氣泡排序圖上寬路徑路由問題及寬直徑問題研究

謝育平 銘傳大學資訊工程研究所 arping@gmail.com

摘要

在平行計算與分散式系統的研究中,可靠度與效能是 相當重要的關鍵。近年來,凱萊圖(Cayley Graph)與寬直 徑(Wide Diameter)在常被用來研究該些系統的連結網路 (Interconnection Network)狀態。本文研究凱萊圖中的一個 分支,氣泡排序圖;研究圖上的寬路徑及寬直徑,提供建 立連結網路的選擇與參考。

關鍵字:凱萊圖、氣泡排序圖、寬路徑、寬距離、寬直徑

1. 前言與研究目的

討論網路,可以從兩個方面來看待,一個是協同生成 的規則性較弱的網路,此類以網際網路(Internet)為代表, 另一類為精心設計,規則性較強的網路,此類以平行計算 或分散式系統地連結網路(Interconnection Network)為代表 。網際網路係區域網路進行互聯而成,為了能連結眾多的 網路型態,很多網路性質是無法假設,但在網際網路的骨 幹或單一分散式系統中,建立該系統時就可以依照採用的 連結網路設計來假設很多的網路性質,擁有較好的性質就 可以讓整系統達到實用性。在討論的網路性質中,主要以 可靠度(Reliability)與效能(Efficiency)為重要的議題。

網路的可靠度,主要探討節點失效後,整個網路的訊 息傳送是否還能進行,即所謂的容錯性(Fault Tolerance)[11][13],在網路性質上主要探討網路的連通性 (Connectivity)來探討;而網路的效能則是討論兩個節點間 傳遞訊息的速度,這速度包含單路徑傳輸或多路徑傳輸, 也需要考量網路流量現況,在網路性質上主要探討網路的 直徑(單路徑最遠距離)與寬直徑(多路徑最遠距離)。

在網路性質中,從一個開始節點出發,往一個目的節 點傳送資料,在單一路徑時,我們考慮整個網路直徑,用 來代表整個網路任兩個節點傳送資料時,最遠需要經過幾 個節點。在考慮多路徑時,我們會從一個開始節點出發, 同時發展數條路徑,往同一個目的節點傳送資料。此時為 了保證資料能順利傳送,沒有發生擁擠的狀況,假設這些 路徑是節點互斥的路徑(開始節點與目的節點除外),另外 為了達到越快的傳輸,可以同時發展盡量多的路徑。對一 個連通性(Connectivity)為k的圖來說,我們可以同時發展 k-1條路徑,並探討這k-1條路徑的長度。重新定義寬路徑 (container)、寬距離、最短寬路徑、寬直徑等概念。

假設G(V,E)為一個無重複邊的無向圖,V為該圖的節 點集合,E ⊂ V × V為該圖的邊集合;假設G(V,E)是無向圖 ,所以有 $\forall_{x \in V}(x,x) \notin E$, $\forall_{x,y \in V}(x,y) \in E \Rightarrow (y,x) \in E$ 。對 於圖G中的雨點a,b ∈ V,由a連結到b的路徑為一個點序列 p[$v_0, v_1, v_2, ..., v_k$],其中a = v_0 , b = v_k , $\forall_{0 \le i \le k} v_i \in V$, $L\forall_{1 \le i \le k}(v_{i-1}, v_i) \in E$ 。路徑p=的長度則定義為L(p)=k。定 義P(a,b) = {p|p為一個由a連結到b的路徑}為所有從a到b 所有路徑的集合。a、b兩點的距離d(a,b) = min{L(p)|p ∈ P(a,b)}則定義為所有從a到b的最短路徑的長度。圖G的直

王子銘

銘傳大學資訊工程研究所 tmjwang@gmail.com

徑 $d(G) = \max\{d(x, y) | x, y \in V\}$ 則定義為距離最遠的兩個點的距離。

一張圖G為非連通圖定義為存在G中的兩個節點a,b使 得不存在從a連結到b的路徑P(a,b) = ϕ 。一張圖G的連通 性(Connectivity) κ (G)定義為最少需要移除多少節點才能 使圖G成為非連通圖或是單一節點圖。Menger's定理 (1927)[12]提到一個連通性為 κ (G)(=w)的圖G上,對任兩點 a,b,從a到b必存在w條節點互斥(a、b例外)的路徑。對於 一個路徑p=[$v_0, v_1, v_2, ..., v_k$]來說,可以將之分為三個,開 頭部分H(p) = { v_0 },結尾部分T(p) = { v_k },與中間部分 I(p) = { $v_1, v_2, v_3, ..., v_{k-1}$ },將這三個部分再延伸4個集合 HIT(p) = H(p) \cup I(p) \cup T(p) \in HI(p) \cup I(p) \sim HT(p) = H(p) \cup T(p) \wedge II(p) = H(p) \cup I(p) \wedge MT(p) = H(p) \cup T(p) \wedge II(p) = ϕ 。

