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Abstract

The Möbius cube MQn is a variant of the hy-
percube structure that has better performance with
the same number of links and processors. The
cycle is a popular interconnection topology and
has been widely used in distributed-memory par-
allel computers. Moreover, the parallel algorithms
of cycles have been extensively developed. In this
paper, we propose one efficient method to generate
Hamiltonian cycle in Möbius cubes and give a con-
jecture that some permutations are not available to
generate cycle.

1 Introduction

Interconnection networks play a major role in
the performance of distributed-memory multipro-
cessor and the one primary concern for choosing
an appropriate interconnection network is the
graph embedding ability. The graph embedding
is the mapping of a topological structure (guest
graph) into other topological structure (host
graph) that preserves certain required topological
properties and the graph embedding ability
reflects how efficiently a parallel algorithm with
guest graph can be executed on host graph
and the utilization of system resources in host
graph. Many applications, such as architecture
simulations and processor allocations, can be
modeled as graph embedding.

A cycle structure is a fundamental network for
multiprocessor systems and suitable for develop-
ing simple algorithms with low communication
costs. Several efficient algorithms have been
designed with respect to cycle-structures for
solving a variety of algebraic problems, graph
problems, and some parallel applications, such as

those in image and signal processing. Due to effi-
ciently executing a parallel program, the targeted
interconnection network possesses a Hamiltonian
cycle, i.e., a cycle passing every vertex of the
network exactly once if the number of processes
in the ring-structure parallel algorithm equals the
number of vertices of the interconnection network.

With regard to the cycles embedding of in-
terconnection networks, many interesting results
have received much attention [1, 3, 12, 13]. In
particular, Zheng and Latifi [13] introduced the
notion of the reflected link label sequences and
proposed a kind of codeword, termed the Gen-
eralized Gray Code. In this paper, we consider
the problem of embedding a Hamiltonian cycle in
the Möbius cube. We adopt concepts of reflected
link label sequences and cycle pattern in [3, 13]
and use them to construct an efficient algorithm
for embedding a desired Hamiltonian cycle in the
Möbius cube.

An n-dimensional Möbius cube, MQn, is an
important alternative of hypercube Qn. MQn

has 2n nodes and n2n−1 edges. The diameter of
MQn is about one half that of the n-dimensional
hypercube Qn and the average number of steps
between nodes for MQn is about two-thirds of
the average for Qn, and 1 − MQn has dynamic
performance superior to that of Qn. Of course,
the symmetry of MQn is not superior to that of
Qn, i.e., Qn is both node symmetric and edge
symmetric, whereas MQn is, in general, neither
node symmetric (n ≥ 4) nor edge symmetric
(n ≥ 3). In recent years, there are many research
on the Möbius cubes. [4, 5, 6, 7, 8]

In particular, J. Fan [4] proved that any cycle
of length l, 4 ≤ l ≤ 2n, can be embedded into
MQn with dilation 1 (n ≥ 2) by using the
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Hamilton-connectivity of MQn. However, we
propose one systematic way to generate cycles
with concepts of reflected link label sequences
and cycle pattern in this paper.

The rest of this paper is organized as follows.
The preliminary knowledge and fundamental
definitions are given in next section. Then some
interesting permutations are introduced for con-
structing desired Hamiltonian cycles in Section 3.
Conclusions are given in the final section.

2 Preliminaries

We give here the basic graph-theoretic def-
initions relevant to this paper. The topology
of an interconnection network is conveniently
represented by an undirected simple graph G =
(V,E), where V (G) and E(G) are the vertex set
and the edge set of G, respectively. Throughout
this paper, the terms graph and network are
used interchangeably. Moreover, the terms node
and vertex are used interchangeably. For graph
terminology and notation not defined here we
refer the reader to [9, 11].

