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Abstract 
 

Let G denote a graph, and KV(G) represent a 

set of target vertices. Assume that the non-target 

vertices of G fail independently with given 

probabilities. The K-terminal reliability of G is 

defined as the probability that all target vertices in 

K are connected. Computing K-terminal reliability 

is #P-complete for general graphs, yet solvable in 

polynomial time for interval graphs. This work 

proposes an O(n
2
)-time algorithm for computing 

the K-terminal reliability of n-vertex rooted 

directed path graphs, which are a superclass of 

interval graphs. 

 

 

1  Introduction 
 

Commonly found in engineering, reliability 

analysis problems are characterized by network 

reliability, i.e . the ability of a network to survive a 

random or purposeful attack [1-4]. A network can 

be modeled as a probabilistic graph, in  which each 

edge and vertex has an associated failure 

probability. The network model presented in this 

work is a graph G with perfect edges and 

imperfect vertices. Related applications of these 

graph models include Radio Broadcast Networks 

(RBN) [2]. An RBN can be modeled using a 

probabilistic graph in which each site is 

represented by a vertex with a known probability 

of failu re; an edge exists between the vertices if 

and only if they can communicate with each other.  

A subset of K vertices is selected in this work as 

the target vertices of a network. The K-terminal 

reliability (KTR) is the probability that all vertices 

in K  are connected to each other by a set of working 

non-target vertices. Aboeifotoh and Colbourn [5] 

confirmed that the computation of KTR , i.e. the 

KTR problem, is #P-complete for general graphs 

and remains so even for chordal graphs. Valiant [6] 

defined the class of #P problems as those that 

involve counting access computations for problems 

in NP , while the class of #P-complete problems 

includes the hardest problems in #P. As is well 

known, all algorithms for solving these problems 

have exponential time complexity, explaining the 

near impossibility of developing efficient 

algorithms for solving this class of problems. 

However, considering only a restricted subclass of 

#P-complete problems can reduce this complexity.  

Gavril [7] verified that chordal graphs are the 

intersection graphs of a family of subtrees in a 

clique tree. A tree T is a clique tree for a graph G if 

each node in T corresponds to a maximal clique in 

G. Hereinafter clique refers to a maximal clique. 

For vV(G), let C (v) denote the set of all cliques 

of G containing vertex v. Therefore, G is a chordal 

graph if and only if C (v) is a subtree in a clique 

tree T for every  vV(G) [7]. This work 

investigates a restricted subclass of chordal graphs, 

i.e. rooted directed path graphs. Rooted directed 

path graphs consist of the intersection graphs of a 

family of d irected subpaths in a rooted directed 

clique tree. A t ree is called a rooted directed tree if 

one node has been designated as the root, and the 

edges have a natural orientation, away from the 

root. Interval graphs are rooted directed path 

graphs in which the clique tree is itself a path. 

Interval graphs are generally defined as the 

intersection graphs of a family  of intervals on a 

real line. An interval graph G is called proper 

interval graph if there is an interval representation 

of G such that no interval contains another one 

properly. These graph classes are related to each 

other by the following proper inclusions: 

proper interval graph  interval graph  rooted 

directed path graph  chordal graph [8]. 

Permutation graphs, trapezoid graphs and 

d-trapezoids graphs are three other important 

intersection graphs. A permutation graph has an 

intersection model consisting of straight lines (one 

per vertex) between two parallels. Trapezoid 

graphs are the intersection graphs of a family of 

trapezoids (one per vertex) between two parallel 

lines. Trapezo id graphs  properly contain both 

interval and permutation graphs . Flotow [9] 

generalized the definition of trapezoid graphs as 

follows. A d-trapezoid graph has an intersection 

model consisting of polygons, called d-trapezoids, 

between d parallel lines. The d-trapezoid graphs 

are common generalizations of interval and 

trapezoid graphs, such that 1-trapezoid  graphs 

coincide with interval ones and 2-trapezoid  graphs 

coincide with trapezoid ones. 
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Aboeifotoh and Colbourn [5] demonstrated that 

the KTR problem is #P-complete even for chordal 

graphs. That work also developed polynomial t ime 

algorithms for computing KTR of such interval 

and permutation graphs. Our earlier works derived 

a linear-t ime algorithm for proper interval graphs 

[10] as well as a polynomial t ime algorithm for 

interval, trapezo id and d-trapezo id graphs [11]. 