對於一張連通圖G中的兩點a,b ∈ V,開始考慮由a連 结到b的多個互斥路徑,定義從a到b的w寬路徑 (Container)[5][7][14]為w條從a到b的中間節點互斥路徑c= $\{p_1, p_2, p_3, \dots, p_w\}$, 其中 $\forall_{1 \le i \le w} H(p_i) = \{a\}, \forall_{1 \le i \le w} H(p_i) = \{a\}$ {b} , ∀_{1≤i<*j*≤w}I(p_i) ∩ I(p_j) = φ 。 對 於 寬 路 徑 c = {p₁, p₂, p₃, ..., p_w}, 我們定義其寬度(width)為W(c) = |c| = w,長度為L(c) = max{L(p) | p ∈ c}。定義C_w(a,b) = {c|c為從a到b的w寬路徑}為所有從a到b的w寬路徑所成集 合。從a到b的w寬距離d_w(a, b) = min{L(c)|c ∈ C_w(a, b)}, 而對一張圖G = (V, E) 來說, G的w寬直徑dw(G) = $\max\{d_w(a, b)|a, b \in V\}$ 則定義為在G中w寬距離最遠的兩 點的W寬距離。寬路徑、寬長度、寬距離、寬直徑,可視 為路徑、長度、距離、直徑的延伸,這是因為當w=1時, 寬路徑、寬長度、寬距離、寬直徑的定義都與路徑、長度 、距離、直徑是協調一致。進一步來說,對於一個連通性 為k的圖G來說, $d_1(G) \leq d_2(G) \leq d_3(G) \leq \cdots \leq d_k(G)$ 。

凱萊圖G = Cayley(S, Σ) = G(V, E)[4][5][7][8][10]由一 個乘法群(S,×)及該群中的一子集 $\Sigma \subset S$ 建構而得,其中乘 法群中的元素為凱萊圖的節點(V = S),而凱萊圖的邊E則 為{(s, s × σ)|s \in S, $\sigma \in \Sigma$ },此處稱 Σ 為該凱萊圖的產生集 (Generating Set)。如果 $\Sigma = \Sigma^{-1} = {\sigma^{-1} | \sigma \in \Sigma}$,則所創造的 凱萊圖將會是個無向圖。

給定一圖G(V, E),圖上兩個點 $x, y \in V$,兩點間的w-寬路徑(Container)定義為兩點間w條互斥的路徑集合,其 長度定義為當中最長路徑的長度;兩點間的w-寬距離 $d_w(x, y)$ 定義為兩點間最短w-寬路徑的長度;而該圖的w-寬直徑 $d_w(G)$ 則定義為該圖中任兩點的w-寬距離的最大 值。

而在圖論上,超立方體(hypercubes)、交叉立方體 (crossed cubes)、雙扭立方體(twisted cubes)、局部雙 扭立方體(locally twisted cubes)、廣義雙扭立方體(generalized twisted cubes)、莫氏立方體(Mobius cubes) 、星圖(star graphs)、氣泡排序圖(bubble-sort graphs) 、煎餅圖(pancake graphs)和交替群圖(alternating group graph)等都是連結網路設計主要被探討的模型設計。 Chi-Hsiang Yeh and Emmanouel A. Varvarigos (1998)[18] 便針對著名的網路拓樸整理出其圖論特性,特別是以節點 數N作為比較的基準,整理如表1:值得觀察的一件事是, 這些圖的節點鏈結度、直徑相對於節點數N都是非常小的 ,顯示這些圖大量節點,低鏈結,低距離(直徑)的好特性。

考慮n元素的對稱群(Symmetric Group)。假設Zn = $\{1,2,3,...,n\}$,一個 Z_n 上的重排函數 $f: Z_n \rightarrow Z_n$ 為一個一對 且 映 成 函 數 。 令 $S_n = \{f | f: Z_n \rightarrow Z_n$,f為一對一且映成函數}為Zn上的重排函數集合;考慮函 數結合運算子 $f \circ g(x) = f(g(x)), 則(S_n, \circ)$ 為一個群;考慮 $P_n = \{f_k | k = 1, 2, 3 ..., n - 1, f_k(k) = k + 1, f_k(k + 1) =$ k, $\forall_{x \neq k, x \neq k+1} f_k(x) = x$ 為Z_n上兩鄰兩數交換的重排函數, 有重排本身有其迴圈表達式(cycle form),例如 P_n 中的 f_k , 其 迴 圈 表 達 式 為 (k,k+1) , 所 以 Pn= ${(1,2), (2,3), (3,4), ..., (n-1,n)} ⊂ S_n 為氣泡排序法上相$ 鄰元素互換的動作。而最後氣泡排序圖[1][9][14][15][17] 被定義為凱萊圖 $B_n = Cayley(S_n, P_n)$ 。另外與氣泡排序圖 非常相關的兩個凱萊圖為星狀圖(star graph)[2][3]與置換 圖(transposition graph)[6][16],其最主要的差別就是星狀圖 的生成集為{(1,2), (1,3), (1,4), ..., (1,n)}, 而置換圖的生成 集為{(i, j)|1 ≤ i, j ≤ $n, i \neq j$ }

氣泡排序圖Bn以n元素的重排為節點,兩個重排如果 是只有在兩個相鄰的位置上不同,則這兩的節點有邊線相 連,反之則無。觀察圖1,以n=4為例,4元素的重排共有 4!=24個,組成B4的24個節點,任兩個節點是否有邊相連 ,則觀察其是否只有在兩個相鄰的位置上不同,例如 4321 與3421有邊相鄰是因為其只有在第1與第2位置上不一樣 。因為其判斷是否有邊是依照是否只有在兩個相鄰的位置 上不同,其與氣泡排序演算法上只交換相鄰的兩個元素狀 況類似,故取名氣泡排序圖。

氣泡排序圖 B_n 計有n!個節點,每個節點有(n-1)個邊, 整個網路共有n!(n-1)/2個邊,其直徑為n(n-1)/2,其連通度 是(n-1),可以探索同時發展(n-1)條互斥路徑傳送訊息。氣 泡排序圖是屬於低度連結的網路,以該圖節點數N=n!來衡 量,其鏈結數(n-1)與直徑n(n-1)/2都是非常小的,再加上 氣泡排序圖對任何兩點來說都是同構的,對任何兩邊來說 也是同構的。

