
An O(n
2
)-time algorithm for computing the K-terminal reliability of

rooted directed path graphs

Chao-Chun Ting*, Min-Sheng Lin**

Department of Electrical Engineering
National Taipei University of Technology, Taipei, Taiwan

*jackey_din2000@yahoo.com.tw, **mslin@ee.ntut.edu.tw

Abstract

Let G denote a graph, and KV(G) represent a

set of target vertices. Assume that the non-target

vertices of G fail independently with given

probabilities. The K-terminal reliability of G is

defined as the probability that all target vertices in

K are connected. Computing K-terminal reliability

is #P-complete for general graphs, yet solvable in

polynomial time for interval graphs. This work

proposes an O(n
2
)-time algorithm for computing

the K-terminal reliability of n-vertex rooted

directed path graphs, which are a superclass of

interval graphs.

1 Introduction

Commonly found in engineering, reliability

analysis problems are characterized by network

reliability, i.e . the ability of a network to survive a

random or purposeful attack [1-4]. A network can

be modeled as a probabilistic graph, in which each

edge and vertex has an associated failure

probability. The network model presented in this

work is a graph G with perfect edges and

imperfect vertices. Related applications of these

graph models include Radio Broadcast Networks

(RBN) [2]. An RBN can be modeled using a

probabilistic graph in which each site is

represented by a vertex with a known probability

of failu re; an edge exists between the vertices if

and only if they can communicate with each other.

A subset of K vertices is selected in this work as

the target vertices of a network. The K-terminal

reliability (KTR) is the probability that all vertices

in K are connected to each other by a set of working

non-target vertices. Aboeifotoh and Colbourn [5]

confirmed that the computation of KTR , i.e. the

KTR problem, is #P-complete for general graphs

and remains so even for chordal graphs. Valiant [6]

defined the class of #P problems as those that

involve counting access computations for problems

in NP , while the class of #P-complete problems

includes the hardest problems in #P. As is well

known, all algorithms for solving these problems

have exponential time complexity, explaining the

near impossibility of developing efficient

algorithms for solving this class of problems.

However, considering only a restricted subclass of

#P-complete problems can reduce this complexity.

Gavril [7] verified that chordal graphs are the

intersection graphs of a family of subtrees in a

clique tree. A tree T is a clique tree for a graph G if

each node in T corresponds to a maximal clique in

G. Hereinafter clique refers to a maximal clique.

For vV(G), let C (v) denote the set of all cliques

of G containing vertex v. Therefore, G is a chordal

graph if and only if C (v) is a subtree in a clique

tree T for every vV(G) [7]. This work

investigates a restricted subclass of chordal graphs,

i.e. rooted directed path graphs. Rooted directed

path graphs consist of the intersection graphs of a

family of d irected subpaths in a rooted directed

clique tree. A t ree is called a rooted directed tree if

one node has been designated as the root, and the

edges have a natural orientation, away from the

root. Interval graphs are rooted directed path

graphs in which the clique tree is itself a path.

Interval graphs are generally defined as the

intersection graphs of a family of intervals on a

real line. An interval graph G is called proper

interval graph if there is an interval representation

of G such that no interval contains another one

properly. These graph classes are related to each

other by the following proper inclusions:

proper interval graph interval graph rooted

directed path graph chordal graph [8].

Permutation graphs, trapezoid graphs and

d-trapezoids graphs are three other important

intersection graphs. A permutation graph has an

intersection model consisting of straight lines (one

per vertex) between two parallels. Trapezoid

graphs are the intersection graphs of a family of

trapezoids (one per vertex) between two parallel

lines. Trapezo id graphs properly contain both

interval and permutation graphs . Flotow [9]

generalized the definition of trapezoid graphs as

follows. A d-trapezoid graph has an intersection

model consisting of polygons, called d-trapezoids,

between d parallel lines. The d-trapezoid graphs

are common generalizations of interval and

trapezoid graphs, such that 1-trapezoid graphs

coincide with interval ones and 2-trapezoid graphs

coincide with trapezoid ones.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

166

Aboeifotoh and Colbourn [5] demonstrated that

the KTR problem is #P-complete even for chordal

graphs. That work also developed polynomial t ime

algorithms for computing KTR of such interval

and permutation graphs. Our earlier works derived

a linear-t ime algorithm for proper interval graphs

[10] as well as a polynomial t ime algorithm for

interval, trapezo id and d-trapezo id graphs [11].

The status of the KTR problem for rooted directed

path graphs has remained unclear until now. This

work shows that an O(n2)-time algorithm exists for

computing the K-terminal reliability of a given

n-vertex rooted directed path graph.

