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Abstract

An interconnection network plays a critical role
of a multi-computer system because the system
performance is deeply dependent on network la-
tency, fault tolerance and throughput. There are
a lot of mutually conflicting requisites in design-
ing the topology of interconnection networks. It
is nearly impossible to design a network which
is optimum in all perspectives. Therefore, de-
signing new interconnection networks is still an
attractive research. In this paper, we introduce
a new interconnection topology, Cube Connected
Crossed Cube(QCC). This topology is suitable for
the design of massively parallel systems with thou-
sands of processors. An interesting property of
this network is the low vertex degree, which en-
hances the VLSI design and fabrication of the sys-
tem. The QCC can emulate the cube-connected
machine with no significant degradation of perfor-
mance but with a much more compact structure.
The diameter and the optimal connectivity (equal
to the degree) of QCC are proposed in this pa-
per. Keywords: Interconnection networks, Hy-
percube, Crossed Cube, Cube Connected Crossed
Cube, connectivity, diameter.

1 Introduction

It is important to design parallel computers us-
ing an interconnection network topology that can
scale up to a large number of processors and that
is capable of sustaining fast communication and
data sharing among processors. There are a lot
of mutually conflicting requisites in designing the
topology of interconnection networks. It is nearly
impossible to design a network which is optimum

∗Correspondence to: Associative Professor Hong-

Chun Hsu, Department of Medical Informatics, Tzu

Chi University, Hualien, Taiwan 970, R.O.C. e-mail:

hchsu@mail.tcu.edu.tw.

in all perspectives. Therefore, designing new inter-
connection networks is still an attractive research.
This investigation will continue for decades since
parallel and distributed computers are the main
solution for the computational problems that will
defy human beings in the twenty-first century.

Hierarchical interconnection networks have at-
tracted considerable attention in the research for
multiprocessor systems[13, 16, 18, 20, 25]. A hi-
erarchical design approach allows the network to
be constructed incrementally, starting from one
or more essential modules. Hierarchical intercon-
nection networks are intuitively appealing when
massively parallel processors are to be connected.
The Hypercube [21] is one of the most widely
used topologies because it has charming prop-
erties such as strong connectivity, recursive in-
terconnection, simple routing, a good edge com-
plexity, and embedding of various interconnec-
tion networks. A variety of Hypercube based hi-
erarchical interconnection networks such Crossed
Cube [6, 7], Enhanced Cube [22], Extended Cube
[16], Folded Cube [1], Generalized Hypercube [2],
Möbius Cube [5], Twisted Cube [9, 12], Hierarchi-
cal Hypercube [18], Hierarchical Crossed cube [17]
and so on have been proposed.

The Crossed Cube was first proposed by Efe,
and has attracted much attention in literatures
[4, 8, 10, 14, 15, 23]. An n-dimensional Crossed
Cube, denoted as CQn, is obtained by crossing
some edges in an n-dimensional Hypercube. The
Crossed Cube has the same vertex and edge com-
plexity as the Hypercube but only about half of
diameter, wide diameter, and fault-diameter as
the Hypercube with the same dimension. Aver-
age distance between vertices is smaller and it can
simulate a Hypercube through dilation 2 embed-
ding. The basic properties, optimal routing and
broadcasting algorithms of the Crossed Cube are
all developed.

Motivated by the architecture of hierarchical
Interconnection network and many noticeable fea-
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tures of Hypercube and Crossed Cube, we propose
a new interconnection network, called the Cube
Connected Crossed Cube (hereafter abbreviated
asQCC), in this paper. Theoretical network prop-
erties such as the diameter and connectivity will
be discussed in detail. The paper is organized as
follows: next section introduces the necessary pre-
liminaries and the formal definition of Cube Con-
nected Crossed Cube. In section 3, we study the
diameter and connectivity of QCC. Finally, we
give a conclusion.

