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Abstract

This work derives a routing algorithm for
constructing a container of width 2(n—2) between
a pair of vertices in an alternating group graph
with connectivity 2(n—2). Based on the provided
algorithm, the wide diameter of an n-dimensional
alternating group graph can be computed as its
diameter plus 1 or 2.

1 Introduction”

There has been plenty of research on
topological properties of interconnection networks
by constructing vertex-disjoint paths, such as
Hamiltonian laceability [1], performance [2],
reliability [16]. The wide diameter [9, 15], fault
tolerance [11, 12] and Rabin number [16].
Therefore, constructing vertex-disjoint paths [8, 9,
14, 15] becomes an increasingly important issue
on fault-tolerant ability [10, 11, 12], reliability
[16], maximum parallelism [4] and minimum
transmission delay [3].

Jwo et al. [6] proposed alternating group graphs
and showed that they have some favorable
properties such as small diameter, rich
connectivity, vertex symmetry, edge symmetry,
embeddability,  broadcastability,  hierarchical
structure, and hamiltonicity. In comparison with
star graphs, an n-dimensional alternating group
graph has half the number of vertices and
approximately twice its degree. Alternating group
graphs provide strong fault tolerance [10, 11, 12,
13], hamiltonicity [13]. Lai and Tsay [7] provided
communication algorithms for all-to-all broadcast
on an alternating group graph with all-port and
store-and-forward routing. Lin and Chiu [8]
derived a routing scheme for constructing
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vertex-disjoint paths, but paths may coincide on
one vertex in the constructed paths.

Constructing  vertex-disjoint paths in an
interconnection network is very important issue
for measuring reliability, fault tolerant ability,
parallelism and transmission delay of an
interconnection network. The wide-diameters of (n,
k)-star graphs, and enhanced pyramid networks
have been computed by Lin and Duh [9], and
Hsieh and Duh [5], respectively. This work
proposes a novel algorithm to construct vertex
disjoint paths and determine wide diameters of
alternating group graphs.

The remainder of this paper is organized as
follows. Section 2 formally describes some
background of graphs and the topological
properties of an n-dimensional alternating group
graph. Section 3 shows path routing rules, and
discusses the lengths of the constructed paths.
Section 4 first presents a routing algorithm for
constructing 2(n-2) vertex-disjoint paths between
every vertex pair in an alternating group graph.
Then, the wide diameter of an alternating group
graph is also computed as its diameter plus 1 or 2.
Conclusion is finally drawn in Section 5.

2 Background & Notations

Let G denote a graph. The vertex set and edge
set of G are denoted by V(G) and E(G),
respectively. Two vertices u and v are adjacent
when they are joined by an edge e, where u, v e
V(G) and e € E(G). All vertices adjacent to a
vertex are its neighbors. The distance from vertex
u to vertex v, represented by d(u, v), refers to the
length of a shortest path from u to v in G. The
diameter of G, denoted by d(G), is defined as the
maximum distance for all pairs of distinct vertices
uand v in G. A graph is connected when at least
one path exists between any two vertices in it. The
vertex connectivity (or connectivity) of a graph is
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defined as the minimum number of vertices whose
removal renders it disconnected or trivial. Let x«(G)
(or x) be the connectivity of G. According to
Merger’s theorem, at least x vertex-disjoint paths
exist between distinct vertices u and v in G. A set
of x vertex-disjoint paths between vertices u and v
in G, denoted by C(u, v), is a container of width «
between u and v. The length of a C,(u, v), denoted
by I(Cu, v)), is defined as the length of the
longest path in C,(u, v). A best-container between
u and v, denoted by C(u, v), is the container with
the shortest length among all C,(u, v)s. Let d(u, v)
indicate the xwide distance (or wide distance)
from u to v; thus, d,(u, v)=I(C(u, v)). The xwide
diameter (or wide diameter) of G, denoted by
d(G), is defined as the maximum of d,(u, v)s for
all pairs of distinct vertices u and v in G.

Let AG, denote the n-dimensional alternating
group graph. The vertex set V(AG,) is defined as
{p1p2---pn | p1p2---pn 1S @an even permutation of 1, 2,
..., N}, and the link set E(AG,) = {(pyp2 ... pns
PPPPa- - -Pi2PiPIPisPix2 - Po)s (P12 oo Poy
PPIPPs - PiPiiPaPiniPisz---Pn) | pip2...pn €
V(AG,) and 3< i < n}. Operation i* (i ) shifts p;,
p2, pi left (right) cyclically. Symbol sequence (sy, Sy,
..., Smy orderly fixes symbols sy, S, ... Sy, Where s,
Sy ... Sm € {3, 4, ..., n}. Correcting sequence (s*
S1, S2, .- Sx H™W, Sy, Sxsz, ... Sy IS @ special
symbol sequence that executes operation s“ fixes
symbols sy, S, ... Sy, puts symbol # on w position,
and then corrects Sy, Sxs2, ... Sy orderly, where X,
y20,ae {+ -} ne{l 2},s s, S -
Sxe2s --- Spyand w e {3, 4, ..., n}.

Moreover, symbol p; in label pips...pn is as
follows: (1) fixed if pi=i (notably, position i is the
desired position for symbol i); (2) misplaced if
pi=i. For instance, with p=2315647 in AG,, p;=7 is
a fixed symbol. Conversely, p,=3, ps=5 ps=6, and
pe=4 are misplaced symbols. Significantly,
symbols 1 and 2 are not misplaced symbols and
not fixed symbols. Symbols 1 and 2 are
automatically corrected after correcting 3, 4, ---, n
because it should be an even permutation.

Vertex ¢ = 12...n is the identity vertex whose p;
=iforall 1 <i<k. Since AG, is vertex symmetry,
constructing paths between two distinct vertices
can be regarded as constructing paths from a
source vertex to ¢ [6]. This work attempts to build
2(n-2) vertex-disjoint paths from vertex p to ¢ by
correcting each non-fixed symbol to a fixed
symbol. A cycle representation represents all
non-fixed symbols of a vertex identifier. Notably,
non-fixed symbols may include symbols 1 and 2,
and misplaced symbols. For example, when p, =y,
py =z, and p, = x, these non-fixed symbols can be
presented as a cycle (x y z), where x denotes the
cycle head, indicating that the desired position of
a symbol is occupied by the next symbol in the

. Sxy Sx+1,
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cycle. Let vertex p = C;C,...Ce165...6,, Where C;
= (i1 Si2 --- Sik;) and the length of Cibe ki, 1 <i <
c. For instance, p = 2315647 in AG, can be
represented as (1 2 3)(4 5 6)7. Let m and f be the
numbers of misplaced and fixed symbols of vertex
p, respectively. Also, let I be h — |C;UC,U...UC|.
The cycle representation then comprises m+f+2
symbols in total, implying that m symbols are not
in their desired positions and f symbols are in their
desired positions. Without loss of generality, if a
cycle contains symbol 1, then the cycle is C; and
symbol 1 is s;; by rotating C;. Again, if no cycles
contain symbol 1, then the cycle containing
symbol 2 is cycle 1 and symbol 2 is s;;. If
symbols 1 and 2 belong to different cycles, then
the cycle containing symbol 2 is cycle 2 and
symbol 2 is s, ;.

Interestingly, Jwo et al., showed in 1993 that
d(p, &) = ntc—l if py = 1 and p, = 2; d(p, ¢) =
n+c—1-3 if p; = 2 and p, = 1; d(p, €) = n+c—I-2 if
p1#1and p, =2; n+c—1-2 if p; = 1 and p, = 2; d(p,
g)=n+c-1-3if1,2 € G, L<i<kand|Cj =3, and
dlp,e)=nt+c-14ifle Ciand2 e C;, 1 <i=j<k
Thus, d(AG,) = 3(n-2)Ji2 [6]. In other words,
d(AG,) = (3n-7)/2 ((3n—6)/2) if n is odd (even).

3 Path Routing Rules

For simplicity, let 77(u, v) denote the path from
vertex u to vertex v in an AG,. To construct a path
H(p, €) in an AG,, all misplaced symbols of p
should be corrected one by one to transform the
label of p into the label of e. Significantly, after
correcting all misplaced symbols, symbols 1 and 2
are automatically fixed in their desired position.
The following routing rules are applied to fix
symbol s. Each rule can join 1 or 2 edges (vertices)
in a path.

R1:

| If symbol s is at position 1, do s* operation to
fix s.

B If symbol s is at position 2, do s~ operation to
fix s.

R2:

B |f symbol s is not at position 1 or position 2
and at position p, then do p* (or p7) to put s at
position 2 (or position 1), and then apply R1.

