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Abstract 
 

This work derives a routing algorithm for 
constructing a container of width 2(n−2) between 
a pair of vertices in an alternating group graph 
with connectivity 2(n−2). Based on the provided 
algorithm, the wide diameter of an n-dimensional 
alternating group graph can be computed as its 
diameter plus 1 or 2. 

 
 

1  Introduction* 
 

There has been plenty of research on 
topological properties of interconnection networks 
by constructing vertex-disjoint paths, such as 
Hamiltonian laceability [1], performance [2], 
reliability [16]. The wide diameter [9, 15], fault 
tolerance [11, 12] and Rabin number [16]. 
Therefore, constructing vertex-disjoint paths [8, 9, 
14, 15] becomes an increasingly important issue 
on fault-tolerant ability [10, 11, 12], reliability 
[16], maximum parallelism [4] and minimum 
transmission delay [3]. 

Jwo et al. [6] proposed alternating group graphs 
and showed that they have some favorable 
properties such as small diameter, rich 
connectivity, vertex symmetry, edge symmetry, 
embeddability, broadcastability, hierarchical 
structure, and hamiltonicity. In comparison with 
star graphs, an n-dimensional alternating group 
graph has half the number of vertices and 
approximately twice its degree. Alternating group 
graphs provide strong fault tolerance [10, 11, 12, 
13], hamiltonicity [13]. Lai and Tsay [7] provided 
communication algorithms for all-to-all broadcast 
on an alternating group graph with all-port and 
store-and-forward routing. Lin and Chiu [8] 
derived a routing scheme for constructing 
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vertex-disjoint paths, but paths may coincide on 
one vertex in the constructed paths. 

Constructing vertex-disjoint paths in an 
interconnection network is very important issue 
for measuring reliability, fault tolerant ability, 
parallelism and transmission delay of an 
interconnection network. The wide-diameters of (n, 
k)-star graphs, and enhanced pyramid networks 
have been computed by Lin and Duh [9], and 
Hsieh and Duh [5], respectively. This work 
proposes a novel algorithm to construct vertex 
disjoint paths and determine wide diameters of 
alternating group graphs. 

The remainder of this paper is organized as 
follows. Section 2 formally describes some 
background of graphs and the topological 
properties of an n-dimensional alternating group 
graph. Section 3 shows path routing rules, and 
discusses the lengths of the constructed paths. 
Section 4 first presents a routing algorithm for 
constructing 2(n−2) vertex-disjoint paths between 
every vertex pair in an alternating group graph. 
Then, the wide diameter of an alternating group 
graph is also computed as its diameter plus 1 or 2. 
Conclusion is finally drawn in Section 5. 
 
 
2  Background & Notations 
 

Let G denote a graph. The vertex set and edge 
set of G are denoted by V(G) and E(G), 
respectively. Two vertices u and v are adjacent 
when they are joined by an edge e, where u, v ∈ 
V(G) and e ∈ E(G). All vertices adjacent to a 
vertex are its neighbors. The distance from vertex 
u to vertex v, represented by d(u, v), refers to the 
length of a shortest path from u to v in G. The 
diameter of G, denoted by d(G), is defined as the 
maximum distance for all pairs of distinct vertices 
u and v in G. A graph is connected when at least 
one path exists between any two vertices in it. The 
vertex connectivity (or connectivity) of a graph is 
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defined as the minimum number of vertices whose 
removal renders it disconnected or trivial. Let κ(G) 
(or κ) be the connectivity of G. According to 
Merger’s theorem, at least κ vertex-disjoint paths 
exist between distinct vertices u and v in G. A set 
of κ vertex-disjoint paths between vertices u and v 
in G, denoted by Cκ(u, v), is a container of width κ 
between u and v. The length of a Cκ(u, v), denoted 
by l(Cκ(u, v)), is defined as the length of the 
longest path in Cκ(u, v). A best-container between 
u and v, denoted by C*

κ(u, v), is the container with 
the shortest length among all Cκ(u, v)s. Let dκ(u, v) 
indicate the κ-wide distance (or wide distance) 
from u to v; thus, dκ(u, v)=l(C*

κ(u, v)). The κ-wide 
diameter (or wide diameter) of G, denoted by 
dκ(G), is defined as the maximum of dκ(u, v)s for 
all pairs of distinct vertices u and v in G. 