The status of the KTR problem for rooted directed 

path graphs has remained unclear until now. This 

work shows that an O(n2)-time algorithm exists for 

computing the K-terminal reliability of a given 

n-vertex rooted directed path graph. 

 

 

2 O(n2)-Time Algorithm for Computing 

KTR of Rooted Directed Path Graphs 
 

This section introduces a simple and efficient 

algorithm for solving the KTR prob lem for rooted 

directed path graphs. First, assume that the rooted 

directed clique tree T has been constructed for the 

rooted directed path graph G. Th is construction 

takes only linear time with an easy modification of 

the recognition algorithm in [12]. The rooted 

directed clique tree has the feature that the cliques 

containing any vertex form a subpath that is 

directed away from the root. For clarity, some 

notations and definitions used in this section are 

described as follows. 

Notations 

G rooted directed path graph 

K set of target vertices 

T rooted directed clique tree corresponding 

to G 

r root clique of T 

x lowest common ancestor of all target 

cliques in T 

N(T) set of nodes (cliques) in T 

Tk subtree of T rooted at clique k  (Tr  T) 

CHD(k) set of children of clique k  in T 

k
+
 parent of clique k  in T 

V(k) set of vertices in clique k 

C(v) set of cliques which contains vertex v 

(Note: vertex vV(k) iff clique kC(v) ) 

S(k) set of vertices which start at clique k in T 

(Note: vertex vS(k) iff vV(k) and v  

V(k
+
), i.e. S(k)  V(k)\V(k

+
)) 

S
*
(k) set of vertices which start at the clique k  

and all its descendants in T 

S(k ,h) set of vertices which start at the cliques 

on the subpath from k  to h in T 

EF(k ,h) event that clique h fail to connect to its 

parent clique h
+
 by using vertices in 

S(k ,h
+
), where k  is one of the ancestors of 

h in T 

EC(k ,h) event that all leaf cliques of Th can 

connect to clique h
+
 by using vertices in 

S
*
(k), where k  is one of the ancestors of h 

in T 

Pr[ ] probability that event  occurs 

qv failure probability of the vertex v; qv=0 if 

v is a target vertex 

R(G,K) K-terminal reliability of the rooted 

directed path graph G 

 

Definitions 

 A clique in T is called a target clique if it 

contains at least one target vertex in G; 

otherwise, it is called a non-target clique. 

 The lowest common ancestor of two  cliques k 

and h, denoted by lca(k ,h), in T is the clique of 

greatest depth in T that is an ancestor of both k 

and h. 

Given a rooted directed path graph  G, the 

corresponding rooted directed clique tree T, and a 

set K of target vertices, R(G,K ) can be 

equivalently defined as the probability that all 

target cliques in T can connect to each other in  T 

by using vertices of G. Let the clique x denote the 

lowest common ancestor of all target cliques in T. 

Obviously, all target cliques can connect to each 

other if and only if each target clique can connect 

to the clique x. Additionally, if clique k  is a leaf 

and non-target clique in T, clique k  can be deleted 

without affecting its reliability. Therefore, after 

deleting all non-target leaf cliques in T, R(G,K) 

can be equivalently redefined as the probability 

that all leaf cliques of T connect to the clique x. 

That is, 

R(G,K) = 

' ( )

Pr ( , ')
x CHD x

EC r x


 
 
 

 

Since all subtrees Tx', for x '  CHD(x), are 

disjoint from each other, all events EC(r,x'), fo r x' 

 CHD(x), are independent of each other. Thus  

R(G,K) =  
' ( )

Pr ( , ')

x CHD x

EC r x



  

To compute R(G,K), two lemmas, one that 

computes Pr[EF(k ,h)] and one that computes 

Pr[EC (k ,h)], for each clique kN(T) and clique 

hN(Tk)\{k}, are given as follows. 

Lemma 1. For each clique k  N (T)\{r} and 

clique hN(Tk), 

Pr[EF(k
+
,h)] = Pr[EF(k ,h)] 

( ) ( )

v

v S k V h

q


 

 , 

and with boundary condition Pr[EF(k ,k)] = 1 for 

kN(T). 