A walk in a graph is a finite sequence ω :
⟨λ0, e1, λ1, e2, λ2, e3 . . . , λl−1, el, λl⟩ whose terms
are alternately vertices and edges so, for 1 ≤ i ≤ l,
the edge ei has ends λi−1 and λi, thus each edge
ei is immediately preceded and succeeded by
the two vertices with which it is incident. A
path is a sequence of adjacent vertices written as
⟨u0, u1, . . . , ul⟩, and all the vertices are distinct.
A cycle, ⟨u0, u1, . . . , ul⟩, is a path which at least
three vertices and u0 = ul. For a cycle which
traversing all the vertices on a graph, we call it as
Hamiltonian cycle.

An n-dimensional Möbius cube has 2n nodes.
Each node has a label with unique n-bits bi-
nary code and n neighbors. For instance, a
node x has a label xn−1xn−2 . . . x0. A node
y is called i-neighbor of x if and only if y =
xn−1xn−2 . . . xi+1xixi−1xi−2 . . . x0 if xi+1 = 0 or
y = xn−1xn−2 . . . xi+1xixi−1 . . . x1x0 if xi+1 = 1.

More informally, x connects to a neighbor that
differs in bit xi if xi+1 = 0, and to a neighbor
that differs in bits xi through x0, if xi+1 = 1. The
connection between x and y along dimension n−1
has xn undefined, so we can assume xn is either

equal to 0 or equal to 1, which gives us slightly
different network topologies. If we assume xn = 0,
we call the network a 0-Möbius cube; and if we as-
sume xn = 1, we call the network a 1-Möbius cube.

An 1-dimensional Möbius cube is a graph with
two connected nodes. An n-dimensional Möbius
cube is formed with an (n − 1)-dimensional 0-
Möbius cube and an (n−1)-dimensional 1-Möbius
cube. From the definition of the Möbius cube, we
can construct an n-dimensional Möbius cube by
adding 2n−1 edges. For convenience, we will write
MQ0

n and MQ1
n as n-dimensional 0-Möbius cube

and n-dimensional 1-Möbius cube, respectively.

Figs. 1 and 2 show the MQ0
4 and MQ1

4. They
also demonstrate the expansibility of the Möbius
cube networks by showing how a 0-Möbius cube
of dimension 3 connects to a 1-Möbius cube
of dimension 3 to create a 0-Möbius cube or a
1-Möbius cube of dimension 4.

Figure 1: 4-dimensional 0-Möbius cube

Figure 2: 4-dimensional 1-Möbius cube
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3 Permutation and edge label se-
quence

We say that v is the i-neighbor of u, denoted
by v = ui, and the edge (u, v) is an edge of
dimension i if the following two conditions
are satisfied: 1) un−1un−2 . . . uiui−1 . . . u1u0

= un−1un−2 . . . ui+1uiui−1 . . . u1u0 for ui+1

= 0; and 2) un−1un−2 . . . uiui−1 . . . u1u0 =
un−1un−2 . . . ui+1uiui−1 . . . u1u0 for ui+1 = 1.
For instance, for vertex u = 10010 of MQ0

5, its
4-, 3-, 2-, 1-, and 0-neighbors are 00010, 11101,
10110, 10000, 10011, respectively. Let v = uij

denote the j-neighbor of ui.

To convenience, we will usually use a vertex
and an edge label sequence to identify a desired
path or cycle throughout this paper. Some
graph-theoretic notations and terminology for
our purpose are given as follows. Let L(n) =
{0, 1, . . . , n− 1} denote the set consisting of n di-
mensions in a MQn. An edge label sequence S is
a sequence generated by the elements of L(n). To
simplify the explanation, if no ambiguity arises,
the terms S and [S] are used interchangeably for
an edge label sequence in the following discus-
sions. For instance, [12] and [020] are two edge
label sequences in a MQ3. We can use an edge
label sequence and start/last vertices to represent
a path in a MQn explicitly. For instance, we
write 000[12]110 and 000[020]100 to denote the
two paths ⟨000, 010, 110⟩ and ⟨000, 001, 101, 100⟩,
respectively, in a MQ0

3.