Let AGn denote the n-dimensional alternating 
group graph. The vertex set V(AGn) is defined as 
{ρ1ρ2...ρn | ρ1ρ2...ρn is an even permutation of 1, 2, 
…, n}, and the link set E(AGn) = {(ρ1ρ2 … ρn, 
ρ2ρiρ3ρ4…ρi−2ρi−1ρ1ρi+1ρi+2 … ρn), (ρ1ρ2 … ρn, 
ρiρ1ρ3ρ4 … ρi−2ρi−1ρ2ρi+1ρi+2…ρn) | ρ1ρ2…ρn ∈ 
V(AGn) and 3≤ i ≤ n}. Operation i+ (i－) shifts ρ1, 
ρ2, ρi left (right) cyclically. Symbol sequence 〈s1, s2, 
…, sm〉 orderly fixes symbols s1, s2 … sm, where s1, 
s2 … sm ∈ {3, 4, …, n}.  Correcting sequence 〈sα: 
s1, s2, … sx, η^w, sx+1, sx+2, … sy〉 is a special 
symbol sequence that executes operation sα, fixes 
symbols s1, s2 … sx, puts symbol η on w position, 
and then corrects sx+1, sx+2, … sy orderly, where x, 
y ≥ 0, α ∈ {+, −}, η ∈ {1, 2}, s, s1, s2, … sx, sx+1, 
sx+2, … sy, and w ∈ {3, 4, …, n}. 

Moreover, symbol ρi in label ρ1ρ2...ρn is as 
follows: (1) fixed if ρi=i (notably, position i is the 
desired position for symbol i); (2) misplaced if 
pi≠i. For instance, with ρ=2315647 in AG7, ρ7=7 is 
a fixed symbol. Conversely, ρ2=3, ρ4=5 ρ5=6, and 
ρ6=4 are misplaced symbols. Significantly, 
symbols 1 and 2 are not misplaced symbols and 
not fixed symbols. Symbols 1 and 2 are 
automatically corrected after correcting 3, 4, …, n 
because it should be an even permutation. 

Vertex ε = 12...n is the identity vertex whose ρi 
= i for all 1 ≤ i ≤ k. Since AGn is vertex symmetry, 
constructing paths between two distinct vertices 
can be regarded as constructing paths from a 
source vertex to ε [6]. This work attempts to build 
2(n−2) vertex-disjoint paths from vertex ρ to ε by 
correcting each non-fixed symbol to a fixed 
symbol. A cycle representation represents all 
non-fixed symbols of a vertex identifier. Notably, 
non-fixed symbols may include symbols 1 and 2, 
and misplaced symbols. For example, when ρx = y, 
ρy = z, and ρz = x, these non-fixed symbols can be 
presented as a cycle (x y z), where x denotes the 
cycle head, indicating that the desired position of 
a symbol is occupied by the next symbol in the 

cycle. Let vertex ρ = C1C2…Cce1e2…el, where Ci 
= (si,1 si,2 … si,ki) and the length of Ci be ki, 1 ≤ i ≤ 
c. For instance, ρ = 2315647 in AGn can be 
represented as (1 2 3)(4 5 6)7. Let m and f be the 
numbers of misplaced and fixed symbols of vertex 
ρ, respectively. Also, let l be n − |C1∪C2∪…∪Cc|. 
The cycle representation then comprises m+f+2 
symbols in total, implying that m symbols are not 
in their desired positions and f symbols are in their 
desired positions. Without loss of generality, if a 
cycle contains symbol 1, then the cycle is C1 and 
symbol 1 is s1,1 by rotating C1. Again, if no cycles 
contain symbol 1, then the cycle containing 
symbol 2 is cycle 1 and symbol 2 is s1,1. If 
symbols 1 and 2 belong to different cycles, then 
the cycle containing symbol 2 is cycle 2 and 
symbol 2 is s2,1. 

Interestingly, Jwo et al., showed in 1993 that 
d(ρ, ε) = n+c−l if ρ1 = 1 and ρ2 = 2; d(ρ, ε) = 
n+c−l−3 if ρ1 = 2 and ρ2 = 1; d(ρ, ε) = n+c−l−2 if 
ρ1 ≠ 1 and ρ2 = 2; n+c−l−2 if ρ1 = 1 and ρ2 ≠ 2; d(ρ, 
ε) = n+c−l−3 if 1, 2 ∈ Ci, 1 ≤ i ≤k and |Ci| ≥ 3, and 
d(ρ, ε) = n+c−l−4 if 1 ∈ Ci and 2 ∈ Cj, 1 ≤ i ≠ j ≤ k. 
Thus, d(AGn) = 3(n−2)/2 [6]. In other words, 
d(AGn) = (3n−7)/2 ((3n−6)/2) if n is odd (even). 
 