觀察【圖 1.1】,在B₄中,1243與1234的距離為1, 但是如果是要從1243同時發展3條互斥路徑到1234,則有 以下的解答,[1243→1234]、[1243→2143→2134→1234] 、[1243→1423→1432→1342→1324→1234],此三條路徑 構 號 f243 對 f234 部 f233 新 f233 H f233

圖 1.1: 氣泡排序圖 B4

圖 1.2: 氣泡排序圖 B₃

表	1.1 :		網路拓樸圖論特性	
---	-------	--	----------	--

		-		
圖型	節點數	節點鏈結數	直徑	
超立方體 Hypercube	Ν	$\log_2 N$	$\log_2 N$	
星狀圖 Star graph	$N \qquad \frac{\log_2 N}{\log_2 \log_2 N} + O\left(\frac{\log N}{\log \log N}\right)$		$\frac{1.5\log_2 N}{\log_2\log_2 N} + O\left(\frac{\log N}{\log\log N}\right)$	
D 維網 D-dimensional mesh	Ν	2d	$\theta(N^{\frac{1}{d}})$	
De Bruijn 圖	Ν	4	$\log_2 N$	
立方體連通圖 Cube-connected cycle graph	Ν	3	$2.5\log_2 N - O(\log\log N)$	
星狀連通圖 star-connected cycle graph	Ν	3	$\theta\left(\frac{\log^2 N}{(\log\log N)^2}\right)$	
Balance Macro Star (1,n)	Ν	$2\sqrt{\frac{\log_2 N}{\log_2 \log_2 N}} + O\left(\sqrt{\frac{\log N}{\log \log N}}\right)$	$\frac{2.5\log_2 N}{\log_2 \log_2 N} + O\left(\frac{\log N}{\log \log N}\right)$	

一個n元素的重排函數f,可以使用序列來表達,即詳 列f(1),f(2),f(3),...,f(n);圖1是氣泡排序圖B4即其連線狀況
 ・其中每一個節點代表一個重排函數,圖上函數序列表達
 式省略了逗號,4321表示f(1)=4,f(2)=3,f(3)=2,f(4)=1。又 因為氣泡排序圖是節點同構,所以在計算兩點的距離時, 可以將其中一點依同構函數對應至單位元素,也就是對於 兩個重排f與g,如果(f,g) ∈ E,則存在一個k使得g = f。 (k, k+1),則假設h為g的左逆函數,也就是hog(x)= h(g(x)) = id(x),其中id是單位函數,也就是∀_xid(x) = x, 則 $id = h \circ g = h \circ f \circ (k, k+1)$,所以計算f與g的距離,可 以轉為計算id與hof的距離,所以如果要計算氣泡排序圖 的直徑或寬直徑,可以將考慮所有點到原點(id)的距離或 寬距離,其最大值即為直徑與寬直徑。所以圖1中,每個 方框上面的數字代表該節點與單位函數1234節點的3-寬 距離,而氣泡排序圖B4的寬直徑為8,可由2143與1234撐 起。而圖2則是氣泡排序圖B3,在B3中,我們探討每一節 點同時發兩條路徑到節點123,每一個節點右下方數字表 示其到單位函數(id)的2-寬距離,所以B3的寬直徑為5。

我們臆測 $D(B_n) = d(B_n) + 1$,不但是縮小範圍,而且 是確切希望 $D(B_n) = d(B_n) + 1$,對於 $D(B_2) \cdot D(B_3) \cdot D(B_4)$ 不滿足臆測,我們認為是因為網路拓樸太小所造成的特例 ,因為點數少,多路徑繞行時難免會互搶節點,但是氣泡 排序圖的節點數成階乘式成長,而路徑寬度成線性成長, 所以互搶節點的狀況應該是越來越少。為了這項臆測,在 研究開始前我們在實驗上與理論上,都預先進行了一些研 究工作,實驗上我們預先計算到 $D(B_8)$,發現自 B_5 以後都 符合我們的臆測,見【表1.2】。

表 1.2: 氣泡排序圖 Bn上的直徑與(n-1)寬直徑

網路	節點	鍊結	總邊	$d(B_n)$	D(B _n)	符合 臆測
B ₂	2	1	1	1	1	否
B ₃	6	2	6	3	5	否
B_4	24	3	36	6	8	否
B_5	120	4	240	10	11	是
B ₆	720	5	1,800	15	16	是
B ₇	5,040	6	15,120	21	22	是
B ₈	40,320	7	141,120	28	29	是

此次對於氣泡排序圖的寬直徑問題,本研究欲完成以 下幾項目標:從實驗上,透過更好的演算法,更多的機器 進行平行運算,計算更多的D(B_n)的寬直徑,觀察其是否 支撐我們的臆測,期待計算至D(B₁₁)或更高維度;第四章 開始介紹本研究的各種演算法的發展過程,第五章列出實 驗結果及結論。

2. 文獻探討

Yasuto Suzuki & Keiichi Kaneko(2008)[14]將氣泡排 序圖、k元n維環面、超立方體等圖,依其分支度、節點、 直徑...等特性,整理如【表 2.1】其中基礎參數係由各網 路拓樸生成時的自然參數,其中對稱性係指節點同構,也 就是從一節點看待整個網路,可以與從另一任意節點看待 整個網路同構,而自我內嵌性係指該系列網路拓樸中,小 型網路拓樸是否內嵌於大型網路拓樸中;例如氣泡排序圖 B_3 就會內嵌於氣泡排序圖 B_4 中,而氣泡排序圖 B_4 會內嵌於 氣泡排序圖 B_5 中。

氣泡排序圖Bn的(n-1)-寬路徑路由問題,係指對於氣 泡排序圖上的任兩個點,該如何從其中一點出發,同時連 接(n-1)條互斥路徑(頭尾除外),到達另一節點。

在這問題上,學者關心幾個特性,(1)該如何尋找寬路徑,(2)整個網路拓樸的最大(n-1)-寬距離((n-1)-寬直徑)會 是多少?(3)前兩個議題的時間複雜度會是多少?

