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Abstract 
 

The crossed cube is an important variant of the 
hypercube for parallel computing. In this paper, we 
investigate the path embedding of various lengths in 
crossed cubes with faulty vertices. More precisely, let 
F denote the vertex faults in an n-dimensional 
crossed cube, where n ≥ 5 and |F| ≤ n – 3. Then, we 
show that there exists a fault-free path of length l 
between any two distinct fault-free vertices for each 
integer l satisfying 2n – 5 ≤ l ≤ 2n – |F| – 1. This 
result improves the previous one with the same 
number of faults. 
 
 
1. Introduction 
 

In computer science, network topology is 
important and widely discussed by researchers since 
it is essential for parallel and distributed computation. 
Recently, many network topologies have been 
proposed. Among these topologies, the hypercube is 
one of the most popular topologies since it has good 
properties such as regularity, symmetry, small 
diameter, strong connectivity, recursive structure, 
flexible partition, and relatively low link complexity 
[9]. The crossed cube has a structure similar to the 
hypercube, including recursive structure, the same 
number of vertices, and the same number of edges 
[3]. However, the diameter of the crossed cube is 
only about one half of that of the hypercube [3]. The 
diameter is an important factor for parallel 
computing speed. The crossed cube has been studied 
extensively in the literatures: for an n-dimensional 
crossed cube, its diameter is (n + 1) / 2 [3]; a  
(2n – 1)-node complete binary tree can be embedded 
into the crossed cube with dilation 1 [7]; the n-wide 
diameter and the (n – 1)-fault diameter were shown 
to be n / 2 + 2 [2]; the crossed cube is (n – 2)-fault- 
tolerant Hamiltonian and is (n – 3)-fault-tolerant 

Hamiltonian connected [5]. Moreover, the crossed 
cube is (n – 2)-fault-tolerant pancyclic [10]. The 
definition of the crossed cube will be presented in the 
next section. 
  In interconnection networks, the topological 
structure is represented as an undirected graph. In 
this paper, we interchange a node with a vertex, a 
link with an edge, and a network with a graph. Then, 
we follow the standard terminology given by Bondy 
and Murty [1] to describe the structure of a network. 
Let G = (V, E) be an undirected graph, where V = 
V(G) denotes the vertex set of G, and E = E(G) 
denotes the edge set of G. Two vertices u and v of G 
are adjacent if (u, v) ∈ E(G). A graph H is a 
subgraph of G, denoted by H ⊆ G, if V(H) ⊆ V(G) 
and E(H) ⊆ E(G). Moreover, H is a spanning 
subgraph of G (or H spans G) if V(H) = V(G). A path 
P of length k, k ≥ 1, from vertex x to vertex y in G is 
a sequence of distinct vertices 〈v1, v2, …, vk+1〉 such 
that v1 = x, vk+1 = y, and (vi, vi+1) ∈ E(G) for 1 ≤ i ≤ k. 
We can write P as 〈v1, v2, …, vi, Q, vj, …, vk+1〉 for 
convenience if Q ⊆ P and Q = 〈vi, …, vj〉, where i ≤ j. 
We use l(P) to denote the length of P. A cycle is a 
path with at least three vertices, and the last vertex is 
adjacent to the first one. For clarity, a cycle of length 
k, k ≥ 3, is represented by 〈v1, v2, …, vk, v1〉. A path 
(or cycle) is called a Hamiltonian path (or 
Hamiltonian cycle) of G if it spans G. A graph G is 
Hamiltonian if it has a Hamiltonian cycle, and a 
graph G is Hamiltonian connected if it contains a 
Hamiltonian path between any pair of distinct 
vertices. 
  Since vertex faults and edge faults may happen 
when a network is used in practice, it is important to 
consider with respect to faulty networks. That is, a 
network is considered functional as long as there is a 
fault-free communication path between each pair of 
fault-free nodes. 
  In this paper, we investigate the path embedding of 
various lengths in crossed cubes with faulty vertices. 
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More precisely, let F denote the vertex faults in an 
n-dimensional crossed cube, where n ≥ 5 and |F| ≤ 
n – 3. Then, we show that there exists a fault-free 
path of length l between any two distinct fault-free 
vertices for each integer l satisfying 2n – 5 ≤ l ≤  
2n – |F| – 1. This result improves the previous one 
that admits the path lengths from 2n – 3 to      
2n – |F| – 1 with the same number of faults [8].  