Naturally, R1 contributes 1 edge and R2
contributes 2 edges in each constructed routing
path. For example, let vertex p = 15432. Symbols
3, 4 and 5 are misplaced. To correct symbol 5, do
5 operation according to R1 since 5 is at position
2. Thus, the first intermediate vertex, denoted by u,
of the routing path is 21435. That is, symbol 5 is
fixed. Notably, symbol 4 of u is at position 3 and
rule R2 should be apply to correct symbol 4. By
applying R2, execute 3" (or 37) and 4~ (or 4%)



operations orderly and then the second and third
intermediate vertices v = 14235 (or 42135) and w
= 31245 (or 23145) are obtained. Restated, R1
takes 1 step and R2 takes 2 steps.

Lemma 1. Given two symbol sequences, the first
(last) symbol of symbol sequences are a and ¢ (b
and d), respectively, and the order of b in the
second symbol sequence is prior to a. If vertex p
corrected by <a, ..., ¢, ..., d, ..., b>and <c, ...,
b, ..., a ..., d>, then the two paths constructed
according to these two symbol sequences are
vertex-disjoint to each other.

Proof. As shown in Fig. 1, p have two distinct
neighbors p, and pg, ¢ have two distinct neighbors
e, and ez Paths II(u, v) and II(ps &5 are
vertex-disjoint since every vertex in I7(u, v) has p,
=aand p, # b and every vertex in I1(ps ¢4) has pa
#a or p, = b. Vertex p,, is different from every
vertex in path II(w, ez) because symbols a, b, c
and d of p, are not yet fixed and each vertex in
II(w, €g) has at least one of &, b, c and d is fixed.
Vertex g, is different from every vertex in path
I(pp x) because symbols a, b, ¢ and d of ¢, are
fixed and each vertex in I1(pg, X) has at least one
of a, b, ¢c and d is not fixed. Therefore, I1(p,, ¢,)
and I1(pg, &4) are vertex-disjoint to each other.  m

Pa=aand pp= b

1 I
a isifixed b is notifixed yet

|
— A ~ o~ —
Lo (e
N .
" a b ¢ dnd d are a b, ¢andd “w‘/:\]
'\E,J\ not fixed yet are fixed Al
. b s fixed ais fixed /1
o) (T\-‘-\“./\ ,—{f)_ - A-/‘\,.\ ,—-‘/-;\) { z‘-)’
N\ T N\
]
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1
f
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Fig. 1. The two paths constructed according to
two symbol sequences <a, ..., ¢, ..., d, ...,
b> and <c, ..., b, ..., a ..., d> are
vertex-disjoint.
Lemma 2. For any vertex p = C,C,...Ce16;...6
in AG,, let Ci = (Si1 Siz --- Siki) @nd Si1, Si2, -y Siki
are all misplaced symbols, where 1<i<c. If two
paths constructed according to (Six": Si1, Si2, .-
Sikiy @nd (Sik; : Si1, Si2, ---» Sik)» these two paths are
vertex-disjoint except the beginning and ending
vertices.
Proof. We prove this lemma constructively. Two
I(p, p)s are constructed by (Six": Si1, Siz, ---» Siki)
and {Six : Si1, Si2s ---» Siki respectively. Moreover,
they apply operations s;y", Si1, Si2's ... and Siy
Si1 Siz , ... and they are therefore vertex-disjoint
except the beginning and ending vertices. [
Lemma 2 indicates that if two paths are
constructed by (Six;": Si1, Si2s -++» Sik) and (Six - Si1,
Si2, --+» Sik)» Which are composed of all misplaced
symbols in cycle Ci = (Si1 Si2 ... Sik), these two
paths must has the same ending vertex. In other
words, if the cycle representation of vertex p has
two or more cycles, all misplaced symbols in the
first selected cycle C; cannot be completely fixed
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prior than any other cycle for building
vertex-disjoint paths. According to Lemmas 1 and
2, we have the following corollary.

Corollary 3. Let C; = (Si1 Si2 .- Sik), Where each
of Si3, Si2, ..., and Sjy; is not symbols 1 and 2 for
1<i<c. The paths constructed by the following

sequences are vertex-disjoint.
(811" Si2 Siar -+ Siks C1y Cay -y Cict, Cisa, Cisas .., Ce, Sin),

(Si1 " Si2, Sigy -+ Sikip C1, C2y -y Cicg, Cisg, Cisy ., Co, Sin),
(Si2"t Si3, Sids - Siki» Sits C1, Ca, -, Cict, Cisay Ciszy -, Co, Si2),
(Si2 " Sigs Sigy - Sikir Sits C1y Co, ., Cicgy Cing, Cisz, -, Ce, Si2),
(Siki": Sits Si2r - Siki-1 C1, Cay -y Cia, Cisa, Cisas -y Cay Sik)s
(Siki - Sits Si2y -+ Siki-1, C1, Co, .., Cict, Cisay Cingy -, Co, Sigg)-

4 Construction of Disjoint Paths

Recall that our goal is to construct a Cn_5)(p, €).
Based on the structure and adjacency rules of AG;,
symbols in p; and p, directly determine each
constructed path from p to e. Hence, we divide all
vertices in AG, into three groups with some
subgroups according to symbols in p; and p, and
the content of C;. Naturally, we thus need to build
a Cyn_9)(p, €) from a vertex p in each subgroup to &.
Three cases and some subcases of them should be
considered in the following subsections.

41 Casel:pl,p2e{l,2}

Let o,(C;) denote that performs a left circular
shift on C; atimes, where 0 < a<ki-land1<i<
¢. Hence, o,(C)) is a variant cycle of C; and oy(C))
= C;. Assume C; is the first selected cycle among
all ¢ cycles. According to Lemma 2, all misplaced
symbols in C; cannot be completely fixed prior
than any other cycle for building vertex-disjoint
paths. In other words, at least one misplaced
symbol in C; should be fixed after each misplaced
symbol in Cy, where 1 < h <c and h # i, for
building vertex-disjoint paths. In order to
construct vertex-disjoint paths, we first divide
o,(C)) into two parts and then combine them with
the reminding cycles to form a symbol sequence
as <Sa,ily Ci, Cy, ..., Ciiy, Ciyq, ..., Cg, Sa,ir)- Thus,
0ACi) = (Sqit Sqir), Where [Sqi| > 1, [Sgirl > 1. Two
subcases are discussed in the following.
Casell:pi=1,p,=2

In this case, {1, 2} ¢ C,uUCL...uC.. As
mentioned above, (|Cy + |Cy| + ...+ |C¢)) = m
symbol sequences can be built. Each symbol
sequence (S, C1, Cy, ..., Cicg, Cisa, ..., Ce, Sair)
can construct 2 paths which are an m-pair because
symbol s in one path apply s (s”) operation and s
in the other path must apply s~ (s*) operation. Thus,
2m paths are constructed. Additionally, each fixed
symbol can also be used to construct 2 paths.
Unlike the misplaced symbols, each fixed symbol
g, where 1 < j <1l and ¢ ¢ {1, 2}, form 2
correcting sequences (e,-*: Cu, Cy ..., Cg, &) and
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(& Cy, Cy ..., C;, &) for building two paths.
These two paths also form an f-pair because if
every vertex in one path has symbol 1 at position
gj, then every vertex in the other path has symbol 2
at position e;. Thus, 2f paths are constructed since f
=1 — 2. Totally, 2m + 2f = 2(n — 2) paths are
established.

Casel2:p1=2,p,=1

Without loss of generality, assume {1, 2} c C;.
Hence, there is no misplaced symbol in C;. Thus,
only (IC,| + ...+ |C.]) = m symbol sequences can
be established. Very similar to Case 1.1, each
symbol sequence (S, Cs, ..., Ci.1, Cisa, ..., Cq,
Sgiry can construct 2 paths. Therefore, all
misplaced symbols can also construct 2m paths.
Moreover, each fixed symbol can also be used to
construct 2 paths. The method of constructing
paths by fixed symbols is the same as Case 1.1.
Therefore, all fixed symbols can construct 2f paths.
Totally, 2m + 2f = 2(n — 2) paths are established.

Consequently, in Case 1, 2m + 2f = 2(n — 2)
paths are built. In addition, Lemma 4 shows that
these 2(n — 2) paths are vertex-disjoint.

Lemma 4. The 2(n — 2) paths constructed in Case
1 are vertex-disjoint.

Proof. As mention above, 2(n—2) paths are built in
Case 1. By Lemma 1, each path of one m-pair is
vertex-disjoint to each path of any other m-pair.
Naturally, a symbol sequence can be regarded as a
correcting sequence by definitions of them. With
the aid of Lemma 2, two paths of an m-pair are
vertex-disjoint.  Therefore, the 2m  paths
constructed in Case 1 are vertex-disjoint.

The first step to construct 2f paths is to perform
e;" (¢) operation, so symbol 1 (2) of each f-pair is
placed at e; position. Thus, two paths of an f-pair
are vertex-disjoint and every two f-pairs are
vertex-disjoint. Since 2m paths e; position are
always e;, every m-pair is vertex-disjoint to every
f-pair. Therefore, the built 2(n-2) paths are
vertex-disjoint and form a Cypn_z)(p, €). |

Lemma 5 shows that the upper bound of
I(Conz)(p: €)) is d(AG,)+1.