表	2.1:	氟泡排序	下圖	Bn 上	(n-1)	寬路徑	問	題的	進展
---	------	------	----	------	-------	-----	---	----	----

		K. Kaneko 🖻	K. Kaneko 🕥
		Y. Suzuki(2008)	Y. Suzuki (2008)
理論	最大(n-1)-寬 路徑長度	0(n ³)	0(n ²)
祖叻	時間複雜度	0(n ⁴)	0(n ⁴)
實驗	平均(n-1)-寬 路徑長度	0(n ^{2.94})	0(n ^{1.95})
観祭	時間複雜度	$O(n^{3.9})$	$O(n^{3.5})$

表 1.3:著名網路拓樸的圖論性質

圖形	節點數	節點鏈結數	直徑	方向性	對稱性	自我內嵌性
氣泡排序圖	n!	n — 1	$\frac{n(n-1)}{2}$	無向圖	有	有
k 元 n 維環面	k ⁿ	4	$n \times \left[\frac{k}{2}\right]$	無向圖	有	無
超立方體	2 ⁿ	n	n	無向圖	有	有
燒餅圖	n!	n – 1	$\leq \left[\frac{5(n-1)}{3}\right]$	無向圖	有	有
星狀圖	n!	n — 1	$\left[\frac{3(n-1)}{2}\right]$	無向圖	有	有
旋轉圖	n!	n — 1	n — 1	有向圖	有	有
De-Bruijn 圖	n^k	n	k	無向圖	無	無
Kautz 圖	$n^{k} + n^{k-1}$	n	k	無向圖	無	無

如【表 2.1】所述,Keiichi Kaneko與 Yasuto Suzuki (2004)[9]對氣泡排序圖發表一個寬路徑尋找方式,並理論上證明氣泡排序圖 B_n 的(n-1)-寬直徑在 $O(n^3)$ 中,其尋找單一條(n-1)-寬路徑的時間在 $O(n^4)$;而在實驗上觀察氣泡排序圖 B_n 的平均(n-1)-寬路徑長度在 $O(n^{2.94})$ 中,其尋找單一條(n-1)-寬路徑的時間在 $O(n^{3.9})$ 。四年後,Yasuto Suzuki 與 Keiichi Kaneko (2008)[14]針對氣泡排序圖 B_n 的(n-1)-寬 路徑演算法,並理論上證明氣泡排序圖 B_n 的(n-1)-寬 直徑小於n(n+1)/2,在 $O(n^2)$ 中,其尋找單一條(n-1)-寬 路徑的時間在 $O(n^4)$;而在實驗上觀察氣泡排序圖 B_n 的平均(n-1)-寬路徑長度在 $O(n^{1.95})$ 中,其尋找單一條(n-1)-寬路徑的時間在 $O(n^{3.5})$ 。

給定一張圖G,我們使用d(G)表示圖G的直徑,使用 dw(G)表示圖G的w-寬直徑,也就是同時發w條情況下,圖 G中的最大的最短w-寬路徑。對於氣泡排序圖 B_n 來說,我 們關心(n-1)-寬直徑,所以我們特別使用 $D(B_n) = d_{n-1}(B_n)$ 來表達氣泡排序圖 B_n 的(n-1)-寬直徑。本研究初步探索, 實驗發現幾個氣泡排序圖 B_n 的寬直徑在 $n \ge 5$ 後,只比直 徑多1,也就是 $D(B_n) = d(B_n) + 1$,數據顯示如【表1.24 】。

Yasuto Suzuki 與 Keiichi Kaneko (2008)[14] 是 將 $D(B_n)$ 從 $O(n^3)$ 降成 $O(n^2)$, 事實上是降到n(n + 1)/2, 也 就是 $D(B_n) \le d(B_n) + n$, 但是經過我們做了幾個實驗, 我 們臆測 $D(B_n) = d(B_n) + 1$, 不但是縮小範圍, 而且是確切 希望 $D(B_n) = d(B_n) + 1$, 對於 $D(B_2) \times D(B_3) \times D(B_4)$ 不滿 足臆測,我們認為是因為網路拓樸太小所造成的特例,因 為點數少,多路徑繞行時難免會互搶節點,但是氣泡排序圖的節點數成階乘式成長,而路徑寬度成線性成長,所以 互搶節點的狀況應該是越來越少。為了這項臆測,我們在 實驗上與理論上,都預先進行了一些研究工作,在研究開始前實驗上我們已經計算 $D(B_n)$ 到n=8,發現從n=5以後, 都是符合我們的臆測的。