The rest of this paper is organized as follows. In 
Section 2, the formal definition and some properties 
of the crossed cube are introduced. In Section 3, we 
propose our main result as one theorem and show its 
correctness. Finally, some concluding remarks are 
given in Section 4. 
 
 
2. The crossed cube and its properties 

 
To define the crossed cube, we need to first 

introduce an additional concept “pair related”. 
 
Definition 1. [3] Two 2-bit binary strings x = x2x1 
and y = y2y1 are pair related, denoted by x ~ y, if and 
only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}. 
 
  The formal definition of the crossed cube is as 
follows. 
 
Definition 2. [3] The n-dimensional crossed cube 
CQn is recursively constructed as follows: 
(i) CQ1 is a complete graph with vertex set {0, 1}. 
(ii) CQ2 is isomorphic to a cycle of length 4 with 

vertex set {00, 01, 10, 11} and edge set {(00, 
00), (10, 10), (01, 11), (11, 01)}. 

(iii) For n ≥ 3, let CQ0 
n–1 and CQ1 

n–1 be two copies of 
CQn–1 with V(CQ0 

n–1) = {0un–1un–2…u1| ui = 0 or 
1 for 1 ≤ i ≤ n – 1} and V(CQ 1 

n–1 ) = 
{1un–1un–2…u1| ui = 0 or 1 for 1 ≤ i ≤ n – 1}. 
Then, CQn is formed by connecting CQ0 

n–1 and 
CQ1 

n–1 with 2n–1 edges so that a vertex u = 
0un–1un–2…u1 in CQ0 

n–1 is connected to a vertex 
v = 1vn–1vn–2…v1 in CQ1 

n–1 if and only if (1) un–2 
= vn–2 if n is even, and (2) (u2iu2i–1, v2iv2i–1) ∈ 
{(00, 00), (10, 10), (01, 11), (11, 01)} for all 1 
≤ i ≤ (n – 1) / 2. 
 

We depict CQ3 and CQ4 in Figure 1. It was proved 
that CQn is n-connected [6]. 

In CQn, a vertex u = unun–1…u1 is said to be 
adjacent to a vertex v = vnvn–1…v1 along the ith 
dimension, 0 ≤ i ≤ n, if the following four conditions 
are all satisfied： 
(i) ui ≠ vi, 
(ii) uj = vj for all j, i + 1 ≤ j ≤ n, 
(iii) u2ku2k–1 ~ v2kv2k–1 for all k, 1 ≤ k ≤ (i – 1) / 2, 

and 
(iv) ui-1 = vi-1 if i is even.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A graph G is f-fault-tolerant Hamiltonian 
(respectively, f-fault-tolerant Hamiltonian connected) 
or simply f-Hamiltonian (respectively, f-Hamiltonian 
connected) if it remains Hamiltonian (respectively, 
Hamiltonian connected) after removing at most f 
vertices and/or edges. The following lemmas are 
necessary to derive our main result. 
 
Lemma 1. [4] If n ≥ 3, for any distinct vertices x and 
y in CQn and for any integer l with (n + 1) / 2 + 1 ≤ 
l ≤ 2n – 1, there exists a path of length l between x 
and y in CQn. 
 
Lemma 2. [5] For any integer n, n ≥ 3, CQn  is  
(n – 2)-fault-tolerant Hamiltonian and (n – 3)-fault- 
tolerant Hamiltonian connected. 
 
 
3. Path embedding of various lengths 

with faulty vertices 
 

The following theorem presents the main result of 
this paper. 

 
Theorem 1. Let F be a set of faulty vertices of CQn, 
where n ≥ 5 and |F| ≤ n – 3. Moreover, let x and y be 
any two distinct vertices of CQn – F. Then, there 
exists a path P of length l joining x and y in CQn – F 
for each integer l satisfying 2n – 5 ≤ l ≤ 2n – |F| – 1. 