Proof. By definition, Pr[EF(k ,h)] = 
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( , ) ( ) ( )

v

v S k h V h V h

q
 

  

 . As a result of hN(Tk), (k  

h
+ 
 h) is a directed subpath in T. Therefore, if 

vS(k ,h
+
)  V(h), then v S(k ,h

+
)  V(h

+
) and 

thus  Pr[EF(k ,h)] = 

( , ) ( )

v

v S k h V h

q


 

 . Similarly, 

Pr[EF(k
+
,h)] = 

( , ) ( )

v

v S k h V h

q
 

 

 . Obviously, S(k ,h
+
) 

 S(k
+
,h

+
) and this implies that Pr[EF(k

+
,h)] = 

Pr[EF(k ,h)] 

( , ) (( , ) ))\ (S k h S

v

kv h V h

q
  

 

 . Since (k
+ 
 k 

 h) is also a directed subpath in T, 

(S(k
+
,h

+
)\S(k ,h

+
))  V(h) = S(k

+
)  V(h) and the 

lemma follows.    □ 

 
Lemma 2. For each clique kN(T) and clique 

hN(Tk)\{k}, 

Pr[EC(k ,h)] =  
' ( )

Pr ( , ')

h CHD h

EC k h



  

Pr[EF(k ,h)]   
' ( )

Pr ( , ')

h CHD h

EC h h



 , 

and with boundary condition Pr[EC(k ,h)] = 

1Pr[EF(k ,h)] if h is a leaf clique in T. 

Proof. Two events used to derive the lemma are 

defined as follows: 

EA 

' ( )h CHD h

{all leaf cliques of Th ' are 

connected to clique h by using vertices in 

S
*
(k)} and 

EB {clique h is connected to clique h
+
 by using 

vertices in S
*
(k)}. 

By definition, EA=

' ( )

( , ')

h CHD h

EC k h



. Notably, 

all subtrees Th ', for h'  CHD(h), are disjoint from 

each other. Hence, all events EC(k ,h'), for h'  

CHD(h), are independent of each other. Thus 

Pr[EA] =  
' ( )

Pr ( , ')

h CHD h

EC k h



 . Furthermore, 

event EA can be expressed as union of two disjoint 

events:  

EA = (EAEB) (EA EB ), 

where denotes disjoint union and EB  denotes 

the complement of EB. 

By definition, EAEB = EC(k ,h). Therefore, 

 
' ( )

Pr ( , ')

h CHD h

EC k h



 = 

Pr[EC(k ,h)] + Pr[EA EB ]. 

Next, consider the event EA  EB  = 

' ( )

( , ')

h CHD h

EC k h EB



 . Since all leaf cliques of 

Th ' fail to connect to clique h
+
, event EC(k ,h')  

EB  can be refined as two events E1E2, which 

are 

E1 

' ( )h CHD h

{all leaf cliques of Th ' are connected 

to clique h by using vertices in S
*
(h)} and 

E2  {clique h fail to connect to clique h
+
 by using 

the vertices in S(k ,h
+
)}. 

Obviously, Pr[E1] =  
' ( )

Pr ( , ')

h CHD h

EC h h



  

and Pr[E2]=Pr[EF(k ,h)]. Notably, the events E1 

and E2 involve disjoint sets S
*
(h) and S(k ,h

+
), 

respectively, and thus are independent of each 

other. Therefore,  

Pr[EAEB ] = 

Pr[EF(k ,h)]   
' ( )

Pr ( , ')

h CHD h

EC h h



   

and the lemma follows.    □ 

Based on the above formulation, the algorithm for 

computing R(G,K) of a rooted directed path graph G 

is formally described as follows. 

 

 Algorithm Compute_KTR 

 Input:  A rooted directed path graph G, a set K of target vertices, and 

    the failure probability of each vertex 

 Output: R(G,K) 

1.  Construct a rooted directed clique tree T of G with the root r; 

2.  Remove all leaf nodes from T that contain none of target vertex in K; 

3.  for each clique kN(T)\{r} do S(k) V(k)\V(k
+
); 

4.  call Compute_PrEF; 

5.  call Compute_PrEC; 

6.  xcall Compute_LCA;. 