Lemma 5. In Case 1, I(Cyn_5)(p, €)) < d(AG,)+1.
Proof. In Case 1, the upper bound of I(Cy-2(p, €))
is calculated as follows:

In Case 1.1, paths constructed by (S, Co, ...,
Cii, Cisy, ..., C¢, Sgiry have length at most m+c =
(n=2)+(n-2)/2] = (3n-7)/2 ((3n-6)/2) = d(AG,)) if
n is odd (even). Paths constructed by (g;": Cy, Cy,
..., Ce, gp and (g Cy, Cy, ..., Cq, €)) have length
at most 2+m+c = 2+(n-2-f)+ (n-2-f2] =
2+(n-3)+(n-3)/2) = (Bn-5)/2 ((3n-6)/2) =
d(AG,)+1 (d(AG,) if n is odd (even). The length
of the longest path built in Case 1.2 are the same
as Case 1.1. Therefore, I(Cynz)(p, €)) < d(AG,)+1.m

4.2 Case 2: {p1, po}{1, 2} = {1} or {2}
Let head (tail) represent the first (last) operation
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of constructing a path pair according to a symbol
sequence. Hence, one path of the path pair takes
head” (tail") and the other takes head™ (tail”). For
ease of description, a path pair with head s is
named s-pair which is composed of s*-path and
s-path. Every pair of paths in Case 2 is
distributed a unique tail, occupied symbol 2 (or
symbol 1), where tail € {3, 4, ..., n}. In general,
an s-pair is also assigned s as its tail. Notably, in
the rest of this work, p and ¢ are excluded when
considering vertex-disjoint path.

Let I1i(I7; st, Sm) denote a subpath of 77 in which
every vertex has fixed s; and unfixed s,,. Specially,
st (Sm) = #w indicates the vertex has (has not) 1 or
2 at position w. Moreover, s (or s,) = 0 reveals
that no symbol is specified. Hence, s'-path
(s™-path) is composed of I7y(s"-path; 0, s;,) and
II(s"-path; s, tail) (/I(s™-path; O, s;,) and
I1y(s™-path; s; ,, tail)), where 1<i<c and 1<a<k;.

However, the head and tail of p,-pair is not the
same because p, is already fixed after applying p,".
Thus, the tail of p,-pair is t and should not be p,.
Undoubtedly, the tail of t-pair should be p,. In
other words, the head and tail of t-pair is also
different.

Although container is not unique, this section
provides a routing scheme for constructing a
Como)(p, €) for each p in Case 2. Referring to
Table 3, Sections 2.1-2.4 discuss four cases in the
following.

Case 2.1: p;=1l and p, # 2

A set of correcting sequences is provided for
building a C,-5)(p, €) for each of k=2, k;=3, and
ki>4.

Case 2.1.1 k=2

Since V(AG,) is defined as an even permutation
of 1, 2, ..., n, if k;=|Cy| = 2, then C; = (2 s;2) and
c>2. As mentioned above, the tail position of
S; o-pair should not be s, and is distributed as s, ;.
The correcting sequences of s; ,-pair are listed as

follows:
(5127 2521, S2.21 23, ---» Sz Car Cay -, Cey S12, S2.0),
(812 : 121, 82,2, S23, -+ -1 S2kp C3y Ca, ..., Co, S2.0).

The first vertex of s;,"-path and the first vertex
of s;, -path are disjoint, because they are two
distinct neighbors of p. Symbol 1 (2) of the first
vertex of s, ,"-path (sy, -path) is not at position s, ;.
Additionally, every vertex of s; ,"-path (s;, -path)
excluding the first vertex has symbol 2 (1) at
position s;;. Thus s;,"-path and s;, -path are
vertex-disjoint.

Since the tail of s, ,-pair is s, , the tail position
of s,1-pair should not be s,; and is distributed as
S1. The correcting sequences of s, ;-pair are listed

as follows:
(52171522, 823, -+ s S2ky C3, Ca, ..., Coy S21, S1.2),
(S217" 822, $23, -1 S2kp» 17512, C3, Cy, .., Ce, S2,1, S12)-

Actually, every vertex in I7(s,1"-path; 0, s;)



has symbol 2 at position s, ,. That is, 7(s, 1 -path;
0, s15) is disjoint to 77y(s,, -path; 1", 5, S12). Let u
be the first symbol in (C3, C4, ..., C., S2.1). Notably,
Cs, Cy4 ..., and C; may not exist. Symbol u of
every vertex in 71(s 1 -path; 0, 17s; 5) is not fixed.
Thus, 1Sy, -path; 0, 17s;,) is disjoint to
II(s21-path; u, s1,). According to Lemma 2,
II(s2.1"-path; 0, u) is disjoint to 77y(s,, -path; 0,
17s;,). Therefore, s,,"-path and s,; -path are
vertex-disjoint.

Based on misplaced symbols in C; = (Si; Siz...
si,ki) and the built s, ;-pair, (ko—1 + k3 + ks + ... + k)
pairs or 2(k-1 + k3 + k, +... + k) paths are

constructed as follows:
(Si1"T i, Sigr - Siki» S1.2, C2, Ca, -, Cict, Cisa, Cisz, .., Co, Sit),

<S|,17: sl,Zv sL3v sy sl‘kiv ZASI‘ll 31,2, sz Ca, ey C|—1v C|+11 C|+21 ey Cc, 5|,1>,

(Si2"t Si3, Sids - Siki» Sits S1.20 Ca, Ca, ..y Cica, Cisa, Cisay -, Coy Si2)s

(Si2 7 Si3, Sids ---» Sikip Sits 2Si2, S1.2 C2, Ca, ..., Cicg, Cisg, Cisa, -, Cey
S|,2>,

(Siki"* Sidy Si2 --» Siki-1, S12, C2, Ca, ..., Cii1, Cisty Ciszy -, Co, Sigg)s

(Sik; " Sids Si2 --er Siki-1s 2"Siki» S1.20 C2, Ca, ..., Cicty Cisay Cisz, ..oy Cey
Siki)-

Because every vertex in I7y(s; 1 -path; 0, s;1) has
symbol 1 at position s;;, I75(s;1-path; 0, s;1) is
disjoint to [77y(siy -path; 27s;;, sj1). Naturally,
symbol s, , of every vertex in I1y(s;; -path; 0, ;)
is not fixed. Thus, I7(s; 1 -path; s; 5, ;1) is disjoint
to 77(si1 -path; 0, s;,). Since I1y(s;; -path; 0, 27s; )
has not symbol 1 at position s;y, 774(s;i; -path; 0,
S12) and I7y(s;, -path; 0, 2%s;;) are vertex-disjoint.
Therefore, si;"-path  and  s;; -path  are
vertex-disjoint. Similarly, s;,-pair, s; s-pair, ..., and
si,ki-pair are also vertex-disjoint.

Let s; -pair and s; s-pair be any two pairs of the
constructed (ko—1 + ks + kq4 +... + k) pairs, where
2<i, i'<c, 1=<a, p<Ki, Si, # S21 and sj z # S,1. Since
symbol 1 of every vertex in s;,,"-path (s; 4"-path) is
placed at position s, (Si), Si. -path and s; ;*-path
are vertex-disjoint. Undoubtedly, 77(s;, -path; 0,
Si,) IS vertex-disjoint to Hs(si-,/,f-path; Sia Sip)-
Because symbol 2 of every vertex in I7,(s; 5 -path;
0, si,) is not placed at position s;,, (S, -path;
2"S; 4, Si) 1S Vertex-disjoint to Hs(si-,/,f-path; 0, Si)-
Let si.@1 (Sipe1) represent the next symbol of s;,
(sip) In Ci Cin. Every vertex in I1(s;, -path; Si.e1,
2"s;,) has fixed sj,¢; and every vertex in
(s s"-path; 0, s;,) has not; every vertex in
Hs(si-,/,f-path; Sivpe1, Sie) Nas fixed s; ze1 and every
vertex in I1(Si, -path; 0, Si.e1) has not, and
I1si,, -path; 0, Si.e1) and 77s(s 5*-path; 0, Si 1)
are two distinct neighbors of p. Thus, 71(s;,, -path;
0, 2%,) and [II(sis-path; 0, s;,) are
vertex-disjoint.  Consequently, s, -path and
sy 4 -path are vertex-disjoint. Similarly, s;,"-path
and s; 4 -path are vertex-disjoint.