對於氣泡排序圖的 $B_n = Cayley(S_n, P_n)$,我們猜測 $\forall_{n \geq 5} d_{n-1}(B_n) = d_1(B_n) + 1$ 。Y. Suzuki 與 K. Kaneko (2008)[14] 已經有 $\forall_n d_{n-1}(B_n) \leq \frac{n(n+1)}{2} = d_1(B_n) + n$,並 在 $O(n^4)$ 解出寬路徑問題,並得到長在 $d_1(B_n) + n$ 以內的寬 路徑,進而得到寬直徑在 $d_1(B_n) + n$ 以內。此處,我們企圖更上層樓,我們希望能夠證明 $\forall_{n \geq 5} d_{n-1}(B_n) = d_1(B_n) + 1$,並在 $O(n^3)$ 解出寬路徑問題,並得到長在 $d_1(B_n) + 1$ 以內的寬路徑,進而得到對於 $n \geq 5$ 寬直徑恰等於 $d_1(B_n) + 1$ 以內。

對於氣泡排序圖B_n(n ≥ 5),假設Z_n = {1,2,3,...,n}, 考量S_n上的每一個重排f,重排 f 有好幾種表達方式,一 個是函數表達f:Z_n → Z_n,一個是迴圈表達式,此處採用 序列表達式<f(1),f(2),f(3),...,f(n) >,而一個序列表達式 < s₁, s₂, s₃,..., s_k >代表一個函數f:Z_k → \mathcal{N} ,f(1) = s₁, f(2) = s₂,f(3) = s₃,、、、,f(k) = s_k,此處特別注意 < s₁, s₂, s₃,...s_k >代表的函數為一個Z_k到自然數集合 \mathcal{N} 的 函數,而非要求Z_k到Z_k的函數,例如< 2,4,3,7 >代表函數 f:Z₄ → N,f(1) = 2、f(2) = 4、f(3) = 3、f(4) = 7。

The 31st Workshop on Combinatorial Mathematics and Computation Theory 表 2.2: Suzuki 對節點的五個分類

Case I	$d_n = n$
Case II	$d_n \neq n-1$, $d_{n-1} = n$
Case III	$d_n, d_{n-1} \neq n$
Case IV	$S^{n-1} = d$
Case V	$d_n = n - 1, d_{n-1} = n, s^{(n-1)} \neq d$

Suzuki針對氣泡排序問題,客製化了一套演算法,依 照節點d =< $d_1, d_2, d_3, ..., d_n$ >的性質,將所有節點分成如 【表 2.2】的5個分類,再依照各分類逐一突破。而其寬 路徑尋找演算法大致如【表 2.3】。其中 $s^{(n-1)} = < 1,2,3, ..., n - 2, n, n - 1 > \circ$

表 2.3: Suzuki 演算法

步驟	輸入:起始節點(s = id =< 1,2,3,,n >)與目
	標節點 $(d = < d_1, d_2, d_3,, d_n >)$
	輸出: (n-1)-寬路徑
步驟一	分析起始節點與目標節點,若 $\mathbf{d}_{\mathbf{n}} = \mathbf{n}$,則跳至步驟
	二, 若d _n ≠ n – 1, d _{n-1} = n則跳至步驟三, 若
	d _n ,d _{n-1} ≠n則跳至步驟四,若S ⁿ⁻¹ =d則跳至步
	驟五, 若d _n = n - 1,d _{n-1} = n, s ⁽ⁿ⁻¹⁾ ≠ d則跳至步
	驟六。
步驟二	使用遞迴獲得n-2條從 S 到 d 的最短路徑,最後
	一條先使用最短路徑演算法先到a =
	$(1, 2,, d_{n-1} - 1, d_{n-1} + 1,, n - 2, n, n - 1)$
	1, d _{n-1}), 再從節點 a 使用最短路徑演算法到d _{n-1} 接
	著再到 d, 並跳至步驟七。
步驟三	在 CaseII、CaseIII、CaseIV、CaseV 中, Suzuki 在
	s與d之間建立兩組中繼節點,首先從 s 建立最短
步驟四	路徑到c ⁿ 其中c _i = (1,2,i – 1,i + 1,n –
	1, i, n)接著再使用最短路徑演算法到b ⁿ 其中b _i =
步驟五	(d ₁ , d ₂ , d _{li-1} , d _{li+1} ,, d _{n-1} , i, d _n), 接著再從b _i 到
上下下	d,並跳至步驟七。詳細請見[14]。
少科人	
步驟七	印出路徑。

Suzuki在理論上提供了尋找 $d_1(B_n)$ + n長度的寬路徑 演算法,但是我們的企圖不僅於此,我們希望能證出主臆 測 $\forall_{n\geq 5}d_{n-1}(B_n) = d_1(B_n)$ + 1。

氣泡排序圖Bn中	K. Kaneko 與 Y. Suzuki (2004)	Y. Suzuki 與 K. Kaneko (2008)	本研究目標
任兩點的(n-1)-寬路徑長度	0(n ³)	$\leq d_1(B_n) + n = O(n^2)$	$\leq d_1(B_n) + 1 = O(n^2)$
(n-1)-寬路徑尋找時間	0(n ⁴)	0(n ⁴)	0(n ³)
(n-1)-寬直徑	0(n ³)	$\leq d_1(B_n) + n = O(n^2)$	$d_1(B_n) + 1$
(n-1)-寬直徑尋找時間	0(n ⁴)	0(n ⁴)	0(1)

表 2.4: Yasuto Susuki 兩篇研究結果及本研究目標

3. 研究方法

本研究主要著重在如何解決氣泡排序圖的寬路徑及 寬直徑問題。本研究有兩個目標:(1)發展演算法解決氣泡 排序圖 B_n 的(n-1)寬路徑路由問題並使用程式計算 $D(B_9)$ 、 $D(B_{10})及更多的數據來支撐主臆測 \forall_{n \ge 5} D(B_n) = d(B_n) + 1。(2)從理論上來證明主臆測,使本研究及主臆測更加完$ 備。

