniak-Foster,
E.A. Nordhaus, Total matchings and total
coverings of graphs, Journal of Graph The-
ory 1 (1977), 135–140.

[2] Y. Alavi, , J. Liu, J. Wang, Z. Zhang, On
total covers of graphs, Discrete Mathematics
100 (1992), 229–233.

[3] J. Ales̆, R. Bac̆́ık, Strong elimination order-
ing of the total graph of a tree, Discrete Ap-
plied Mathematics 39 (1992), 293–295.

[4] G.S. Adhar, S. Peng, Mixed domination in
tree: a parallel algorithm, in: Proceedings of
the 25th Southeastern International Confer-
ence on Combinatorics, Graph Theory, and
Computing, Congr. Numer. 100 (1994), 73–
80.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

164

[5] G.J. Chang, Algorithmic aspects of domi-
nation in graphs, in: Du, D.Z, Pardalos,
P.M. (eds.) Handbook of Combinatorial Op-
timization, Vol. 3, pp. 339–405, Kluwer,
Boston, MA, 1998.

[6] Y.H. Chen, The mixed dominating set prob-
lem is MAX SNP-hard, in: Proceedings of
the 29th Workshop on Combinatorial Math-
ematics and Computation Theory, 120–123,
2012.

[7] P. Erdös, A. Meir, On total matching num-
bers and total covering numbers of comple-
mentary graphs, Discrete Mathematics 187
(1998), 269–271.

[8] M. Farber, Characterizations of strongly
chordal graphs, Discrete Mathematics 43
(1983), 173–189.

[9] P. Hatami, An approximation algorithm for
the total cover problem, Discussiones Math-
ematicae Graph Theory 27 (2007), 553–560.

[10] T.W. Haynes, S.T. Hedetniemi, P.J. Slater,
Fundamentals of Domination in Graphs,
Marcel Dekker, New York, 1998.

[11] T.W. Haynes, S.T. Hedetniemi, P.J. Slater,
Domination in Graphs: Advanced Topics,
Marcel Dekker, New York, 1998.

[12] J.K. Lan, G.J. Chang, , On the mixed domi-
nation problem in graphs, Theoretical Com-
puter Science 476 (2013), 84–93.

[13] C.-M. Lee, M.-S. Chang, Variations of Y -
dominating functions on graphs, Discrete
Mathematics 308 (2008), 4185–4204.

[14] Y.T. Li, J.J. Liu, Y.L. Wang, On total cov-
ers of block-cactus graphs, in: Proceedings
of Advances in Intelligent Systems and Ap-
plications, SIST20, 33–39, 2013.

[15] D.F. Manlove, On the algorithmic complex-
ity of twelve covering and independence pa-
rameters of graphs, Discrtete Applied Math-
ematics 91 (1999), 155–175.

[16] R. Paige, R.E. Tarjan, Three partition re-
finement algorithms. SIAM Journal on Com-
puting 16 (1987), 973–989.

[17] D.J. Rose, Triangulated graphs and the
elimination process, Journal of Mathemat-
ical Analysis and Applications 32 (1970),
597–609.

[18] P.J. Slater, Domination and location in
acyclic graphs, Networks 17 (1987), 55–64.

[19] J.P. Spinrad, Doubly lexical ordering of
dense 0-1 matrices, Information Processing
Letters 45(1993), 229–235.

[20] Y. Zhao, L. Kang, M.Y. Sohn, The algo-
rithmic complexity of mixed domination in
graphs, Theoretical Computer Science 412
(2001), 2387–2392.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

165