Figure 1. CQ3 and CQ4 
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Proof. We prove this theorem by induction. At first, 
we have the validity of the induction base on CQ5 by 
brute force with a computer program. Here, we show 
that there exists paths of various lengths joining x 
and y in CQn – F with |F| = n – 3 for n ≥ 6. With a 
similar argument, it is easy to show the correctness of 
this theorem for |F| < n – 3. Let F = {v1, v2,,…, vn–3} 
be the set of faulty vertices, and let F* = F – {v1}. 
Besides, let F0 = F ∩ V(CQ0 

n–1) and F1 = F ∩ V(CQ1 
n–1). 

Without loss of generality, assume |F1| ≤ |F0|, and 
assume x is in CQ0 

n–1 if x and y are in different 
subcubes. For convenience of discussion, we let f = 
|F|, f0 = |F0|, f1 = |F1|, and f* = |F*|. Consider the 
following five cases. 
 
 Case 1. {x, y} ⊂ V(CQ0 

n–1) and f0 = f = n – 3 and f1 
= 0. The following two subcases have to be 
considered.  
Subcase 1.1. 2n – 5 ≤ l ≤ 2n–1 + 1. In this subcase, we 
can find a neighbor (x)n of x and a neighbor (y)n of y 
in CQ1 

n–1. Then, by Lemma 1, we can obtain a path S 
of CQ1 

n–1 joining (x)n and (y)n with n / 2 + 1 ≤ l(S) ≤ 
2n–1 – 1. Note that n / 2 + 1 < 2(n – 1) – 5 = 2n – 7 
for n ≥ 6. Then, P = 〈x, (x)n, S, (y)n, y〉 can be a path 
of CQn – F joining x and y with 2n – 5 ≤ l ≤ 2n–1 + 1. 
Figure 2(a) illustrates this subcase.  
Subcase 1.2. 2n–1 + 2 ≤ l ≤ 2n – f – 1. By Lemma 2, 
we can obtain a Hamiltonian path R of CQ0 

n–1 – F* 
joining x and y with l(R) = 2n–1 – f* – 1. We can write 
R as 〈x, R1, a, v1, b, R2, y〉, where a and b are adjacent 
to v1. Note that x = a if l(R1) = 0 and y = b if l(R2) = 0. 
Then, l(R1) + l(R2) = 2n–1 – f* – 3 = 2n–1 – f0 – 2. In 
CQ1 

n–1, we can find the neighbors (a)n and (b)n of a 
and b, respectively. By Lemma 1, there exists a path 
S of CQ1 

n–1 joining (a)n and (b)n with n / 2 + 1 ≤  
n – 1 ≤ l(S) ≤ 2n–1 – 1. Then, we can set P = 〈x, R1, a, 
(a)n, S, (b)n, b, R2, y〉. Since (2n–1 – f0 – 2) + (n – 1) + 
2 ≤ 2n–1 + 2 and f0 = f, P can be a path of CQn – F 
joining x and y with 2n–1 + 2 ≤ l ≤ 2n – f – 1. Figure 
2(b) illustrates this subcase. 
 

Case 2. x ∈ V(CQ0 
n–1) and y ∈ V(CQ1 

n–1) and f0 =   
n – 3 and f1 = 0. The following two subcases have to 
be considered. 
Subcase 2.1. 2n – 5 ≤ l ≤ 2n–1 + 1. Since x has n – 1 
neighbors in CQ0 

n–1, we can find a neighbor t of x with 
t ∉ F0 and (t)n ≠ y. By Lemma 1, there exists a path S 
of CQ1 

n–1 joining (t)n
 and y with n / 2 + 1 < 2n – 7 ≤ 

l(S) ≤ 2n–1 – 1. Then, P = 〈x, t, (t)n, S, y〉 can be a path 
of CQn – F joining x and y with 2n – 5 ≤ l ≤ 2n–1 + 1. 
Figure 3(a) illustrates this subcase.  
Subcase 2.2. 2n–1 + 2 ≤ l ≤ 2n – f – 1. By induction, 
we have a path R of CQ0 