對於寬路徑問題,我們提出四種演算法試圖解決寬路 徑的路由問題。(1)重複呼叫法、(2)最短路徑指引多路徑 同時發展演算法、(3) 秩指引多路徑同時發展演算法、(4) 有限長度秩指引多路徑同時發展演算法。

最短路徑演算法

對於寬路徑問題,一個最直覺的演算法就是使用最短 路徑演算法(如dijkstra演算法)先尋找一條最短路徑,固定 下來,然後在途中移除該路徑的中間節點,再執行一次尋 找第二條最短路徑,並避免掉已經經過的節點,再固定下 來,如此執行(n-1)次即可取得共(n-1)條互斥的路徑所組成 寬路徑。

演算法1: 最短路徑演算法(Ver.1) 重複呼叫法

	輸入:給定一整數 n 及氣泡排序圖 B _n 中的一個目
	的節點f。
	輸出:一組內部互斥的從單位節點(id)往目的節
	點 f 的(n-1)條路徑。
步驟1	令 $G(V, E) = B_n$ 為初始圖。
	令c = Ø用來記載寬路徑。
步驟2	以最短路徑演算法在圖G(V,E)上找出f至原點
	(id)的路徑 p = [f , r ₁ , r ₂ ,, r _m , id],令 c = c ∪
	${\mathbf{p}}$, 令 $\mathbf{G} = (\mathbf{V}', \mathbf{E}')$, 其中 $\mathbf{V}' = \mathbf{V} \setminus {\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m}$,
	$\mathbf{E}' = \mathbf{E} \cap (\mathbf{V}' \times \mathbf{V}')$,即在G中摘除{ $\mathbf{r}_1, \mathbf{r}_2,, \mathbf{r}_m$ }
	後剩餘的網路。
步驟3	若已尋得 n-1 條路徑,即 c = n − 1,則結束演
	算法並輸出所有已得路徑 c。
步驟4	重複步驟2。

使用演算法1計算完所有節點後,發現實驗結果各節 點路徑之直徑易超過 d(n)+1,且因本演算法一次發展完一 條最短路徑,容易造成路徑數越接近n-1時長度越容易超 過d(n)+1。例如在【圖1.1】中,[2431→1234]時,最短路 徑演算法(Ver.1)會找出三條長度各為4、4、8的路徑,但 我們手動優化計算的寬路徑內的路徑長度應為4、6、6。

我們經修正後發展出Ver.2。Ver.2與Ver.1不同之處在 於Ver.2同時發展n-1條路徑,循序步進且自此開始引入隨 機挑選的概念,既可快速找出互斥之路徑也可避免Ver.1 無法另尋路徑的問題。以下介紹演算法2之演算步驟。

演算法 2	
最短路徑指引多路徑同時發展演算法	

步驟1	以最短路徑演算法找出所有節點至原點(id)的距
	離。令 d(g)為 g 與原點(id)的距離。
步驟2	從目標節點 f 出發,從相鄰節點 $\{f_1, f_2,, f_{n-1}\}$ 發
	展出 n-1 條路徑c = {p ₁ , p ₂ , p ₃ ,, p _{n-1} },其中
	$p_i = [id, f_i] \circ 令 U = \{f, f_1, f_2,, f_{n-1}\}$ 用來記載
	(n-1)路徑所經過的節點。

步驟3	從 c 中的選出未到達原點之最短路徑 p,設g為					
	路徑 $p = [f, r_1, r_2,, r_m, g]$ 的最後一個節點,考慮					
	g 的 n-1 個鄰居gs = {g ₁ , g ₂ , g ₃ , g _{n-1} }, 另gs' =					
	gs\U為出現在 gs 中但不出現在 U 中的節點。在					
	gs'中隨機挑選一節點g'。我們將g'連結到路徑 p					
	的後方,即重新令 p = [f, r ₁ , r ₂ ,, r _m , g, g']。如					
	果g'≠id,我們將g'加入U中以維護路徑的互斥					
	性,即令U = U ∪ {g′}。					
步驟4	如果c中所有路徑皆已達原點,則輸出c並結束					
	本演算法,否則重複步驟3。					

使用演算法結束2實驗後,發現在隨機挑選的過程中,無法得知候選節點與原點的最短路徑,再優先挑選之,因此我們繼續修訂演算法。

演算法3將記錄所有節點抵達id的距離,讓演算法在 隨機挑選時可優先挑出與id最短距離的節點。意思是說, 每一個節點可以記錄數條最短路徑的方向供挑選。在氣泡 排序圖中,最短多路徑方向其實就是擁有較少逆序的鄰居 方向,而一個重排逆序的個數稱為秩,故稱秩指引多路徑 同時發展演算法。