A walk, ω(S, v) = ⟨λ0, λ1, λ2, . . . , λm⟩, in a
MQn can be generated with respect to a given
edge label sequence S = d1d2 · · · dm and a given
vertex v as follows: λ0 = v, and λj is the
dj-neighbor of λj−1 in a MQn where 1 ≤ j ≤ m,
that is, λj−1[dj ]λj is an edge with label dj . Thus,
this walk ω(S, v) is also represented as ⟨λ0[S]λm⟩
or λ0[S]λm. In particular, the edge label sequence
S is interesting when it generates a loop-free path
ω(S, v) starting from any vertex v in a MQn. A
sequence S called cycle sequence if and only if
ω(S, v) is a cycle.

Let a proper subsequence S1 of sequence S be
a nonempty subsequence with S1 ̸= S. Naturally,
for a path u[S]u′ and a proper subsequence S1

of S, v ̸= u and v ̸= u′ for any vertex v = uS1

. For comprehending the difference of start/last
vertices u and v, let DB(u, v) denote the set
containing these different bit positions between

them. Clearly, DB(u, uij) = {i, j} if ui+1, uj+1

are both 0. Clearly, for v = uS , DB(u, v) is
dependent on elements of S and u. However, we
prefer the edge label sequence S that DB(u, v)
is not dependent on u but S. For such edge
label sequence S, we call it an independent edge
label sequence (or IE sequence for short) and
furthermore define DB(S) = DB(u, v) if S is an
IE sequence.

Let D(s) = (d0, d1 . . . , ds−1) be a permutation
of s, 1 ≤ s ≤ n, elements taken from L(n).
We now define some useful concepts about
permutation and reflected edge label sequence
corresponding to D(s).

Definition 1. [10] For n ≥ 3 and 1 ≤ s ≤ n, a
reflected edge label sequence RD(s) corresponding
to a permutation D(s) = (d0, d1, . . . , ds−1) is
defined as:

D(1) = d0, RD(1) = d0,

D(k) = D(k − 1) ∪ dk−1,

RD(k) = RD(k−1)+ dk−1+RD(k−1), 2 ≤ k ≤ s.

A complete reflected edge label (or complete
for short) sequence corresponding to D(s) is
defined as CD(s) = RD(s) + ds−1

A permutation D(s) is called a cycle
permutation if its complete sequence CD(s)

is a cycle sequence. For instance, for D(2) =
{0, 2}, RD(2)(2) = 020, CD(2) = 0202, and set
U = {0, 2, 02, 20, 020, 202} contains all proper
subsequences of 0202. It is not difficult to verify
that for any vertex u ∈ MQ3, DB(u, u0202) =
DB(0202) = DB(0022) = ∅ and DB(u, uS1) =
DB(S1) ̸= ∅ for each S1 ∈ U . Thus, CD(2) is a
cycle sequence and then D(2) is a cycle permu-
tation in MQ3. In this paper, we provide one
kind of cycle permutations to embed Hamiltonian
cycles into a MQn.

Next we give some properties of complete
reflected edge label sequence which is useful for
us to prove our main result.

By Definition 1, we have Property 1.

Property 1. Let D(s) = (d0, d1 . . . , ds−1). There
are 2s elements in the sequence CD(s).
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Property 2. Let D(s) = (d0, d1 . . . , ds−1). There
are 2i−j dj’s and 20 di+1 among two conjunctive
di’s for 1 ≤ i < s − 1, 0 ≤ j < i in the sequence
CD(s).

Property 3. Let D(s) = (d0, d1 . . . , ds−1). There
are 2s−2−j dj’s among two conjunctive ds−1’s for
0 ≤ j < s−1 and a dj among two conjunctive d0’s
for 1 ≤ j ≤ s− 1 in the sequence CD(s).

For instance, let D(3) = (d0, d1, d2) and CD(3)

= d0d1d0d2d0d1d0d2. For Property 2, suppose
that i = 1 and j = 0. Clearly, among two d1’s,
there are 21−0 = 2 d0’s and 20 = 1 d2. And for
Property 3, there are 22−1−1 = 1 d1 and 21 = 2
d0’s. For i = 0, we know that there is only one dj
among two d0’s where 1 ≤ j ≤ 2.