For every fixed symbol e;, the correcting

sequences of the e;-pair are shown below:
<6J+: S1,2 Cy Cy ..., Cq, e]>v
(&j: 2"ej, 51, Cy, Cs, ..., Ce, &)).
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Every vertex in I7y(e;*-path; 0, ;) has symbol 1
at position €. Therefore, I7,(e"-path; 0, €)) is
vertex-disjoint to I7,(ej -path; 2"e;, e;). Because
symbol 1 in /Z(e; -path; 0, 2”¢;) is not at position
e;, I1(e;-path; 0, 2"e;) and II,(e;"-path; 0, €;) are
vertex-disjoint. Thus, 77,(e-path; 0, e) and
I1,(ey -path; 0, g;) are vertex-disjoint.

Let e,-pair and ez-pair be any two distinct
f-pairs, where 1<a, p<f. Since symbol 1 of every
vertex in e, -path (e,™-path) is placed at position e,
(ep), e, -path and e;-path are vertex-disjoint.
e, -path is vertex-disjoint to e, , because every
vertex in IZy(e,"-path; 0, e,) has symbol 1 at
position e, but symbol 1 in 7Iy(es -path; 0, €p) is
not at position ez Certainly, e, -path is
vertex-disjoint to e,"-path.

Let # represent vertex I7y(s;,-path; 0, 2°s, ).
Uniquely, #, and 7, are s;, and Sy, respectively.
Thus, 7 is vertex-disjoint to s, ;-pair. I7y(s;,-path;
23,1, Sp1) IS vertex-disjoint to s,;-pair because
symbol 2 is not at position s, in every vertex of
Sp4-pair. Sy, -path is vertex-disjoint to s, 1-pair by
Lemma 1, since s, is prior to s; , in the correcting
sequences for s, ;-pair and the first (last) symbol
of the correcting sequence for s; , -path is Sy 5 (S2,1).
Therefore, s, ,-pair and s, ;-pair are vertex-disjoint.

Restated, # is unique and vertex-disjoint to
Si-pair, where 2<i<c, 1<a<k, S, # S21.
II(s1,"-path; 27s,1, Sp1) is vertex-disjoint to
Si-pair because every vertex in sj,-pair has
symbol 2 not at position s,3. Thus, s;,"-path is
vertex-disjoint to s;,-pair. Let ¢ represent vertex
I14(s; , -path; 0, 1”s,,). Uniquely, J; and J, are s; 3
and symbol 1, respectively. Hence, o is
vertex-disjoint to s; ,-pair. 775(S; > -path; 1S, 4, S».1)
is vertex-disjoint to s;,-pair because symbol 1 is
not at position s, ; in every vertex of s; ,-pair. Thus,
S;, -path is vertex-disjoint to s;,-pair. Therefore,
Sy o-pair and s; ,-pair are vertex-disjoint.

Every vertex in s,,"-path has symbol 2 at
position s;, and every vertex in sj,-pair has
symbol 2 not at position s;,. Thus, s,;"-path are
vertex-disjoint to s; ,-pair.

Let @ represent vertex I7y(s,; -path; 0, S;»).
Uniquely, 6, and 6, are s,, and symbol 1,
respectively. Hence, @ is vertex-disjoint to s; ,-pair.
I14(S,1-path; s, S1,) has first fixed s, and finally
fixed s, 5, and s; ,-pair has fixed s, , prior to s,,. By
Lemma 1, s, -path is vertex-disjoint to s; ,-pair.

f-pair and s;,-pair are vertex-disjoint because
every ej-pair has modified e; symbol but m-pair
never modifies any e; symbol. Similarly, f-pair is
disjoint to s, ,-pair and s, ;-pair.

From the above discussion, it has become clear
that every two distinct pairs are vertex-disjoint.
Referring to Case 2.1.1 described above, there are
4 groups of paths constructed which are 1 s; ,-pair,
1 s,4-pair, (ko—1 + k3 + kg + ... + k;) m-pairs, and f
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f-pairs. In total, 2(n—2) vertex-disjoint paths are
built. Significantly, every e -path is the longest
path. Thus, the length of every constructed path is
bound above by d(p, £)+4 because at most 4 extra
edges, where 1 (3) is for e operation (unfixing
and refixing symbol 2), should be added to the
corresponding shortest path.
Case 2.1.2 k=3

Namely, C; = (2 sy, Si3). The correcting

sequences are listed as follows:
(8127813, C2, Cs, ..., C, 812,
(s127:Cy, C;3, ..., C¢, S1.3)-
<51,k1+: 12, Cz, Cs, ..., C, Sty
(S14" 2512, C2, Cs, ..., Ce, Sy, S1.0).
(Sit"T Si2 Sigr - Siki» S1.2, S1.3, C2, Cay.oy Cicay Cisay Cisay -, Co, Sit)s
(Sin ™ Si2 Sigs «ee Sikis 27si1, S1.2, S13, Ca, Cs,..., Cicy, Cisg, Cis, ..., Cq,

Sia),

<5i,2+: Si3s Sidy .-y Sikjp Siy S12, S13, Cy, Cs,..., Ci.y, Cisg, Cisp, ..., Cq,
S|,2>,

(Si2 Si3y Sidy --e Siki» SiLs 2S5, S1.2, S13, Ca, Ca,..., Cicty Cist, Cisay -y
Cc' Si‘2>v

(Siki": iy Siz -+or Siki-1 S12 $13, C2 Cay -y Cicgy Cinay Cisay -y Co
sl,ki)x

(Siki * Sids Si2s +--r Siki-ls 2A5|‘ki, $12: S1.3, Ca, Ca, ..., Cic1, Cisg, Cisa, ooy

C::v 5|‘ki>'
(&1 812, Stk Cy Cs,..., Ce, &),

(&: 2"ej, 12, 3“1' C, Cs,..., Cg, &),

Similar to Case 2.1.1, any two distinct built
paths in Case 2.1.2 are vertex-disjoint. This case
provides rules for constructing s p-pair, S;3-pair,
(ko + ks + ... + k) m-pairs, and f f-pairs. Totally,
2(n—2) vertex-disjoint paths are built. Referring
to Case 2.1.1, the length of every constructed path
in Case 2.1.2 is bound above by d(p, ¢)+4 because
at most 4 extra edges should be added to the
corresponding shortest path.

Case 2.1.3k>4

Under this condition, |C;| >4 and C; = (251, S13

S14..S1k)- The correcting sequences are listed as

follows:
(51270513, S14,- -+, Stg-1s C2, Caye.y Co, S12, S1iy)s
(8127 181y, S13, S1.4- -1 S1kg-1, C2y Csy..y Coy S1pp)-
<51,k1+: 2"S12, 813, S1.4+++» S1kyr C2y Ca,.--y Coe, S12),
(Stky + 17812, 813, S141-++ S1kys Co, Ca,.oy Co, S12)-
(513" S1.41 S15-- + Sty S1.22 Cay Ca-..y Cey S1.3),
(S137: S14y S15--+ » Siky 2813, S12 C, Cs,..., Ce, S13),
(51472515, S161-++ » Stk S12, S1.3 Co, Ca,..., Ce, S1a),
(S147: 515, S16--+ » Stkyy 2"S14, S1,2, S13, C2, Cs,.., Co, S1.0),
(Stkg-1" Stkgs S1.20 513 s S1k-2 Cz, Cs,..., Ce, S1kg-1),

(S1k-1 - Sikgs 2"S1kp-1 S1,2) S1.3, - » Sik-2 Ca Ca,..., Ce, S1p-1)-

<5i,1+: Si2i Si3y -y Siky S12, S13, -+, 51,K1v(:2v Cs,..., Cisy, Cisg, Cisg, ..., Ce,
S|,1>,

(i1 Si2r Sigr .- Sikiy 2°Sits S12 S13, -+ Sukpy C2o Ca, ...y Cicg, Cia, Cisay
... Cq Si‘1>,

(Si2"t Sigr Sids s Sikir Sids S1.20 513 +-or S14,C2r Ca, ...y Cicty Cis, Cisa,
ey Cc, S|‘2>,

(8272 Si3 Sidr «-os Sikip Sicts 2Si2, S12, S1.3, -+ S1kpy C2y C3, ...y Cicg, Gy
Cis2, ..., Cq, Si2),

(Siki "2 Sidy Si2y -+ Siki-1s S12) 513, -+ Stk,Cav Ca, -, Cict, Cisg, Civay -,
C::v shki)v

(Siki © Sids Si2s --or Sikic1s 2Siki» S1.2, S13, -+ Sikyy C2, C, ...y Cigy Cinay
Cizr -.-» Car Sify)-

(&1 512, 513, -, S1ky Cas Ca, -, Co, €,

<6J7: ZAEJ, $12, S1,3y +++1 Sikps Cy Cy, ..., Cq, 6J>.
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Similar to Case 2.1.1, any two distinct built
paths in Case 2.1.3 are vertex-disjoint. This case
provides rules for constructing s; ,-pair, s;. kl-pair,
(ky — 2 + ky + ks + ... + k¢) m-pairs, and f f-pairs.
Totally, 2(n—2) vertex-disjoint paths are built.
Referring to Cases 2.1.1, the length of every
constructed path in Case 2.1.3 is bound above by
d(p, €)+4 because at most 4 extra edges should be
added to the corresponding shortest path.
Case2.2: p;=2and p, #1

A set of correcting sequences is proposed for
building a Cyn-2)(p, €) for each of k;=3 and k,>4.
Case2.2.1k;=3

When c=1, C;=(1 2 s;3) and the correcting
sequences of s; 3-pair are (S;3": S;3) and (S;37).
Notably, the sequence (s;3:) indicates that no
more symbols should be fixed after doing s;3
operation.