演算法 3 秩指引多路徑同時發展演算法

步	以最短路徑演算法找出所有節點至原點(id)的距					
驟	離。令 d(g)為 g 到原點(id)的距離。					
1						
步	從目標節點 f 出發,從相鄰節點 $\{f_1, f_2,, f_{n-1}\}$ 發展					
驟	出 n-1 條路徑c = {p ₁ , p ₂ , p ₃ ,, p _{n-1} },其中p _i =					
2	[<i>id</i> , <i>f_i</i>]。令U = {f, f ₁ , f ₂ ,, f _{n-1} }用來記載(n-1)路徑					
	所經過的節點。					
步	從 c 中的選出未到達原點之最短路徑 p,設g為路					
驟	徑 p = [f, r ₁ , r ₂ ,, r _m , g]的最後一個節點,考慮 g					
3	的 n-1 個鄰居gs = {g ₁ ,g ₂ ,g ₃ ,g _{n-1} },另gs' =					
	gs\U為出現在 gs 中但扣除出現在 U 中的節點。考					
	慮gs'中的節點,令g' = argmin{d(h) h ∈ gs'}為					
	gs'集合中距離 id 最近之節點(即秩最小者),若最					
	近之節點有複數個,則隨機挑選之。我們將g'連結					
	到路徑 p 的後方,即重新令p =					
	[f, r ₁ , r ₂ ,, r _m , g, g']。如果g' ≠ id, 我們將g'加入 U					
	中以維護路徑的互斥性,即令 $U = U \cup \{g'\}$ 。					
步	如果 c 中所有路徑皆已達原點, 則輸出 c 的內容並					
驟	結束本演算法。					
4						
步	重複步驟3。					
驟						
5						

對於寬直徑問題來說,從計算就是需要計算所有節點 到原點的寬距離,為了因應龐大的節點計算量,以及節省 時間增進效能,我們再次修訂演算法。

因為氣泡排序圖的寬直徑臆測為 $d(B_n) + 1$,所以演 算法4將直接放棄尋找路徑的過程中距離已經超過 $d(B_n) + 1$ 的節點,待全部節點皆尋找完畢後,去除已完 成(即其長度在 $d(B_n) + 1$ 的範圍內)的節點後,將尚未完成 的節點再尋找一次,直到所有節點的長度皆落在 $d(B_n) + 1$ 內,加入本方法後將可使得寬直徑運算的耗費時間大幅 降低。

演算法 4 有限長度秩指引多路徑同時發展法

步驟1	以最短路徑演算法找出所有節點至原點(id)的距							
	離。令 d(f)為 f 到原點(id)的距離(最短路徑的長							
	度)。							
步驟2	從目標節點 f 出發,從相鄰節點 $\{f_1, f_2,, f_{n-1}\}$ 發							
	展出 n-1 條路徑 c = {p ₁ , p ₂ , p ₃ ,, p _{n-1} }, 其中							
	$\mathbf{p_i} = [\mathbf{id}, \mathbf{f_i}] \circ$							
	令 $U = \{f, f_1, f_2,, f_{n-1}\}$ 用來記載(n-1)路徑所經							
	過的節點。							
步驟3	3 從 c 中的選出未到達原點之最短路徑 p,設g為							
	路徑 $\mathbf{p} = [\mathbf{f}, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m, \mathbf{g}]$ 的最後一個節點,考慮							
	g的 n-1 個鄰居gs = {g ₁ ,g ₂ ,g ₃ ,g _{n-1} }, 另gs							
	gs\U為出現在 gs 中但扣除出現在 U 中的節點。							
考慮gs'中的節點,令g' = argmin{d(h) h								
	為gs'集合中距離 id 最近之節點,若最近之節點							
	有複數個,則隨機挑選之。我們將g'連結到路徑							
	p的後方,即重新令 p = [f, r ₁ , r ₂ ,, r _m , g, g']。如							
	果g'≠id,我們將g'加入U中以維護路徑的互斥							
	性,即令 U = U ∪ {g′}。							
步驟4	若p = [f, r ₁ , r ₂ ,, r _m , g, g']之路徑長度已超過							
	d(n)+1 即告失敗,不再尋找。							
步驟5	如果c中所有路徑皆已達原點,則輸出c的內容							
	並結束本演算法。							
步驟6	重複步驟 3。							

氣泡排序圖的節點與邊成長相當快,節點個數以階 乘方式成長,程式為了計算寬直徑,通常需要在記憶體中 先建立圖形,使用稀疏圖的僅紀錄連結的方式建立氣泡排 序圖仍需耗用大量記憶體。因為氣泡排序圖的寬直徑臆測 為d(B_n)+1,所以演算法4將直接放棄尋找路徑的過程中 距離已經超過d(B_n)+1的節點,待全部節點皆尋找完畢後 ,去除已完成(即其長度在d(B_n)+1的範圍內)的節點後, 將尚未完成的節點再尋找一次,直到所有節點的長度皆落 在d(B_n)+1內,加入本方法後將可使得寬直徑運算的耗費 時間大幅降低。【表 5.1】為最短路徑演算法的實驗統計 結果,我們發現了出以下幾點問題::

(1) 記憶體使用量龐大

實驗終將因為記憶體硬體限制上的問題而無法繼續進行。

(1) 建圖費時

雖然預先建圖可得到明顯的指引,降低接下來尋 路的計算時間,但隨著Bn的成長,建圖過程將會 愈來越費時。

(2) 節點使用比例會越來越低

在我們的臆測中,在計算完 $D(B_n)$ 後會得到 (n-1)條路徑結果,而每條路徑結果應會有 $D(B_n)$ 以內個節點,換句話說我們總共會使用到的 節點數 $\leq D(B_n) \times (n-1)$ 。以 B_{10} 為例,我們最後 所求得的路徑節點數少於 $\frac{46\times9}{3628800} \approx 萬分之一,相$ 較於最短路徑演算法預先將每一個節點逐一計算建立起來的指引圖,其比例相差懸殊。