4 Cycle permutation on Möbius
cubes

In this section, we give a method to generate
a Hamiltonian cycle and also give some permu-
tations which are not available to generate a cycle.

A permutation D(s) = (d0, d1 . . . , ds−1),
called ascending if for any integer i, di < di+1,
where 0 ≤ i < s. And a permutation D(s) =
(1, 2 . . . , s − 1), called consecutive ascending
(CA for short) for 2 ≤ s ≤ n. We will use
DA(s) and DCA(s) to represent an ascending and
a consecutive ascending permutation, respectively.

Lemma 1. Let DCA(n) = (1, 2 . . . , n − 1).
RDCA(n) is an IE sequence, DB(RDCA(n)) =
{n − 1, n − 3, n − 4, . . . , 1, 0} for MQ0

n and
DB(RDCA(n)) = {n − 1, n − 2} for MQ1

n where
n ≥ 3.

Proof. We prove this lemma by induction on n
and now discuss the base case for n = 3. For
DCA(3) = (1, 2) and RDCA(3) = 121, by Table
1 and 2, DB(RDCA(3)) = {2, 0} for MQ0

3 and
DB(RDCA(3)) = {2, 1} for MQ1

3. That is, this
lemma is true for n = 3.

Suppose that this lemma holds for n = k. For
n = k + 1, we have DCA(k + 1) = (1, 2 . . . , k)
and RDCA(k+1) = [RDCA(k), k, RDCA(k)]. Let u ∈
V (MQ0

k+1) and v = uRDCA(k) . By the induction
hypothesis, DB(u, v) = {k−1, k−3, ..., 1, 0} (resp.
DB(u, v) = {k − 1, k − 2}) if uk = 0 (resp. if

uk = 1). Let x = vk and y = xRDCA(k) . Then
DB(v, x) = {k} and DB(x, y) = {k − 1, k − 2}
(resp. DB(x, y) = {k − 1, k − 3, ...1, 0}) if uk = 0
(resp. if uk = 1 ). Note that DB(u, uRDCA(k+1))
= DB(u, y) = DB(u, v)△DB(v, x)△DB(x, y) =
{k−1, k−3, ..., 1, 0}△{k}△{k−1, k−2} = {k, k−
2, k− 3, ..., 1, 0} (resp. DB(u, uRDCA(k+1)) = {k−
1, k−2}△{k}△{k−1, k−3, ...1, 0} = {k, k−2, k−
3, ..., 1, 0}) if uk = 0 (resp. if uk = 1 ). Now let
u ∈ V (MQ1

k+1), we can have DB(u, uRDCA(k+1))
= {k, k−1} easily by using the same way we used
before. This completes the proof.

In the following, we introduce some special
permutations which can help us to generate
a Hamiltonian cycle. A permutation D(s) =
(d0, d1 . . . , ds−2, ds−1) is called zero end. A
permutation is called consecutive ascending zero
end if the final element ds−1 is zero ( CZ for
short ) if D(s) = (d0, d1 . . . , ds−2, 0) where di+1

= di + 1 for 0 ≤ i < s− 1.

Lemma 2. Let DCZ(n) = (1, 2 . . . , n− 1, 0). For
any vertex u ∈ MQn, DB(u, uCDCZ (n)) = ∅.

Proof. We prove this lemma by induction on n
and now discuss the base case for n = 2. We
have DCZ(2) = (1, 0) and CDCZ(2) = 1010. For
u ∈ MQ0

2, DB(u, u1) = {1}, DB(u, u10) =
{1, 0}, DB(u, u101) = {0}, and DB(u, u1010) =
∅. For u ∈ MQ1

2, DB(u, u1) = {1, 0}, DB(u, u10)
= {1}, DB(u, u101) = {0}, and DB(u, u1010) = ∅.