n–1 – F* joining x and v1 with 
2n – 7 ≤ l(R) ≤ 2n–1 – f* – 1 = 2n–1 – f0. We can write 
path R as 〈x, R1, a, b, c, v1〉, then R1 is a path joining 
x and a with 2n – 10 ≤ l(R1) ≤ 2n–1 – f0 – 3. Then, we 
have two conditions that should be considered.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Condition 2.2.1. (c)n ≠ y. Let R* = 〈x, R1, a, b, c〉, 
then we have 2n – 8 ≤ l(R*) ≤ 2n–1 – f0 – 1. By 
Lemma 1, CQ1 

n–1 has a path S joining (c)n and y with 
n / 2 + 1 ≤ l(S) ≤ 2n–1 – 1. We set P = 〈x, R1, a, b, c, 
(c)n, S, y〉. Since (2n – 8) + (n / 2 + 1) + 1 < 2n–1 + 2 
for n ≥ 6, P can be a path of CQn – F joining x and y 
with 2n–1 + 2 ≤ l ≤ 2n – f – 1. See Figure 3(b) for 
illustration.  
Condition 2.2.2. (c)n = y. In this condition, we can 
find the neighbors (a)n and (b)n of a and b, 
respectively, in CQ1 

n–1. By induction, there exists a 
path S in CQ1 

n–1 – {y} joining (a)n and (b)n with  
2n – 7 ≤ l(S) ≤ 2n–1 – 2. Moreover, path R1 is with 
2n – 10 ≤ l(R1) ≤ 2n–1 – f0 – 3. Then, P = 〈x, R1, a, 
(a)n, S, (b)n, b, c, y〉 can be a path of CQn – F joining 
x and y with 2n–1 + 2 ≤ l ≤ 2n – f – 1. See Figure 3(c) 
for illustration. 
 

Case 3. {x, y} ⊂ V(CQ1 
n–1) and f0 = n – 3 and f1 = 0. 

In this case, we need to consider the following two 
subcases. 
Subcase 3.1. 2n – 5 ≤ l ≤ 2n–1 – 1. By Lemma 1, we 
can obtain a path S of CQ1 

n–1 joining x and y with   
n / 2 + 1 ≤ l(S) ≤ 2n–1 – 1. Note that n / 2 + 1 < 
2n – 5 for n ≥ 6. Then, P = 〈x, S, y〉 can be a path of 
CQ1 

n–1 with 2n – 5 ≤ l ≤ 2n–1 – 1. See Figure 4(a) for 
illustration.  
Subcase 3.2. 2n–1 ≤ l ≤ 2n – f – 1. Consider the 
following conditions. 
 
 

(a) 

(b) 

Figure 2. Illustration of Case 1 
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Condition 3.2.1. |{(x)n, (y)n} ∩ F0| ≤ 1. Assume (x)n 
∉ F0. By induction, we have a path R of CQ0 

n–1 – F* 
joining (x)n and v1 with 2n – 7 ≤ l(R) ≤ 2n–1 – f* – 1 = 
2n–1 – f0. We can write path R as 〈(x)n, R1, a, b, c, v1〉. 
If (c)n ≠ y, by induction, CQ1 

n–1 – {x} has a path S 
joining (c)n and y with 2n – 7 ≤ l(S) ≤ 2n–1 – 2. We set 
P = 〈x, (x)n, R1, a, b, c, (c)n, S, y〉, and P can be a path 
of CQn – F joining x and y with 2n–1 ≤ l ≤ 2n – f – 1. 
See Figure 4(b) for illustration. If (c)n = y, by 
induction, CQ1 

n–1 – {x, y} has a path S joining (a)n 
and (b)n with 2n – 7 ≤ l(S) ≤ 2n–1 – 3. We set P = 〈x, 
(x)n, R1, a, (a)n, S, (b)n, b, c, y〉, and P can be a path 
of CQn – F joining x and y with 2n–1 ≤ l ≤ 2n – f – 1. 
See Figure 4(c) for illustration. 
Condition 3.2.2. |{(x)n, (y)n} ∩ F0| = 2. Since x has 
n – 1 neighbors in CQ1 

n–1, we can find a neighbor a of 
x with (a)n ∉ F0. By induction, there exists a path R 
of CQ0 