7.  return(

' ( )

( , ')

x CHD x

PrEC r x



 ); 
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 end-algorithm 

 Procedure Compute_PrEF 

1.  for each clique kN(T) do PrEF(k ,k) 1; 

2.  for each clique k N(T)\{r} encountered in the post-order traversal do 

3.   for each clique hN(Tk) do PrEF(k
+
,h)  PrEF(k ,h); 

4.   for each vertex vS(k
+
) do 

5.    for each clique hC(v) do  

6.     if clique hN(Tk) then PrEF(k
+
,h) PrEF(k ,h)qv; 

 end-procedure 

 Procedure Compute_PrEC 

1.  for each clique kN(T) encountered in the post-order traversal do 

2.   for each clique hN(Tk)\{k} encountered in the post-order traversal do 

3.    if (clique h is a leaf clique) then  

4.     PrEC(k ,h) 1PrEF(k ,h); 

5.    else 

6.     

' ( ) ' ( )

( , ) ( , ') ( , ) ( , ')

h CHD h h CHD h

PrEC k h PrEC k h PrEF k h PrEC h h

 

    ; 

 end-procedure 

 Procedure Compute_LCA 

1.  xone of target cliques in T; 

2.  for each target clique kN(T) do x lca(k ,x); 

3.  return(x); 

 end-procedure 
 

Theorem 1. An O(n
2
)-t ime algorithm exists for 

computing the K-terminal reliability of a given 

n-vertex rooted directed path graph. 

Proof. Assume that all sets, N(Tk), V(k), S(k), C(v) 

used in the algorithm are implemented using 

bit-vectors. Thus, set-related operations such as 

finding a member and adding a member take 

constant time and operations such as finding the 

difference between sets take linear t ime. Consider 

Algorithm Compute_KTR. In line 1, given a 

rooted directed path graph G, the rooted directed 

clique tree T can be constructed in linear time by 

easily modifying the recognition algorithm of 

Dietz et al. [13]. As is well known, an  n-vertex 

chordal graph has at most n maximal cliques and 

rooted directed path graphs are chordal. Therefore, 

the tree T constructed in line 1 has at most n clique 

nodes, i.e. O(|N(T)|)=O(n). After constructing T, 

deriving all of the sets V(k) for kN(T), and C(v) 

for vV(G) in O(n
2
) time is relatively easy. In line 

2, removing all non-target leaf cliques from T can 

be completed in O(n
2
) time. Line 3 takes 

O(|N(T)|n)=O(n
2
) time to compute all S(k). 

Procedure Compute_PrEF needs O(|N (T)|
2
) = 

O(n
2
) time to sort all cliques in the post-order and 

then takes O(|N(T)|  |N(T)|) = O(n
2
) time to set 

the initial values of all PrEF(k
+
,h), for kN(T)\{r} 

and hN(Tk), in line 3. Obviously, each vertex v  

belongs to at most one of S(k
+
) for kN(T)\{r} in 

line 4. Therefore, computing all PrEF(k
+
,h) in line 

6 takes
( )\{ } ( )

( ( | ( ) |))
k N T r v S k

O C v


 

   = 

| ( )|

( | ( ) |)
v V G

O C v


  = 
2

( )O n  time. Hence, 

procedure Compute_PrEF takes O(n
2
) time 

overall. 

Next, the running time of p rocedure 

Compute_PrEC is analyzed. Clearly, line 6 takes 

( ) ( )\{ }

( ( | ( ) |))

k
k N T h N T k

O CHD h
 

   time to compute all 

PrEC(k ,h). Since 
( )\{ }

| ( ) |)

k
h N T k

CHD h


  = O(the 

number of branches in Tk) = O(|N(Tk)|), procedure 

Compute_PrEC takes 
( )

( | ( ) |)
k

k N T

O N T


  = O(n
2
) 

time overall. 

Finally, the running time of procedure 

Compute_LCA is analyzed. Before Compute_LCA 

procedure is executed, T can be preprocessed in 

O(|N(T)|) = O(n) time. Therefore, for any pair of 

its nodes k  and h, lca(k ,h) can be computed in 

constant time [13,14]. Since lca(k ,x) operation in 

line 2 executes O(|N(T)|) = O(n) t imes, procedure 

Compute_LCA takes O(n) time.  

In summary, the overall computational 

complexity of the algorithm is O(n
2
).    □ 

 

 

3  Conclusion 
 

To our knowledge, this work solves the 
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complexity of the KTR problem for rooted 

directed path graphs for the first time. Notably, the 

classes of intersection graphs with polynomially 

solvable KTR problem extend from interval graphs 

[5] to rooted directed path graphs, yet still 

maintain the same time complexity of O(n
2
). 
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