Suppose that this lemma holds for n = k. For
n = k + 1, we have DCZ(k + 1) = (1, 2 . . . , k, 0)
and CDCZ(k+1) = [RDCA(k), 0, RDCA(k), 0]. Let

u ∈ V (MQ0
k+1) and v = uRDCA(k) , by Lemma 1,

we have DB(u, v) = {k, k − 2, k − 3 . . . , 1, 0}. Let
x = v0, y = xRDCA(k) and z = y0. Then DB(u, x)
= {k, k − 2, k − 3 . . . , 1}, DB(u, y) = {0}, and
DB(u, z) = ∅. And if u ∈ V (MQ1

k+1), we have
DB(u, v) = {k, k − 1}, DB(u, x) = {k, k − 1, 0},
DB(u, y) = {0}, and DB(u, z) = ∅. The proof is
complete.

Theorem 1. For any vertex u ∈ V (MQn),
ω(CDCZ(n), u) is a Hamiltonian cycle.

Proof. We prove this theorem by induction on n
and now discuss the base case for n = 2. We have
DCZ(2) = (1, 0) and CDCZ(2) = 1010. For any
vertex u ∈ V (MQn), by Table 3 and Table 4, we
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Table 1: All paths generated by R(1,2) in MQ0
3

u 1 2 1 DB(R(1,2))
000 010 110 101 {2, 0}
001 011 111 100 {2, 0}
010 000 100 111 {2, 0}
011 001 101 110 {2, 0}
100 111 011 001 {2, 0}
101 110 010 000 {2, 0}
110 101 001 011 {2, 0}
111 100 000 010 {2, 0}

Table 2: All paths generated by R(1,2) in MQ1
3

u 1 2 1 DB(R(1,2))
000 010 101 110 {2, 1}
001 011 100 111 {2, 1}
010 000 111 100 {2, 1}
011 001 110 101 {2, 1}
100 111 000 010 {2, 1}
101 110 001 011 {2, 1}
110 101 010 000 {2, 1}
111 100 011 001 {2, 1}

Table 3: All cycles generated by CDCZ(2) in MQ0
n

u 0 1 0 1
00 01 11 10 00
01 00 10 11 01
10 11 01 00 10
11 10 00 01 11

Table 4: All cycles generated by CDCZ(2) in MQ1
n

u 0 1 0 1
00 01 10 11 00
01 00 11 10 01
10 11 00 01 10
11 10 01 00 11

know that this theorem is true for n = 2.

Suppose that this theorem is holds for n = k.
For n = k+1, we have DCZ(k+1) = (1, 2 . . . , k, 0)
and CDCZ(k+1) = [RDCA(k), 0, RDCA(k), 0].
Now we only need to prove that for
any vertex p, l ∈ V (ω(CDCZ(k+1), u)),
DB(p, l) ̸= ∅. Let ω(CDCZ(k+1), u) =
u[RDCA(k)]v[0]x[RDCA(k)]y[0]z, by the induc-
tion hypothesis, we know that for any vertex
p, l ∈ V (u[RDCA(k)]v), DB(p, l) ̸= ∅ and for any
vertex p1, l1 ∈ V (x[RDCA(k)]y), DB(p1, l1) ̸= ∅.
Because that u and x at least differs form the
bit 0, so that we know that for any vertex
p, l ∈ V (ω(CDCZ(k+1), u)), DB(p, l) ̸= ∅ except u

and z. By this result, Property 1 and Lemma 2,
the theorem holds for n = k + 1.

Furthermore, by Property 1, Property 2 and
Property 3, we have a conjecture about some
permutation which is not a cycle permutation.

Conjecture 1. Let D(s) = (d0, . . . , ds−2, ds−1)
where 1 ≤ s ≤ n. If |ds−2 − ds−1| = 1 where
ds−2 ̸= 0 and ds−1 ̸= 0, CD(s) is not a cycle se-
quence.

5 Conclusion

The Möbius cubes MQn is a variant of the hy-
percube structure. In this paper, we propose a
method of embedding Hamiltonian cycle into the
Möbius cubes and further we have a conjecture
that one kind of permutation which can’t gener-
ate a cycle in the Möbius cubes. We are still look-
ing for more useful permutations and proving our
conjecture.
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