2 O(n2)-Time Algorithm for Computing

KTR of Rooted Directed Path Graphs

This section introduces a simple and efficient

algorithm for solving the KTR prob lem for rooted

directed path graphs. First, assume that the rooted

directed clique tree T has been constructed for the

rooted directed path graph G. Th is construction

takes only linear time with an easy modification of

the recognition algorithm in [12]. The rooted

directed clique tree has the feature that the cliques

containing any vertex form a subpath that is

directed away from the root. For clarity, some

notations and definitions used in this section are

described as follows.

Notations

G rooted directed path graph

K set of target vertices

T rooted directed clique tree corresponding

to G

r root clique of T

x lowest common ancestor of all target

cliques in T

N(T) set of nodes (cliques) in T

Tk subtree of T rooted at clique k (Tr T)

CHD(k) set of children of clique k in T

k
+
 parent of clique k in T

V(k) set of vertices in clique k

C(v) set of cliques which contains vertex v

(Note: vertex vV(k) iff clique kC(v))

S(k) set of vertices which start at clique k in T

(Note: vertex vS(k) iff vV(k) and v

V(k
+
), i.e. S(k) V(k)\V(k

+
))

S
*
(k) set of vertices which start at the clique k

and all its descendants in T

S(k ,h) set of vertices which start at the cliques

on the subpath from k to h in T

EF(k ,h) event that clique h fail to connect to its

parent clique h
+
 by using vertices in

S(k ,h
+
), where k is one of the ancestors of

h in T

EC(k ,h) event that all leaf cliques of Th can

connect to clique h
+
 by using vertices in

S
*
(k), where k is one of the ancestors of h

in T

Pr[] probability that event occurs

qv failure probability of the vertex v; qv=0 if

v is a target vertex

R(G,K) K-terminal reliability of the rooted

directed path graph G

Definitions

 A clique in T is called a target clique if it

contains at least one target vertex in G;

otherwise, it is called a non-target clique.

 The lowest common ancestor of two cliques k

and h, denoted by lca(k ,h), in T is the clique of

greatest depth in T that is an ancestor of both k

and h.

Given a rooted directed path graph G, the

corresponding rooted directed clique tree T, and a

set K of target vertices, R(G,K) can be

equivalently defined as the probability that all

target cliques in T can connect to each other in T

by using vertices of G. Let the clique x denote the

lowest common ancestor of all target cliques in T.

Obviously, all target cliques can connect to each

other if and only if each target clique can connect

to the clique x. Additionally, if clique k is a leaf

and non-target clique in T, clique k can be deleted

without affecting its reliability. Therefore, after

deleting all non-target leaf cliques in T, R(G,K)

can be equivalently redefined as the probability

that all leaf cliques of T connect to the clique x.

That is,

R(G,K) =

' ()

Pr (, ')
x CHD x

EC r x

Since all subtrees Tx', for x ' CHD(x), are

disjoint from each other, all events EC(r,x'), fo r x'

 CHD(x), are independent of each other. Thus

R(G,K) =
' ()

Pr (, ')

x CHD x

EC r x

To compute R(G,K), two lemmas, one that

computes Pr[EF(k ,h)] and one that computes

Pr[EC (k ,h)], for each clique kN(T) and clique

hN(Tk)\{k}, are given as follows.

Lemma 1. For each clique k N (T)\{r} and

clique hN(Tk),

Pr[EF(k
+
,h)] = Pr[EF(k ,h)]

() ()

v

v S k V h

q

 ,

and with boundary condition Pr[EF(k ,k)] = 1 for

kN(T).

Proof. By definition, Pr[EF(k ,h)] =

The 31st Workshop on Combinatorial Mathematics and Computation Theory

167

(,) () ()

v

v S k h V h V h

q

 . As a result of hN(Tk), (k

h
+
 h) is a directed subpath in T. Therefore, if

vS(k ,h
+
) V(h), then v S(k ,h

+
) V(h

+
) and

thus Pr[EF(k ,h)] =

(,) ()

v

v S k h V h

q

 . Similarly,

Pr[EF(k
+
,h)] =

(,) ()

v

v S k h V h

q

 . Obviously, S(k ,h
+
)

 S(k
+
,h

+
) and this implies that Pr[EF(k

+
,h)] =

Pr[EF(k ,h)]

(,) ((,)))\ (S k h S

v

kv h V h

q

 . Since (k
+
 k

 h) is also a directed subpath in T,

(S(k
+
,h

+
)\S(k ,h

+
)) V(h) = S(k

+
) V(h) and the

lemma follows. □

Lemma 2. For each clique kN(T) and clique

hN(Tk)\{k},

Pr[EC(k ,h)] =
' ()

Pr (, ')

h CHD h

EC k h

Pr[EF(k ,h)]
' ()

Pr (, ')

h CHD h

EC h h

 ,

and with boundary condition Pr[EC(k ,h)] =

1Pr[EF(k ,h)] if h is a leaf clique in T.