For every fixed symbol e;, the correcting
sequences of e;-pair are (g;": Sik, € and (ej: 1%,
Sl'kl’ eJ'>.

When ¢ > 2, p = (1 2 s13)C,Cs C.. The

correcting sequences of s, s-pair are listed below:

(51371 17851, S1.3, S22, 523, --- Sz Ca Ca ...Co, S2.0),

<51,37: 2'\52‘1, $2,2, 52,3, --- S2kp C;C4...Cg, 52,1>.

(52171522, S23, - Sakp C3 Ca...Co, S21, S1.3),

(S217" S22 2"S1,3, S23, S2.4, -+ S2.kp S21, C3 Ca ...Co, S13)-

<SZ,]+: S2,(j mod kp)+1s S2,((+1) mod kp)+1s -+ S2,((j+kp-3) mod kp)+1s S2,((j+kp-2) mod kp)+1s
S1,3 C3 C4 Cc, 52,J>,

(S2i " S2,(/mod kp)+1r S2((+1) mod kp)+1s -+ S2,((+kp-3) mod kp)+1s S2,((+kp-2)) mod kp)+Ls
17855, 81,3, C3 Cy ... Ce, S2).

(Sia"t Si2, Sigs - Sikis S13, C2, Cay.., Cict, Cisay Ciszy -, Co, Si2),
<s|,17: sl,Zv sL3v sy sl‘kiv 1ASI‘11 31,3, sz Ca, ey C|—1v C|+11 C|+21 ey Cc, 5|,1>,
<S|,2+: 5|‘3v sle sy 5|‘kix sl,ll 51‘:« Cz, C3v ey C|—11 C|+11 CI+2v ey Ccv 5|‘2>v

(Si2 7 Si3, Sids ---» Siki» Sits 17Si2, 813, C2, Ca, ..., Cicty Cisg, Cisa, .., Cey

Si2),
<s|,ki+: s|‘1x sl,Z: ey sl,ki—lx 31,3, sz CS; ey C|—1v CH'].v C|+21 sy Cc, sl,ki>1
(Siki = Siy Si2s -+er Siki-1r 1"Sikis S1.3, C2, Cg, ..., Cicg, Cisay Cisa, ...y Ce,

Siki)-
(& Stk C2 Cs,..., Cc, &),

(g;: 1M, Sl‘kf C2 Cs,..., Cq, &).

Similar to the construction of e-pair in Case
2.1.1, ¢-path and e;-path are vertex-disjoint.

Any two distinct built paths in Case 2.2.1 are
vertex-disjoint because their constructions are
very similar to Case 2.1.1. This case provides
rules for constructing s;s-pair, S;-pair, (k,—1)
spj-pair, and (ks + ... + K;) m-pairs, and f f-pairs.
Totally, 2(n—2) vertex-disjoint paths are built.
Case2.2.2k; >4

Under this condition, |C;| >4 and C; = (1 2 513
S14..S1k,)- The correcting sequences of s ;-pair are
shown below:

(51370 S14s .. s Sl‘kl—lv C2 Cs, ..., C¢, 813, 51,k1>v

(S13 2 S14y «v- s 51,k1—1v ZAsl‘kl, C, Cs, ..., Cq, Sl‘k1>'

( sl‘k;: 17813, C2, Gy, Coy 81,4, 815, S1k» S13)

(812 2813, C2, Gy, Coy 814, 815, S1k s S13)-

(81472 815, 5161 --- Sikyy Ca Cay -y Co, 513, S1.4)s

(S1.47: 515, S1.61 ++- Sik,) 17814, C2, Ca, ..., Ce, S1.3, S1.4),
(S157: 8161 S1.7, -+ Sl‘kly Cy, Cs, ..., Cg, S13, 814, S1.5),

(S15 " S16) 817, -+ Sl‘kly 17815, Co, Cs, ..., Ce, S13, S1.4, S15),



<51v k171+: Sl‘kll Cy Cs, ..., Cq, S1,3) S14y -+ s Sl,klfl>1

(s1, kf{: Stk 1A51,k1—1v Cy Cs, ..., Ce, S1.3, S14y -+ s 31,k1—1>-

(Sin' Sir Sigy oonr Sixs C2r 3oy Cigy Gy Ciszy -y Co 813, 814y -1
Siky Si

(i1 Siy Sigy -+ Siky 178, G2, Ca -y Ciay Cina, Ciszy oy Co $13, 814
<oy Stk S,

(8127 Si3) Sidy oo Si,klv Si1, Ca Cs, ..., Ciq, Cist, Cisg, ...y Cq, S13, S1.4,
ey S1‘k1, Si2)

(Si2 " Si3 Sidr -onr Siks Sids 178i2, Ca, Cs, ..., Cizy, Civt, Cisa, ..., Co, 813,
S1y -+ S1k s Sighs

<S"ki+: Sits Sizr - Sik-1, Cor Ca, oy Cica, Cisa, Cisa -y Cor S13, S1. -
Sikyr Sik)s

(Sik, " Sias Sizs -+ Sik-1, 1781k, C2, Ca, -y Cicgy Cing, Cisay -y Coy S13, 814,
ey Sl‘kf Si'kl>'

(" S0, S04 -en s Stk Cy Cs, ..., Cq, &),

(& 17,813, S14, .. slvkl, Cy Cs, ..., Cg, &).

Any two distinct built paths are vertex-disjoint
because their constructions are very similar to
Case 2.2.1. This case provides rules for
construction s, s-pair, Sy, kl-pair, (k1 —2 +ky+ ks +

.. + k) m-pairs, and f f-pairs. Totally, 2(n—2)
vertex-disjoint paths are built. Significantly, every
gj -path is the longest path. Thus, the length of
every constructed path is bound above by d(p,
£)+4 because at most 4 extra edges, where 1 (3) is
for e;” operation (unfixing and refixing symbol 2),
should be added to the corresponding shortest
path.

Case 2.3: p; # 1 and p,=2

The rules of correcting sequences of Case 2.3
are divided into three cases according to k;=2,
ki=3, and k;>4. Those constructed rules in Case
2.1 can be applied on Case 2.3 since every cycle
structure in Case 2.3 are similar to Case 2.1 and
only symbol 2 in C; is replaced by symbol 1.
Nevertheless, replacing symbol 1 or symbol 2 in
C, delivers a new vertex, which has even
permutation, so that is also a vertex in AG,
absolutely.

The paths construction of Case 2.3 is similar to
Case 2.1. The length of the longest Cyn_y(p, €)
built in Case 2.3 is the same as that of Case 2.1.
Case 2.4: p; # 2 and p,=1

The paths construction of Case 2.4 is similar to
Case 2.2 likewise and only symbol 1 (respectively,
2) in Cy is replaced by symbol 2 (respectively, 1).
Thus, the length of the longest Cyn_z)(p, €) built in
Case 2.4 is the same as that of Case 2.2.

According to the statements described in Case 2,
the following lemma holds.

Lemma 6. The 2(n—2) paths constructed in Case
2 are vertex-disjoint.

Lemma 7. In Case 2, I(Cyn-5)(p, €)) < d(AG,)+2.
Proof. Referring to the constructions of all paths
in Cases 2 the length of every longest path is at
most d(p, £)+2. Two extra edges are added for path
disjoint.
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Recall that d(p, &)=n+c—1-2 if p; = 1 and p, = 2
or pp = 1 and p, # 2 [6]. After maximizing
(n+c—1-2)+2 and substituting ¢ with [n-1/2], |
with 1, the length of the longest path is at most
n+.n—1/2)-1. Then, n+L.n-1/2}-1 = n+(n-1)/2-1
= (3n-3)/2 = d(AG,+2 if n is odd, and
nHn-1/2-1 = n+(n-2)/2-1 = (3n-4)2 =
d(AG,)+2 if nis even.

Recall that d(p, ¢) is n+c—1-3if 1, 2 € C;, 1<i<k
and |Ci|>3 [6] After maximizing (n+c—1-3)+2 and
substituting ¢ with 1+ [n—3/2] and | with 0, the
length of the longest path is at most
n+(1+ n—3/2J)-3+2. Hence, n+(1+(n—3)/2)—3+2 =
(3n—3)2 = d(AG,)+2 if n is odd, and
n+(1+(n—4)/2)-3+2 = (3n—4)/2 = d(AG,)+1 if n is
even. In Case 2, I(Cypn2)(p, €)) < d(AG,)+2.