2 Preliminary

For the graph definition and notation, we fol-
low [3]. G = (V,E) is a graph if V is a finite
set and E is a subset of {(u, v) | (u, v) is an un-
ordered pair of V }. We say that V is the vertex
set and E is the edge set. Two vertices u and v

are adjacent if (u, v) ∈ E. A path is a sequence
of adjacent vertices, written as 〈v0, v1, v2, . . . , vm〉,
in which all the vertices v0, v1, . . . , vm are distinct
except possibly v0 = vm. For this path, v0 and
vm are called end vertices, and vi, 1 ≤ i ≤ m− 1,
is called internal vertex. For convenience, we use
(u, v)-path to denote the path with end vertices
u and v. We also write the path 〈v0, P, vm〉 or
P (v0, vm), where P = 〈v0, v1 . . . , vm〉. The length
of a path P , len(P ), is the number of edges in P . n
(u, v)-paths P1, P2, . . . , Pn are said to be internally
disjoint if they have no common internal vertices.
A vertex cut of G is a set of vertices S ⊆ G such
that G−S is disconnected. The connectivity of G,
κ(G), is the minimum cardinality over all vertex
cuts of G. If κ(G) = n then G is n-connected. By
Menger’s Theorem, if κ(G) = n then there exist n
internally disjoint (u, v)-paths over all pair of ver-
tices u, v ∈ V (G); and for any set {w1, w2, . . . , wn}
of vertices in G− {u} there are n disjoint (except
u) (u,wi)-paths in G. The distance between two
distinct vertices u and v of G, denoted by dG(u, v),
is the length of the shortest (u, v)-path of G. The
diameter of G, denoted by Diam(G), is defined as
Diam(G) = max{dG(u, v) | u, v ∈ V (G)}.

In this section, we will introduce the formal
definition of the Cube Connected Crossed Cubes.
To define the Cube Connected Crossed Cubes,
we need the definitions of Hypercubes[21] and
Crossed Cubes[6]. The Cube Connected Crossed
Cube is designed based on k-dimensional Hyper-
cube and n-dimensional Crossed Cube with k =
2n.

Definition 1 The k-dimensional Hypercube, Qk,

is a graph G = (V,E) with the vertex set V =
{bk−1bk−2 . . . b1b0 | bi ∈ {0, 1} for all 0 ≤ i ≤
k − 1} and the edge set E = {(u, v) | u and v

differs exactly one bit}.

To define Crossed Cubes, as the proposed by
Efe [6], the notion so called “pair related” relation
is introduced.

Definition 2 Let R =
{(00, 00), (10, 10), (01, 11), (11, 01)}. Two dibit
binary strings u = u1u0 and v = v1v0 are pair
related, denoted as u ∼ v, if and only if (u, v) ∈ R.

The following is the recursive definition of the
n-dimensional Crossed Cube CQn.

Definition 3 [6] The Crossed Cube CQ1 is a
complete graph with two vertices labelled by 0
and 1, respectively. For n ≥ 2, an n-
dimensional Crossed Cube CQn consists of two
(n − 1)-dimensional sub-Crossed Cubes, CQ0

n−1

and CQ1
n−1, and a perfect matching between the

vertices of CQ0
n−1 and CQ1

n−1 according to the
following rule:

Let V (CQ0
n−1) = {0un−2un−3 · · ·u0 : ui = 0

or 1} and V (CQ1
n−1) = {1vn−2vn−3 · · · v0 : vi =

0 or 1}. The vertex u = 0un−2un−3 · · ·u0 ∈
V (CQ0

n−1) and the vertex v = 1vn−2vn−3 · · · v0 ∈
V (CQ1

n−1) are adjacent in CQn if and only if

(1) un−2 = vn−2 if n is even, and

(2) (u2i+1u2i, v2i+1v2i) ∈ R, for 0 ≤ i < ⌊n−1
2 ⌋.

For convenience, let Dec(b) and Biti(b) denote
the decimal number and the i-th bit of the binary
string b, respectively. Moreover, let fi(b) = 1 if
Biti(b) = 0 and fi(b) = −1 otherwise. We are
now ready to define the Cube Connected Crossed
Cubes.

Definition 4 Given two positive integers n ≥ 1
and k = 2n. A Cube Connected Crossed Cube,
QCC(k, n), is a graph G = (V,E) on 2k+n ver-
tices, where V = {bk+n−1bk+n−2 · · · b1b0|bi ∈
{0, 1}, 0 ≤ i ≤ k + n − 1} and E = Eint

⋃
Eext.