Proof. Two events used to derive the lemma are

defined as follows:

EA

' ()h CHD h

{all leaf cliques of Th ' are

connected to clique h by using vertices in

S
*
(k)} and

EB {clique h is connected to clique h
+
 by using

vertices in S
*
(k)}.

By definition, EA=

' ()

(, ')

h CHD h

EC k h

. Notably,

all subtrees Th ', for h' CHD(h), are disjoint from

each other. Hence, all events EC(k ,h'), for h'

CHD(h), are independent of each other. Thus

Pr[EA] =
' ()

Pr (, ')

h CHD h

EC k h

 . Furthermore,

event EA can be expressed as union of two disjoint

events:

EA = (EAEB) (EA EB),

where denotes disjoint union and EB denotes

the complement of EB.

By definition, EAEB = EC(k ,h). Therefore,

' ()

Pr (, ')

h CHD h

EC k h

 =

Pr[EC(k ,h)] + Pr[EA EB].

Next, consider the event EA EB =

' ()

(, ')

h CHD h

EC k h EB

 . Since all leaf cliques of

Th ' fail to connect to clique h
+
, event EC(k ,h')

EB can be refined as two events E1E2, which

are

E1

' ()h CHD h

{all leaf cliques of Th ' are connected

to clique h by using vertices in S
*
(h)} and

E2 {clique h fail to connect to clique h
+
 by using

the vertices in S(k ,h
+
)}.

Obviously, Pr[E1] =
' ()

Pr (, ')

h CHD h

EC h h

and Pr[E2]=Pr[EF(k ,h)]. Notably, the events E1

and E2 involve disjoint sets S
*
(h) and S(k ,h

+
),

respectively, and thus are independent of each

other. Therefore,

Pr[EAEB] =

Pr[EF(k ,h)]
' ()

Pr (, ')

h CHD h

EC h h

and the lemma follows. □

Based on the above formulation, the algorithm for

computing R(G,K) of a rooted directed path graph G

is formally described as follows.

 Algorithm Compute_KTR

 Input: A rooted directed path graph G, a set K of target vertices, and

 the failure probability of each vertex

 Output: R(G,K)

1. Construct a rooted directed clique tree T of G with the root r;

2. Remove all leaf nodes from T that contain none of target vertex in K;

3. for each clique kN(T)\{r} do S(k) V(k)\V(k
+
);

4. call Compute_PrEF;

5. call Compute_PrEC;

6. xcall Compute_LCA;.

7. return(

' ()

(, ')

x CHD x

PrEC r x

);

The 31st Workshop on Combinatorial Mathematics and Computation Theory

168

 end-algorithm

 Procedure Compute_PrEF

1. for each clique kN(T) do PrEF(k ,k) 1;

2. for each clique k N(T)\{r} encountered in the post-order traversal do

3. for each clique hN(Tk) do PrEF(k
+
,h) PrEF(k ,h);

4. for each vertex vS(k
+
) do

5. for each clique hC(v) do

6. if clique hN(Tk) then PrEF(k
+
,h) PrEF(k ,h)qv;

 end-procedure

 Procedure Compute_PrEC

1. for each clique kN(T) encountered in the post-order traversal do

2. for each clique hN(Tk)\{k} encountered in the post-order traversal do

3. if (clique h is a leaf clique) then

4. PrEC(k ,h) 1PrEF(k ,h);

5. else

6.

' () ' ()

(,) (, ') (,) (, ')

h CHD h h CHD h

PrEC k h PrEC k h PrEF k h PrEC h h

 ;

 end-procedure

 Procedure Compute_LCA

1. xone of target cliques in T;

2. for each target clique kN(T) do x lca(k ,x);

3. return(x);

 end-procedure

Theorem 1. An O(n
2
)-t ime algorithm exists for

computing the K-terminal reliability of a given

n-vertex rooted directed path graph.

Proof. Assume that all sets, N(Tk), V(k), S(k), C(v)

used in the algorithm are implemented using

bit-vectors. Thus, set-related operations such as

finding a member and adding a member take

constant time and operations such as finding the

difference between sets take linear t ime. Consider

Algorithm Compute_KTR. In line 1, given a

rooted directed path graph G, the rooted directed

clique tree T can be constructed in linear time by

easily modifying the recognition algorithm of

Dietz et al. [13]. As is well known, an n-vertex

chordal graph has at most n maximal cliques and

rooted directed path graphs are chordal. Therefore,

the tree T constructed in line 1 has at most n clique

nodes, i.e. O(|N(T)|)=O(n). After constructing T,

deriving all of the sets V(k) for kN(T), and C(v)

for vV(G) in O(n
2
) time is relatively easy. In line

2, removing all non-target leaf cliques from T can

be completed in O(n
2
) time. Line 3 takes

O(|N(T)|n)=O(n
2
) time to compute all S(k).