Therefore, the length of the containers
constructed in Case 2 is bounded above by
d(AG,)+2. [

4.3 Case 3: {p1, p}{1,2}=¢

This case is divided into two subcases Cases 3.1
and 3.2 according to symbols 1 and 2 belong to C;
or not. Let C} = (si; siyz...si,ki)#, where 2<i<c,
denote a cycle in a correcting sequence and
indicate that symbol 1 or 2 should be kept at
position 1 or 2 when fixing each symbol of C¥.
Case3.1:1,2€ C;

Assume p=(1 t; t, ..t, 2 u; U .
Uyw)CoCs...Cee185... €, Where w (w') represents
the number of symbols from symbol 1 (2) to
symbol 2 (1) in C;. Hence, Case 3.1 is divided into
Case 3.1.1 w=1, w'=1, Case 3.1.2 w=1, w'>2, Case
3.1.3w>2, w>2, and Case 3.1.4 w>2, w'=1.

In Case 3.1, some paths have similar structures
between subcases. Each of those paths having
similar structures has the same first and last
symbols of its correcting sequence. Generally, the
paths built by first doing " or o operation and a
e {C,, Cas,..., C, e, ..., e} have similar
structures. Moreover, in Cases 3.1.2 and 3.1.3, the
paths built by first doing " or o operation and a
e {u Uz ..., Uy} have similar structures.
Additionally, in Cases 3.1.3 and 3.1.4, paths built
by first doing o* or o operation and a € {t, t3, ...,
tw_1} having similar structures. Thus, the proofs of
vertex-disjoint (respectively, length computation)
of those paths with similar structures are the same.
Case3.llw=1w=1

Assume that symbol 1 (2) of p is at position «
and let t denote the tail symbol of a correcting
sequence. For vertex-disjoint, build every path
with a # t by first doing o (a") operation and then
t (t") operation.

The correcting sequences are listed as follows:

(t1": 2%y, Cy, Cs, ..., Cg, Ug),

(4G G, L, CF t, up).

(u™: CF, G ..., CF g, ta),

(U 1My, Cp, Cs, .., Ce, ).

<s|,1+: sl,Zv SI,31 sy sl‘kiv Uz, 1A5|‘1v tlv sz C3v sy C|—1v Cl+lv CI+2v sy Ccv
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S|,1>,

{Sia ™" Si2,5i3) - Siki» t1, 2si1, Uy, Cy, Cs, ..., Cig, Cisg, Cisa, ..., Co,
Sia),

<5i,2+: Si3, Sidy ---y Sikiy Sigy U1, 17si5, 1y, Cy, Cs, ..., Cizg, Cisg, Cisa, ..., Cq,
S|,2>,

<S|,27: Si3s Sis4y -~ s Sikiy Si1s 1, 2AS|‘2, Uy, Cy, Cy, ..., Cig, Cisg, Cisay ..., Cq,
Si2),

<S|,ki+: Si1y Si2y --oy Siki-1, U1, 1AS|,ki, ty, Ca, Cs, ..., Cizty Cisg, Cisa, -, Co,
sl,ki)x

<5i,k|7: Sits Si2y -y Siki-ts U1y ZASi,k” uy, Cy, Cy, ..., Cizy, Cisg, Cisg, ..., Cq,

Siski)-
vfej*: ug, 1%ej, t1,, Cz, Cs, ..., Cq, &),

(&j: tg, 2"%¢j, Uy, Cy, Cs, ..., Cq, ).

With the aid of Corollary 3 and carefully
checking each vertex of each constructed path,
every two built paths are vertex-disjoint. There are
4 groups of paths constructed which are 1 t;-pair,
1 up-pair, (ko + ks + ks + ... + k) m-pairs, and f
f-pairs. In total, 2(2+k, + kz + ks + ... + k) = 2(n-2)
vertex-disjoint paths are built. Significantly, every
gj -path is the longest path. Thus, the length of
every constructed path is bound above by d(p,
¢)+4 because at most 4 extra edges, where 1 (3) is
for e operation (unfixing and refixing symbol 2),
should be added to the corresponding shortest
path.

Case3.12w=1w2>2

In the following, we construct each pair one by

one according to the provided correcting

sequences.

(t": 27Uy, Uy, U, ..., Uy_g, Ca, Ca, ..., Cq, Uy),

(t1: 27Uy, Uy, Us, ..., Uy, Co, Cs, ..., Cg, ty, Uy).

<U1+: Uy, Uz, ..., Uy-1, Cz, Cg, . Cc, Uy, Ug, t1>,

{U17: Ug, Ug, ..., Uy-1, Co, Cs, ..., Cg, ty, Uw).

(uw™: 1My, Uy, Uy, ..., Uy, Co, Ca, ..., Co, 1),

{Uy 2 17U, Ug, Ug, ..., Uw, t1, Cy, Cs, ..., Cg, Up).

<U2+: Uz, Ug, ..., Uy, Uy, 1AU2, 1, Cz, C3, ceny Cc, U2>,

{Up: Uz, Ug, ..., Uw, t1, 2Up, Uy, Cy, Cg, ..., Cq, Uy),

(U3": Ug, Us, ..., Uy, Ug, Uy, 17U, ty, Cy, Ca, ..., Cg, Us),

(U3 Ug, Us, ..., Uy, t1, 23, Uy, Uy, Cy, Cs, ..., Cg, Ug),

(Uy—1 ™2 Uy, Uy, Uy, ..

{Uw-1": Uy, Ug, U, ..

(Sit"T Si2, Sigs -eer Sikp U Ua, -
ey Cc, S|‘1>,

<S|,17: Si2) Si3y .-
... Cq Si‘1>,

(Si2": Sig Sigs -
C|+2v weey C::v 5|‘1>v

(Si27: Sig, Sidy -
Cisz, ..., Ce, Sia),

- Uw—2, 1AUW-,1, t11C21 C31 ceny Ccv Uw‘—1>v
o Uw2, b, 2%y, Co, Cs, ..., Co, Una).
o U, 18i1, 11, Co, Cs, ..., iy, Civg, Cisg,

o Sikir ty 27Sig, U, Uz ..., Uw, Co, C3, .., Cicg, Cisg, Cisa,

-+ Sikp Sity Uz, Uz, ..oy Uw,y 17Si2, 1y, Cp, Cg, .., Cig, Ciag,

. Sikp Sity t1, 2°Si2, U, Up, ..., Uy Co, Cs, ..., iy, Cisg,

(Siki™ Sits Si2r o1 Siki=ts Un, Uz, .oy Uny 17Sig, 1, Ca, Cs, ..y Cicgy Cisa,

Cis2, ..., Ce, Sik)s

(Siki = Sidy Si2y -+e Sikj-1 t1, 2%Sikgy U, Uz ..oy Uw, Cp, Cg, ..oy Cigy Cing,
Ciszs - o, Sig-

(& U, Up, ..., Uy, 17}, ty, Cp, Ca, ..., Cq, &),

(&j: t1, 27%€j, Uy, Uy, ..., Uy, Cy, Cs, ..., Cq, €).

According to Lemma 1 and Corollary 3 and
carefully checking each vertex of each constructed
path, the built 2(n—2) paths are vertex-disjoint.
Case3.13w2>2,wW>2

The correcting sequences are listed below:

'ty ta, ..oy ty, 2%y, Uy, Uy, ..y Uy, Cp, Ca, ..., Co, Uw),
(ti ity 13, ..o, b By, Ug, Up, .oy Uy, Cp, Cs, .oy Co,y Uy

<tw+: 2At1, 1o, t3, ..., Ly, Uy, Up, ..oy Uy, Cz, C3, . Cc, t1>,

<tW7: 2AU1, Uy, Us,..., Uy, t1, T, ..., Ty, Cz, C3, veey Cc, U1>.
(Us™: Up, Uz, ...y Uy 17y, U, t, B, oo tweg, Co, Ca, ool Co, t),
{Up™: Uz, Ug, ..., U, B, B, s, b, Co, Cs, ey Co, Uy, ).
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<Uw'+: 1At1, 1o, 13, ..., Ly, Uy, Up, ..o, Uwy, Cz, Cg, ey Cc, t1>,

Uyt 17Uy, Ug, Ug, ooy U, T, By o By Cp, G,y Cg, U

(2" tg, b, oy by, Ug, Uz, ooy Uiy, 17, 1, Co, Cs, ., o ),

(t27o 3, Uy ooy by 27, U, U, oy U, B, Co, G, .., C, 1),

(15" ta, ts, ..y by Ug, Uz, ooy Uiy 10, 1, 1, Co, Cs, -, C, 1),

(ta7: t, ts, oy by 273, Uy, U, .y Uw, B, t, Co, Cg, ., G t),

(tae1™ by Us, Uz, ooy Uy 1, b, By oty oy Ca, oy Co b))

<tvw17: tw: 2Atvw1v Uy, Uz, ..., Uw, tl, th weey tW—Zv Cz, Cav RS CCv tvw1>-

U2": U3, Ug, -, Uy, Uy, 1705, 1, , ., B, Co, Cs, -y Cey W),

(U2 7> U3, Us, ..oy U, T, T, ooy Ty, 28U, Ug, Co, Cs, .., Co, U,

(U3": Ug, Us, ..., Uy, Uy, Uz, 17U, 1y, ta, ..., tw, Ca, Cs, ..., Ce, Us),

(U3 Ug, Us, ..., U, T1, t, ..., t,2%U3, U, Up, Cp, Cs, ..., Cg, U3),

(Uw—1 "7 U, Ug, Ug, .., Uy, 1wy, b, o, oo, b Co, Ca, oy Co Unt),

(Uw—1 ™" U, B, By oy by 20w, Ug, Up, ooy Uwe2, Co, Cs, oy Co, Une).