 
3  Path Routing Rules 
 

For simplicity, let Π(u, v) denote the path from 
vertex u to vertex v in an AGn. To construct a path 
Π(ρ, ε) in an AGn, all misplaced symbols of ρ 
should be corrected one by one to transform the 
label of ρ into the label of ε. Significantly, after 
correcting all misplaced symbols, symbols 1 and 2 
are automatically fixed in their desired position. 
The following routing rules are applied to fix 
symbol s. Each rule can join 1 or 2 edges (vertices) 
in a path. 
R1: 
 If symbol s is at position 1, do s+ operation to 

fix s. 
 If symbol s is at position 2, do s− operation to 

fix s. 
R2: 
 If symbol s is not at position 1 or position 2 

and at position p, then do p+ (or p−
) to put s at 

position 2 (or position 1), and then apply R1. 
Naturally, R1 contributes 1 edge and R2 

contributes 2 edges in each constructed routing 
path. For example, let vertex ρ = 15432. Symbols 
3, 4 and 5 are misplaced. To correct symbol 5, do 
5− operation according to R1 since 5 is at position 
2. Thus, the first intermediate vertex, denoted by u, 
of the routing path is 21435. That is, symbol 5 is 
fixed. Notably, symbol 4 of u is at position 3 and 
rule R2 should be apply to correct symbol 4. By 
applying R2, execute 3+ (or 3−) and 4− (or 4+) 
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operations orderly and then the second and third 
intermediate vertices v = 14235 (or 42135) and w 
= 31245 (or 23145) are obtained. Restated, R1 
takes 1 step and R2 takes 2 steps. 
Lemma 1. Given two symbol sequences, the first 
(last) symbol of symbol sequences are a and c (b 
and d), respectively, and the order of b in the 
second symbol sequence is prior to a. If vertex ρ 
corrected by <a, …, c, …, d, …, b> and <c, …, 
b, …, a, …, d>, then the two paths constructed 
according to these two symbol sequences are 
vertex-disjoint to each other. 
Proof. As shown in Fig. 1, ρ have two distinct 
neighbors ρα and ρβ, ε have two distinct neighbors 
εα and εβ. Paths Π(u, v) and Π(ρβ, εβ) are 
vertex-disjoint since every vertex in Π(u, v) has ρa 
= a and ρb ≠ b and every vertex in Π(ρβ, εβ) has ρa 
≠ a or ρb = b. Vertex ρα is different from every 
vertex in path Π(w, εβ) because symbols a, b, c 
and d of ρα are not yet fixed and each vertex in 
Π(w, εβ) has at least one of a, b, c and d is fixed. 
Vertex εα is different from every vertex in path 
Π(ρβ, x) because symbols a, b, c and d of εα are 
fixed and each vertex in Π(ρβ, x) has at least one 
of a, b, c and d is not fixed. Therefore, Π(ρα, εα) 
and Π(ρβ, εβ) are vertex-disjoint to each other. ■ 

 
Fig. 1. The two paths constructed according to 

two symbol sequences <a, …, c, …, d, …, 
b> and <c, …, b, …, a, …, d> are 
vertex-disjoint. 

Lemma 2. For any vertex ρ = C1C2…Cce1e2…el 
in AGn, let Ci = (si,1 si,2 … si,ki) and si,1, si,2, …, si,ki 
are all misplaced symbols, where 1≤i≤c. If two 
paths constructed according to 〈si,ki

+: si,1, si,2, …, 
si,ki〉 and 〈si,ki

−: si,1, si,2, …, si,ki〉, these two paths are 
vertex-disjoint except the beginning and ending 
vertices. 
Proof. We prove this lemma constructively. Two 
Π(ρ, ρ')s are constructed by 〈si,ki

+: si,1, si,2, …, si,ki〉 
and 〈si,ki

−: si,1, si,2, …, si,ki〉, respectively. Moreover, 
they apply operations si,ki

+, si,1
−, si,2

+, … and si,ki
−: 

si,1
+, si,2

−, … and they are therefore vertex-disjoint 
except the beginning and ending vertices. ■ 

Lemma 2 indicates that if two paths are 
constructed by 〈si,ki

+: si,1, si,2, …, si,ki〉 and 〈si,ki
−: si,1, 

si,2, …, si,ki〉, which are composed of all misplaced 
symbols in cycle Ci = (si,1 si,2 … si,ki), these two 
paths must has the same ending vertex. In other 
words, if the cycle representation of vertex ρ has 
two or more cycles, all misplaced symbols in the 
first selected cycle Ci cannot be completely fixed 

prior than any other cycle for building 
vertex-disjoint paths. According to Lemmas 1 and 
2, we have the following corollary. 
Corollary 3. Let Ci = (si,1 si,2 … si,ki), where each 
of si,1, si,2, …, and si,ki is not symbols 1 and 2 for 
1≤i≤c. The paths constructed by the following 
sequences are vertex-disjoint. 