n–1 – F* joining (a)n and v1 with 2n – 7 ≤ l(R) ≤ 
2n–1 – f0. We can write path R as 〈(a)n, R1, b, v1〉. 
Since (y)n ∈ F0, we have (b)n ≠ y. By induction, there 
exists a path S of CQ1 

n–1 – {x, a} joining (b)n and y 

with 2n – 7 ≤ l(S) ≤ 2n–1 – 3. We set P = 〈x, a, (a)n, R1, 
b, (b)n, S, y〉, and P can be a path of CQn – F joining 
x and y with 2n–1 ≤ l ≤ 2n – f – 1. See Figure 4(d) for 
illustration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 4. {x, y} ⊂ V(CQi 

n–1), i ∈ {0, 1}, and 1 ≤ f1 ≤ f0 ≤ 
n – 4. By induction, we can obtain a path R of    
CQi 

n–1 – Fi, i ∈ {0, 1}, joining x and y with 2n – 7 ≤ 
l(R) ≤ 2n–1 – fi – 1. Certainly, R is a path of CQn – F 
joining x and y with 2n – 5 ≤ l(R) ≤ 2n–1 – fi – 1. We 
can write path R as 〈x, R1, a, b, R2, y〉 for some 
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vertices a and b with {(a)n, (b)n} ∩ F1 = ∅. Then, by 
induction, there exists a path S of CQ1–i 

n–1 joining (a)n 
and (b)n with 2n – 7 ≤ l(S) ≤ 2n–1 – f1–i – 1. Since 
(2n – 7) + (2n – 7) + 1 < 2n–1 – fi for n ≥ 6, P = 〈x, R1, 
a, (a)n, S, (b)n, b, R2, y〉 can be a path of CQn – F 
joining x and y with 2n–1 – fi ≤ l ≤ 2n – f – 1. See 
Figure 5 for illustration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Case 5. x ∈ V(CQ0 

n–1) and y ∈ V(CQ1 
n–1) and 1 ≤ f1 ≤ 

f0 ≤ n – 4. The following two subcases have to be 
considered. 
Subcase 5.1. 2n – 5 ≤ l ≤ 2n–2. Since x has n – 1 
neighbors in CQ0 

n–1, we can find a neighbor t of x with 
t ∉ F0, (t)n ∉ F1, and (t)n ≠ y. By induction, we can 
obtain a path S of CQ1 

n–1 – F1 joining (t)n
 and y with 

2n – 7 ≤ l(S) ≤ 2n–2 – 2. Then, P = 〈x, t, (t)n, S, y〉 can 
be a path of CQn – F with 2n – 5 ≤ l ≤ 2n–2. Figure 
6(a) illustrates this subcase. 
Subcase 5.2. 2n–2 + 1 ≤ l ≤ 2n – f – 1. Let a be a 
vertex of CQ0 

n–1 – F0 with (a)n ∉ F1 and (a)n ≠ y. By 
induction, we can obtain a path R of CQ0 

n–1 – F0 
joining x and a with 2n – 7 ≤ l(R) ≤ 2n–1 – f0 – 1. Also 
by induction, there exists a path S of CQ1 

n–1 – F1 
joining (a)n and y with 2n – 7 ≤ l(S) ≤ 2n–1 – f0 – 1. 
We set P = 〈x, R, a, (a)n, S, y〉. Since (2n – 7) +  
(2n – 7) + 1 < 2n–2 + 1 for n ≥ 6, P can be a path of 
CQn – F joining x and y with 2n–2 + 1 ≤ l ≤ 2n – f – 1. 
See Figure 6(b) for illustration. 

The above argument of all cases completes the 
proof.           
 
 
4. Concluding remarks 
 

In this paper, we investigate the path embedding of 
various lengths in crossed cubes with faulty vertices. 
For an n-dimensional crossed cube CQn, if the 
number of faulty vertices is f with f ≤ n – 3, then 
there exists a fault-free path of length l between any 
two distinct fault-free vertices in CQn for each 
integer l satisfying 2n – 5 ≤ l ≤ 2n – f – 1. Motivated 
by this result, our future work will be devoted to find 
paths of shorter lengths with the same number of 
faults in the crossed cube. 
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