The label of a vertex u is divided into two parts,
say u = uXuY , where uX = uk+n−1uk+n−2 · · ·un

and uY = un−1un−2 · · ·u0. The set of edges E is
the union of two sets Eint and Eext, which are the
sets of internal and external edges, respectively, as
the following equations.

(1) Eint = {(u, v) | uX = vX , and (uY , vY ) ∈
E(CQn)} and
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(2) Eext = {(u, v) | uY = vY , and vX = uX +
fDec(uY )(uX) ∗ 2Dec(uY )}.

Figures 1 and 2 illustrate the QCC(2, 1) and
QCC(4, 2), respectively.

By the definition of Cube Connected Crossed
Cubes, the structure of a QCC(k, n) consists of
two levels of hierarchy. At the lowest level of hi-
erarchy, we have a pool of 2k+n vertices. These
vertices are grouped into clusters of 2n vertices
each, and the vertices in each cluster are connected
to form a CQn. Let CQn(i) denote the induced
subgraph of QCC(k, n) whose vertex set is {u =
uXuY | Dec(uX) = i and 0 ≤ Dec(uY ) ≤ 2n − 1}.
Then, 2k CQn(i)s are connected in a Hypercube
fashion to form a QCC(k, n). Clearly, edges of the
CQn(i)s are called internal edges, and edges be-
tween CQn(i)s are referred to as external edges.
The following properties are some observations on
QCC(k, n).

Property 1 QCC(k, n) is (n+1)-regular and has
2k+n vertices for k, n ≥ 1.

Given a neighbor v of vertex u in QCC(k, n)
with that i is the left-most different bit between u

and v, then v is called the i-neighbor of u, denoted
by v = Ni(u). If i ≥ n, then Ni(u) is an external
neighbor of u in QCC(k, n), denoted by Next(u).
Otherwise, Ni(u) is an internal neighbor of u in
QCC(k, n), denoted by N int

i (u), when 0 ≤ i ≤
n−1. Clearly, there are one external neighbor and
n internal neighbors for each vertex in QCC(k, n).
Let N int(u) = {N int

i (u) | 0 ≤ i < n}.

Lemma 1 The 2n vertices of CQn(i) connect to
exact 2n CQn(i

′)s in QCC(k, n).

We say CQn(i) is the h-dimensional neighbor
cube of CQn(i

′) if the position of different bit be-
tween i and i′ is h. Let QCCb(k, n), b ∈ {0, 1},
be the subgraph of QCC(k, n) induced by the ver-
tices which have the label with the left-most bit is
b.

3 Combinatorial Properties

Theorem 1 Let k, n be two positive integers with
k = 2n and let u, v be two distinct vertices of
QCC(k, n) with parity(uX

⊕
vY ) = 1. Then

there exists a Hamiltonian path joining u and v.

Theorem 2 Let k, n be two positive integers with
k = 2n. Then there exists a Hamiltonian cycle in
QCC(k, n).

Lemma 2 Let k, n be two positive integers with
k = 2n and let u, v be two distinct vertices of
QCC(k, n). Then d(u, v) ≤ 2n+1 − 1.

Theorem 3 Let k, n be two positive integers with
k = 2n. The diameter Diam(QCC(k, n)) =
2n+1 − 1.

Theorem 4 Let k, n be two positive integers with
k = 2n. The connectivity κ(QCC(k, n)) = n+ 1.

Since QCC(k, n) is (n+1)-regular and (n+1)-
connected, QCC(k, n) has optimal connectivity.
Finally, we list some comparisons with Hyper-
cube, Crossed Cube, and Hierarchical Hypercube,
Cube Connected Cycle as the table 1.

4 Conclusion

In this paper, we introduce a new intercon-
nection topology, Cube Connected Crossed Cube,
QCC(k, n). Herein, we study the Combinato-
rial Properties of QCC(k, n) such as diameter
and connectivity. QCC(k, n) has many interesting
properties such as low degree, logarithmic diame-
ter, and maximum connectivity. Other properties,
such as fault diameter, fault-tolerant hamiltonian,
panconnectivity etc. will be investigated in the
future.
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Figure 1: Illustration of QCC(2, 1)
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Figure 2: Illustration of QCC(4, 2)
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Figure 3: Illustration of CQ(0) in QCC(8, 3)
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Table 1: Compare with other hierarchical networks.
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