綜觀以上幾點問題,最短路徑演算法到此遇到了瓶頸,我們思考如何能夠不預先建立指引圖,就能夠計算寬路 徑將是一個關鍵議題。 在撰寫本文時我們已經將主臆測(即D(B_n)=d(B_n)+ 1)的計算實驗驗證到B₁₀,目前數據顯示都符合臆測。以 下將詳細說明本研究接下來的目標與目前結論。

【表5.1】,我們可看出最短路徑演算法在記憶體使 用量上隨著Bn成長,而最短距離演算法的記憶體使用量始 終都在10Mb左右。最短路徑演算法在計算B11時所預估的 花費時間為27天。

本研究主要解決兩個問題,一個是氣泡排序圖 B_n 上的 寬路徑問題,一個是氣泡排序圖 B_n 上的寬直徑問題,前者 要給定 B_n 上兩節點,希望找出較短的(n-1)寬路徑連接兩點 ,後者是給定 B_n ,計算出 B_n 的(n-1)-寬直徑。這兩個問題 都很基本、很重要。前者關於網路路由的問題,後者關於 網路本身的圖論性質。我們的目標即在發展客製的演算法 尋 找 較 短 的 寬 路 徑 , 並 且 利 用 於 實 證 該 臆 測 $\forall_{n\geq 5}d_{n-1}(B_n) = d_1(B_n) + 1$ 。

表 5.1:最短路徑演算法實驗數據

網路	節點數	邊數	記憶體 用量	建圖 耗時	計算 耗時
B4	24	72	27Mb	0.06 秒	1.2 秒
B5	120	480	27Mb	0.11 秒	1.7 秒
B6	720	4,320	29Mb	0.94 秒	2.7 秒
B7	5,040	32,400	35Mb	8.23 秒	25 秒
B8	40,320	282,240	59Mb	147 秒	4.7 分
B9	362,880	2,903,040	327Mb	45 分	1.7 小時
B10	3,628,800	36,259,200	524Mb	15 小時	22 小時
B11	39,916,800	399,168,000	估 2GiB	12天(估)	15 天(估)

6. 參考文獻

- Sheldon B. Akers, Balakrishnan Krishnamurthy: A Group-Theoretic Model for Symmetric Interconnection Networks. IEEE Trans. Computers 38(4): 555-566 (1989).
- Zi-Tsan Chou, Chiun-Chieh Hsu, Jang-Ping Sheu: Bubblesort star graphs: a new interconnection network. ICPADS 1996: 41-48 (1996).
- [3] M. Dietzfolbingor, S. Maclhavapeddy and I.
 H. Sudborough: Three disjoint path paradigms in star networks, in Proc. of the 3rd IEEE Symposium on Parallel and Distributed Processing (IEEE CS Press, 1991) 400-406.
- [4] Robert Elsässer, Thomas Sauerwald: Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs. STACS 2007: 163-174 (2007).
- [5] S. Gao and D. F. Hsu: Short conatiners in Cayley graphs, DIMACS Technical Report 2001-18, May 2001, 15 pages.
- [6] Marie-Claude Heydemann, Nausica Marlin, Stéphane Pérennes: Rotational Cayley Graphs on Transposition Generated Groups. Electronic Notes in Discrete Mathematics, 177~180 (2000).
- [7] D. F. Hsu: On container width and length in graphs, groups, and networks, in IEICE Trans. on Fundamentals of Electronics, Communications, and Computer Science, v.E77-A, NoA (1994) 668-680.
- [8] Tatsuya Iwasaki, Keiichi Kaneko: A routing algorithm of pairwise disjoint paths in a burnt pancake graph. SoICT 2011: 62-66 (2011).
- [9] Keiichi Kaneko, Yasuto Suzuki: Node-to-Node Internally Disjoint Paths Problem in Bubble-Sort Graphs. PRDC 2004:

173-182 (2004).

- [10] S. Labshmivarahan, J. Jwo and S. K. Dhall: Symmetry in interconnection networks based on cayley graphs of permutation group: a survey, in Parallel Comput. 19 (1993) 361-407.
- [11] Shahram Latifi, Pradip K. Srimani: Transposition networks as a class of fault-tolerant robust networks. Computers, IEEE Transactions on (February 1996), 45 (2), pg. 230-238 (1996).
- [12] Karl Menger: Zur allgemeinen Kurventheorie. Fund. Math. 10: 96–115 (1927).
- [13] E. Oh and J. Chen: Strong fault-tolerance: parallel routing in star networks with faults, in J. of interconnection Networks, vA, No.1 (2003) 113-126.
- [14] Yasuto Suzuki, Keiichi Kaneko: The Container Problem in Bubble-Sort Graphs. IEICE Transactions 91-D(4): 1003-1009 (2008).
- [15] Yasuto Suzuki, Keiichi Kaneko: An algorithm for disjoint paths in bubble-sort graphs. Systems and Computers in Japan 37(12): 27-32 (2006).
- [16] Yasuto Suzuki, Keiichi Kaneko, Mario Nakamori: Node-Disjoint Paths Algorithm in a Transposition Graph. IEICE Transactions 89-D(10): 2600-2605 (2006).
- [17] Chi-Hsiang Yeh, Behrooz Parhami, Emmanouel A. Varvarigos: The Recursive Grid Layout Scheme for VLSI Layout of Hierarchical Networks. IPPS/SPDP 1999: 441-
- [18] Chi-Hsiang Yeh, Emmanouel A. Varvarigos: Macro-Star Networks: Efficient Low-Degree Alternatives to Star Graphs. IEEE Trans. Parallel Distrib. Syst. 9(10): 987-1003 (1998)
- [19] N-Queen Problem on Integer Sequnce. https://oeis.org/search?q=A000170