(Sia"7 Si2, Sigh «o Sik Un, Uz ..oy Un, 19801, 1, o, oo,y C2, s, ooy Cig,
Cit, Cisz, ..., Cq, Sia),

(Sia ™" Si2 Sigy -or Sikip Uy b2y ooy By 2°Si1, Ug, Uz ..oy Uwy C, Cg, oy Cig,
C|+1v C|+2v RS Cm S|,1>v

(512" Siar Sidy «-r Sikir Sidy Un, Uz .oy Uy 182, 1, o, ooy b C2y Cs, -y
Ci-1, Cis, Ciszy -y Cg, Sin),

(Si2 " Sigs Sidy s Sikis Sits U, b2, oony by 2°Sig, U, Uz ..oy Uw, Cp, G, oy
Cl—l; Cl+lv CH‘Zv RS Cm S|‘1>v

(Sikit ity Si2r -+or Sikts Uz, Uzy ooy Uy 100, 1, t, ooy by Co, Cay oy
Ci-1, Cisg, Cisz, .., Cg, Sig),

(Siki * Sis Si2e --or Sikicts b1, 2 ony twy 27Sikg, Ug, Uz .y Uw, Co, Cg, oy
Cl—l; Cl+lv CH‘Zv RS Cm sl‘ki>'

<ej+: Uy, Uz ..., Uw, 1,\er tlx th weey tw' CZv CS: RS Cc: ej>v

(&7t ty oy by 27, Up, Uz ooy Uy 2, G, oy Gy €y).

Similar to Case 3.1.2, the built 2(n-2) paths are
vertex-disjoint.
Case3.14w>22,w =1

The correcting sequences are listed below:

<t1+: to, t3, ..., tue1, Co, Ca, -y Co, Uy, ty),
(tito ta, .oy twog, Co, Ca, -y Co, by B, U,
(tw": 2™y, to, t, .., b, Ug, Ca, Cs, ., Co, ),
(tw 2 2%y, tg, b, .., b, Co, Ca, .o, C, Un).
<U1+: 1At1, 1o, 13, ..., ty, Cz, Cg, veey Cc, Uy, t1>,
(up s My, ty, o, -y twer, Co, Ca, e, Co, ).

Based on misplaced symbols in C; = (Si1 Siz..-
Si,ki)’ (ko + ks + ... + ko) pairsor 2(k, + ks + ... + k)
paths are constructed the same to Case 3.1.3.
gj-path are constructed the same to Case 3.1.3.

According to Lemma 1 and Corollary 3 and
carefully checking each vertex of each constructed
path, the built 2(n—2) paths are vertex-disjoint.

Significantly, every e; -path is the longest path.
Thus, the length of every constructed path is
bound above by d(p, ¢)+4 because at most 4 extra
edges, where 1 (3) is for e operation (unfixing
and refixing symbol 2), should be added to the
corresponding shortest path.
Case3.2:1e€C,2€C,

In Case 3.2, assume p=(1 Sy, S13 ... sl,kl)(z S22
S23 Sok,)C3Cy...Cee185... €. This case are
divided into Case 3.2.1 k;=2, k,=2, Case 3.2.2
ki=2, k,>3, Case 3.2.3 k;=>3, k,>3, and Case 3.2.4
k1=2, k223
Case3.21k;=2,k,=2

Assume p=(1 s15)(2 $,2)C3Cy...Cce165... €. The
correcting sequences are listed as follows:

(512" c, ci ... Cf S22),

(s12 117822, 812, C3, Cy, .., Co, $22)-

(822127812, 522, C3, Cy, ..., Ce, S1.2),

<Szy27: Cg#, 04#, ceny Cc#, 51,2>.

(Si1": Si2 Sig, - Sikir C3 Cav <.y Cicty Cisty Ciszy -y Coy S22, S230 -0
S2kpr 271, S12, S13, -+ Stk Si)s



(Sia": Si2r Sigy --er Sikis Cs, C4, ..., Ciit, Cisg, Cisz, ..., Ce, S12, S13, -4
S1ky 17Si1, S22, 23, -+ -1 S2kg Sit)s

<5i,2+: Si3, Sids -+ Sikis Si1y Cs, Cy4, ..., Ciig, Cist, Cisp, ..., Ce, S22, S23, -y
Sakgr 27Si2, S12, 13, -+ -1 Sikyy Si2)s

(Si2 > Si3 Sidy +oes Siki» Si,1y Cs, C4, ..., Ciit, Cisg, Cisa, -, C¢, S12, S13, --+)
S1ky 17Si2, S22, 523, -+ -1 S2ky Si2)s

<5i,k|+: Siy Si2 «-es Siki-1s Cs, Cy4 ..., Cicy, Cisg, Cisa,y .., Cg, S22, S23, -4
S2kgs 2"Sikiy S12: S1.3, -5 Stkys Siki)s

<S|,ki7: iy Si2 ++es Siki-1s Cs, Cy4, ..., Cig, Cisg, Cisa, ..., Co, S12, S13, -+ s
S1kyy 17Sikis S22, 52,3, -1 S2kgs Siki)-

(&1 S22, 23, -+, S2kp 278}, S12, S13s - -+ Stkgs Ca, Cay ..y Ce, €)),

(€ S12, 813, -, S1ky, 7€}, S22, S23, .-+, S2kpr C3, Ca, ..., Co, ).

According to Lemma 1 and Corollary 3 and
carefully checking each vertex of each constructed
path, all built paths are vertex-disjoint. This case
provides rules for construction s, ,-pair, s, ;-pair,
(ks + kg + ... + ko) m-pairs and f f-pairs. Totally,
2(n—2) vertex-disjoint paths are built.
Case3.22k;=2,k, 23

The correcting sequences are listed as follows:

(512" 1"S2kp1 S22 523, -1 S2kp—15 C3, Cay -y Co, S2kp)s

(812 + 1822, 823, S2.41 --+y S2kp-1, S1.20 C3, Ca, ..., Co, $22).
- S2kp 1 C3, Cay -y Co, Sakpr S22, S1.2 )
(S22 $23, 52,4 --+5 S2ky—1 C3, Ca, -, Co, S12, Saky)-
<52,k2+: 21812,522, 523 -1 S2.kp-1, C3, Cay ..., Coy S2kp, S12),

(822" 523, S241 -

(Saky * 27522, 523, S24 -5 S2ky S12: C3, Ca, -y Co, S22)-

(523" S2.41 5251 -1 Sk 27523, 512, 513, -+ Stk 220 C, Cay -, Cer Sz
)

(S237" S2,4) S2.5 +++s S2kg» S125 S13, -++» Stkys 17823, S22, C, Cay..y Co, S23
)

(52472 25, 5261 +-1 S2kar 272,41 S1.2, S13 -1 Stkgy S2.20 S2.3: C3, Cay -, Co
S2.4 ),

(S247" S25, 52,61 -+ S2kpr S125 S13s --+» Stkys 1724, S22, S23, C3, Cay..., Coy
S24 )

(Soko-1"" S2kpr 2°S24p-1, S1.2 S13: --+s Stkys S2.20 231 -1 S2kp-22 Cav Cay -y
Cor S2k,-1),

(S2kp-1 - S2.kp S12: S131 -1 Stk 1S2kp-1, S22 $23, -+ 1 S2kp-20 Cay Cay..o,y
Ce, S2kp-1 )

(Si1": Si2, Sig - Sikis C3 Cav -y Cicty Cisty Ciszy -y Coy S22, S230 -0
S2kgr 27Si1, S12, Si1)s

(i1 Si2 Sid3y --o Sikir C3, Cav -, City Cisa, Civay -, Cey S1.2, 17811, S22,
$23) +++» S2kp Sid)s