〈si,1
+: si,2, si,3, …, si,ki, C1, C2, …, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, C1, C2, …, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,2
+: si,3, si,4, …, si,ki, si,1, C1, C2, …, Ci−1, Ci+1, Ci+2, …, Cc, si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, C1, C2, …, Ci−1, Ci+1, Ci+2, …, Cc, si,2〉, 

… 
〈si,ki

+: si,1, si,2, …, si,ki−1, C1, C2, …, Ci−1, Ci+1, Ci+2, …, Cc, si,ki〉, 
〈si,ki

−: si,1, si,2, …, si,ki−1, C1, C2, …, Ci−1, Ci+1, Ci+2, …, Cc, si,ki〉. 

 
 
4  Construction of Disjoint Paths 
 

Recall that our goal is to construct a C2(n−2)(ρ, ε). 
Based on the structure and adjacency rules of AGn, 
symbols in ρ1 and ρ2 directly determine each 
constructed path from ρ to ε. Hence, we divide all 
vertices in AGn into three groups with some 
subgroups according to symbols in ρ1 and ρ2 and 
the content of C1. Naturally, we thus need to build 
a C2(n−2)(ρ, ε) from a vertex ρ in each subgroup to ε. 
Three cases and some subcases of them should be 
considered in the following subsections. 
4.1  Case 1: ρ1, ρ2 ∈ {1, 2} 

Let σα(Ci) denote that performs a left circular 
shift on Ci α times, where 0 ≤ α ≤ ki−1 and 1 ≤ i ≤ 
c. Hence, σα(Ci) is a variant cycle of Ci and σ0(Ci) 
= Ci. Assume Ci is the first selected cycle among 
all c cycles. According to Lemma 2, all misplaced 
symbols in Ci cannot be completely fixed prior 
than any other cycle for building vertex-disjoint 
paths. In other words, at least one misplaced 
symbol in Ci should be fixed after each misplaced 
symbol in Ch, where 1 ≤ h ≤ c and h ≠ i, for 
building vertex-disjoint paths. In order to 
construct vertex-disjoint paths, we first divide 
σα(Ci) into two parts and then combine them with 
the reminding cycles to form a symbol sequence 
as 〈Sα,il, C1, C2, …, Ci−1, Ci+1, …, Cc, Sα,ir〉. Thus, 
σα(Ci) = (Sα,il Sα,ir), where |Sα,il| ≥ 1, |Sα,ir| ≥ 1. Two 
subcases are discussed in the following. 
Case 1.1: ρ1 = 1, ρ2 = 2 

In this case, {1, 2} ⊄ C1∪C2∪…∪Cc. As 
mentioned above, (|C1| + |C2| + …+ |Cc|) = m 
symbol sequences can be built. Each symbol 
sequence 〈Sα,il, C1, C2, …, Ci−1, Ci+1, …, Cc, Sα,ir〉 
can construct 2 paths which are an m-pair because 
symbol s in one path apply s+ (s−) operation and s 
in the other path must apply s− (s+) operation. Thus, 
2m paths are constructed. Additionally, each fixed 
symbol can also be used to construct 2 paths. 
Unlike the misplaced symbols, each fixed symbol 
ej, where 1 ≤ j ≤ l and ej ∉ {1, 2}, form 2 
correcting sequences 〈ej

+: C1, C2, …, Cc, ej〉 and 
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〈ej
−: C1, C2, …, Cc, ej〉 for building two paths. 

These two paths also form an f-pair because if 
every vertex in one path has symbol 1 at position 
ej, then every vertex in the other path has symbol 2 
at position ej. Thus, 2f paths are constructed since f 
= l − 2. Totally, 2m + 2f = 2(n − 2) paths are 
established. 
Case 1.2: ρ1 = 2, ρ2 = 1 

Without loss of generality, assume {1, 2} ⊆ C1. 
Hence, there is no misplaced symbol in C1. Thus, 
only (|C2| + …+ |Cc|) = m symbol sequences can 
be established. Very similar to Case 1.1, each 
symbol sequence 〈Sα,il, C2, …, Ci−1, Ci+1, …, Cc, 
Sα,ir〉 can construct 2 paths. Therefore, all 
misplaced symbols can also construct 2m paths. 
Moreover, each fixed symbol can also be used to 
construct 2 paths. The method of constructing 
paths by fixed symbols is the same as Case 1.1. 
Therefore, all fixed symbols can construct 2f paths. 
Totally, 2m + 2f = 2(n − 2) paths are established. 