Procedure Compute_PrEF needs O(|N (T)|
2
) =

O(n
2
) time to sort all cliques in the post-order and

then takes O(|N(T)| |N(T)|) = O(n
2
) time to set

the initial values of all PrEF(k
+
,h), for kN(T)\{r}

and hN(Tk), in line 3. Obviously, each vertex v

belongs to at most one of S(k
+
) for kN(T)\{r} in

line 4. Therefore, computing all PrEF(k
+
,h) in line

6 takes
()\{ } ()

((| () |))
k N T r v S k

O C v

 =

| ()|

(| () |)
v V G

O C v

 =
2

()O n time. Hence,

procedure Compute_PrEF takes O(n
2
) time

overall.

Next, the running time of p rocedure

Compute_PrEC is analyzed. Clearly, line 6 takes

() ()\{ }

((| () |))

k
k N T h N T k

O CHD h

 time to compute all

PrEC(k ,h). Since
()\{ }

| () |)

k
h N T k

CHD h

 = O(the

number of branches in Tk) = O(|N(Tk)|), procedure

Compute_PrEC takes
()

(| () |)
k

k N T

O N T

 = O(n
2
)

time overall.

Finally, the running time of procedure

Compute_LCA is analyzed. Before Compute_LCA

procedure is executed, T can be preprocessed in

O(|N(T)|) = O(n) time. Therefore, for any pair of

its nodes k and h, lca(k ,h) can be computed in

constant time [13,14]. Since lca(k ,x) operation in

line 2 executes O(|N(T)|) = O(n) t imes, procedure

Compute_LCA takes O(n) time.

In summary, the overall computational

complexity of the algorithm is O(n
2
). □

3 Conclusion

To our knowledge, this work solves the

The 31st Workshop on Combinatorial Mathematics and Computation Theory

169

complexity of the KTR problem for rooted

directed path graphs for the first time. Notably, the

classes of intersection graphs with polynomially

solvable KTR problem extend from interval graphs

[5] to rooted directed path graphs, yet still

maintain the same time complexity of O(n
2
).

References

[1] Halsall, F. (1996). Data Communicat ions,

Computer Networks and Open Systems. 4th

ed., Addison-Wesley.

[2] Tanenbaum, A. S. (2010). Computer

Networks. 5th ed., Prentice-Hall.

[3] Lin, M. S. (2003). Linear-t ime algorithms for

computing the reliab ility of bipartite and (#⩽

2) star distributed computing systems.

Computers & Operations Research, 30(11),

1697-1712.

[4] Lin, M. S. (2004). An O(k^2*log(n))

algorithm for computing the reliability of

consecutive-k-out-of-n: F systems. IEEE

Transactions on Reliability, 53(1), 3-6.

[5] Aboeifotoh, H. M., & Colbourn, C. J. (1990).

Efficient algorithms for computing the

reliability of permutation and interval graphs.

Networks, 20(7), 883-898.

[6] Valiant, L. G. (1979). The complexity o f

enumeration and reliab ility problems. SIAM

Journal on Computing, 8(3), 410-421.

[7] Gavril, F. (1974). The intersection graphs of

subtrees in trees are exactly the chordal

graphs. Journal of Combinatorial Theory,

Series B, 16(1), 47-56.

[8] Monma, C. L., & Wei, V. K. (1986).

Intersection graphs of paths in a tree. Journal

of Combinatorial Theory, Series B, 41(2),

141-181.

[9] Flotow, C. (1995). On powers of m-trapezo id

graphs. Discrete Applied Mathematics, 63(2),

187-192.

[10] Lin, M. S. (2002). A linear-t ime algorithm for

computing K-terminal reliab ility on proper

interval graphs. IEEE Transactions on

Reliability, 51(1), 58-62.

[11] Lin, M. S., & Ting, C. C. (2013). Computing

K-terminal reliab ility of d-trapezo id graphs.

Information Processing Letters, 113(19-21),

734-738.

[12] Dietz, P. F., Furst, M., & Hopcroft, J. E.

(1979). A linear t ime algorithm for the

generalized consecutive retrieval problem.

Cornell University.

[13] Harel, D., & Tarjan, R. E. (1984). Fast

algorithms for finding nearest common

ancestors. SIAM Journal on Computing,

13(2), 338-355.

[14] Bender, M. A., & Farach-Colton, M. (2000).

The LCA problem revisited. In LATIN 2000:

Theoretical Informatics (pp. 88-94). Springer

Berlin Heidelberg.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

170