<5i,2+: Si3, Sids -+ Sikis Si1y Cs, Cy4, ..., Ciig, Cist, Cisp, ..., Co, S22, S23, -y
2k 2"Si2, S12Si2),

(Si2 " Sigy Sidr -+ Sikiy Sity Ca, Cay ., Cict, Civt, Civzy -y Co, S12, 17Si2,
22,523, -1 S2kg» Si2)s

<5i,k|+: Sity Si2 «-es Siki-1s Cs, Cy4 ..., Cicy, Cisg, Cis,y ..., Cg, S22, S23, -4
Sak, 2"Si,kly S12, Si‘kl>v

(Siki - Si1 Si2 -+ Siki-1, C3, Ca, ..., City Cisay Cisay -, Co, S12, 17Sikis S2.20

$23, ...y S2kps Si,K|>-

The correcting sequences of ej-pair are the same
as Case 3.2.1. Similar to Case 3.2.1, the
constructed 2(n—2) paths are vertex-disjoint.
Case 3.23k;>3,k, >3

The correcting sequences are listed as follows:

(8127513, 14, - -+ S2k-1y C3y Cay -y Coy S2k),

(81272 S13, S14y - . S2kp-1, C3, Cy, ...
S2ky)-

<51,k1+: 17812, S22, $2,3s +++ S2kpr S1.3, S14s +++s Sikys C3, Ca, -y Co, S12),

o Stk 2,20 S23) -

o S1kpy 182k S1.2, S22, S23s - , Ce,

(Stky - 17522, S12, 813, -+, Stkyy 523, -1 S2kp C3y Cay ., Co,y S22)-

(5227 S2.3 S2.4r -1 S2kpr 2°S1kqy 5220 5120 5131 -+ s S0 Ca Cay -y G
Siky)s

(S22 © 523, S2,41 -+ -1 S2kpr S1,2 513y -+ -1 Stky-1 Ca, Cay ., Coy S1y)e

(Soky 't 212, 522, 523, -+ -1 S2kpr SL31 Sy -+ Sik,) Cs3, C4y ...y Cey S1.2),
(S2ky : 2782,2, 51,2, 51,3y +++s Sikys S2.3s +-+s S2kpr C3y Cay -y Coy Sp2).

(51,370 514, 515, -+ Sty 522, 5231 -+ s S2kp 27513, S1.2: Ca, Careoy Coy S1.3),

206

The 31st Workshop on Combinatorial Mathematics and Computation Theory

(S13 - S14 S15) ++-y Siky 17513, S22, S23, +++y S2kp S12 C3 Cay ...y Cey
S1.3),

(51472 15 S161-- s Siky 2,20 S2.3, --+s S2kpy 213, S12, S13, C3, Ca, ..., Co,
S1.4),

(S147% 15 S16v-++» Stkpy 1514, S22, $23, -1 S2kp S1.20 S13, C3, Ca, ...y Coy
S1.4),

<51,k1—1+: Sikyr 52,20 52,3, +++» S2kpr 2"S1ky-1y S12, S13; +++s Stky-2, C3y Cay -y
Ce, Stky1)s

(S1k-1 - Stk 1"S1kq-1, S22, $23, ++-s S2kpr S1.20 S13s -+, Sikg20 C3, Cay ..o,
Ce, S1ky-1)-

(523" S2.41 S251 -+ s Sokp 27523, S12, S13, +++ S1ky S22 C3, Ca, -, Co, S23
)

(S2.3 © S2.4) S251 -++» S2kpr S1,2) S131 --+» Stk 17823, S22, Ca, Ca,..., Ce, S23
)

(524" 525, 5261 -1 Sokp 282,45 S1.2, S13, -1 Stkps S22 S2.3, C3, Cay .., Coy
S24 )

(S2.47" S255, 5261 ---1 S2kpr S12, S13s ---» Stkyy 1724, S22, $23, C3, Cay..., Co,
S2.4 ),

<52,k2—1+: Sakgr 2"S2kp-1, S1,20 135 -5 Stkyy S22, $23 +++s S2kp-20 C3y Cay -y
Cor S2k,-1),

(Sakp-17" S2kp S125 S13s +++» Stkpy 1"S2kp-1s S22 23, -++s S2kp-2: Cay Cayeoy
Ce, S2kp1)-

Based on misplaced symbols in C; = (Si; Siz...
si,ki) where 3<i<c, (ks + k; + ... + k) pairs or 2(k; +
ks + ... + K¢) paths are constructed as that of Case
3.2.1.

The correcting sequences of ej-pair are the same
as Case 3.2.1.

This case provides rules for construction
Sy o-pair, slykl-pair, Sy 0-pair, szykz-pair, ((ky—3) + (ky
—3) + (ks + kg + ... + k) m-pairs and f f-pairs.
Similar to Case 3.2.1, the constructed 2(n—2)
paths are vertex-disjoint.

Case3.24k; >3, k, =2
The correcting sequences are listed as follows:
(81271513, S14s -+ S14-1, Cay Cay .., Cey S22, S14p)s
(S127:813) S14s s S1ky-1, C3, Cay ..oy Co, Sy, S1.2, S2.2)-
<51,k1+: 17812, S13, 514 -+ Stk S21, C3, C, -, Ce, S12),
(Stky - 17522, 512,813 -+ Stky-1, C3, Cay ..., Co, S1ky, S22)-
(822" 27812, 513, S1.4r -1 S1kyr S22 C3, Cay -y Cey S12),
(S22 - 214y 1,2 81,3y +-+y S1kq 1, C3, Ca, .., Co, S1kg)-

Based on misplaced symbols in C; = (Si1 Siz..-
Si,ki) where 3<i<c, (ks + k; + ... + k) pairs or 2(k; +
ks + ... + k) paths are constructed as that of Case
3.2.1. The correcting sequences of e;-pair are listed
as the same to Case 3.2.1.

This case provides rules for construction
S12-pair, sy -pair, So-pair, ((ki—2) + (k;—1) +
(ks + kg + ... + k¢)) m-pairs and f f-pairs. Similar to
Case 3.2.1, 2(n — 2) vertex-disjoint paths are
totally built.

According to the statements described in Case 3,
the following lemma holds.

Lemma 8. The 2(n—2) paths constructed in Case
3 are vertex-disjoint.

Lemma 9. In Case 3, I(Copnp)(p, €)) < d(AG,)+2.
Proof. Referring to the constructions of all paths
in Case 3, the length of every longest path is at
most d(p, €)+2. Two extra edges are added for path
disjoint. One is the first edge of the path and the
other one is a bold edge, because adding these two
edges do not correct any symbol.

Recall that d(p, ¢) is n+c—1-3 if 1, 2eC;, 1<i<k
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and |Ci|>3 [6]. After maximizing (n+c—1-3)+2 and
substituting ¢ with 1+ |n—4/2], the length of the
longest path is at most n+(1+.n—4/2))-1.
Additionally, n+(1+.n—4/2))-1 = n+(n-5)/2 =
(3n-=5)2 = d(AGy)+2 if n is odd, and
n+(1+Hn-4/2))-1 = n+t(n-4)2 = (Bn-4)2 =
d(AG,)+2 if nis even.

Similarly, recall that d(p, ¢) is n+c—1—4 if 1eC;,
2eCj, 1<, j <k, and i#j. [6]. After maximizing
(n+c—1-4)+2 and substituting ¢ with [n/2J, the
length of the longest path is at most n+ |n/2-2.
Moreover, n+ [n/2}-2 = n+(n-1)/2-2 = (3n-5)/2
= d(AG,)+2 if n is odd, and n+[.n/2J-2 = n+(n/2)
-2 = (3n—4)/2 = d(AG,)+2 if n is even.

Therefore, the length of the containers
constructed in Case 3 is at most d(AG,)+2. [
Lemma 10 [9]. If G is a regular graph with
connectivity x> 2, then d, (G) > d(G)+1.

Combining Lemma 4-10, we then have
Theorem 11 as described below.
Theorem 11.d(AG,)+1 <
d(AG)+2.

dop(AGrn) <

5 Concluding Remarks

In designing a massively parallel computer, we
try to maximize parallelism and minimize
transmission delay for fast parallel communication
in the interconnection network of the computer.
Moreover, in order to evaluate reliability, fault
tolerant ability, parallelism and transmission delay
of an interconnection network, constructing
node-disjoint paths in an interconnection network
(or a graph) is very important issue. This work
presents a novel routing algorithm to construct a
Com2)(p, €) in an AG,, for each vertex p. Analysis
results indicate that the length of each constructed
Como)(p, €) is at most d(AG,)+2, and dy-2)(AG,)
is at least d(AG,)+1. These measurement results
demonstrate that the proposed algorithm can built
a Cynp(p, € with length at most d(AG,)+1 or
d(AGp)+2 in an AG,. Therefore, we assert that the
wide diameter of any AG, is bounded below
(above) by d(AG,)+1 (d(AG,)+2).
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