Consequently, in Case 1, 2m + 2f = 2(n − 2) 
paths are built. In addition, Lemma 4 shows that 
these 2(n − 2) paths are vertex-disjoint. 
Lemma 4. The 2(n − 2) paths constructed in Case 
1 are vertex-disjoint. 
Proof. As mention above, 2(n−2) paths are built in 
Case 1. By Lemma 1, each path of one m-pair is 
vertex-disjoint to each path of any other m-pair. 
Naturally, a symbol sequence can be regarded as a 
correcting sequence by definitions of them. With 
the aid of Lemma 2, two paths of an m-pair are 
vertex-disjoint. Therefore, the 2m paths 
constructed in Case 1 are vertex-disjoint. 

The first step to construct 2f paths is to perform 
ej

+ (ej
−) operation, so symbol 1 (2) of each f-pair is 

placed at ej position. Thus, two paths of an f-pair 
are vertex-disjoint and every two f-pairs are 
vertex-disjoint. Since 2m paths ej position are 
always ej, every m-pair is vertex-disjoint to every 
f-pair. Therefore, the built 2(n−2) paths are 
vertex-disjoint and form a C2(n−2)(ρ, ε). ■ 

Lemma 5 shows that the upper bound of 
l(C2(n−2)(ρ, ε)) is d(AGn)+1. 
Lemma 5. In Case 1, l(C2(n−2)(ρ, ε)) ≤ d(AGn)+1. 
Proof. In Case 1, the upper bound of l(C2(n−2)(ρ, ε)) 
is calculated as follows: 

In Case 1.1, paths constructed by 〈Sα,il, C2, …, 
Ci−1, Ci+1, …, Cc, Sα,ir〉 have length at most m+c = 
(n−2)+(n−2)/2 = (3n−7)/2 ((3n−6)/2) = d(AGn) if 
n is odd (even). Paths constructed by 〈ej

+: C1, C2, 
…, Cc, ej〉 and 〈ej

−: C1, C2, …, Cc, ej〉 have length 
at most 2+m+c = 2+(n−2−f)+(n−2−f)/2 = 
2+(n−3)+(n−3)/2 = (3n−5)/2 ((3n−6)/2) = 
d(AGn)+1 (d(AGn) if n is odd (even). The length 
of the longest path built in Case 1.2 are the same 
as Case 1.1. Therefore, l(C2(n−2)(ρ, ε)) ≤ d(AGn)+1.■ 
4.2  Case 2: {ρ1, ρ2}∩{1, 2} = {1} or {2} 

Let head (tail) represent the first (last) operation 

of constructing a path pair according to a symbol 
sequence. Hence, one path of the path pair takes 
head+ (tail+) and the other takes head− (tail−). For 
ease of description, a path pair with head s is 
named s-pair which is composed of s+-path and 
s−-path. Every pair of paths in Case 2 is 
distributed a unique tail, occupied symbol 2 (or 
symbol 1), where tail ∈ {3, 4, …, n}. In general, 
an s-pair is also assigned s as its tail. Notably, in 
the rest of this work, ρ and ε are excluded when 
considering vertex-disjoint path. 

Let Πs(Π; sf, sm) denote a subpath of Π in which 
every vertex has fixed sf and unfixed sm. Specially, 
sf (sm) = η^w indicates the vertex has (has not) 1 or 
2 at position w. Moreover, sf (or sm) = 0 reveals 
that no symbol is specified. Hence, s+-path 
(s−-path) is composed of Πs(s+-path; 0, si,α) and 
Πs(s+-path; si,α, tail) (Πs(s−-path; 0, si,α) and 
Πs(s−-path; si,α, tail)), where 1≤i≤c and 1≤α≤ki. 

However, the head and tail of ρ2-pair is not the 
same because ρ2 is already fixed after applying ρ2

−. 
Thus, the tail of ρ2-pair is t and should not be ρ2. 
Undoubtedly, the tail of t-pair should be ρ2. In 
other words, the head and tail of t-pair is also 
different. 

Although container is not unique, this section 
provides a routing scheme for constructing a 
C2(n−2)(ρ, ε) for each ρ in Case 2. Referring to 
Table 3, Sections 2.1−2.4 discuss four cases in the 
following. 
Case 2.1: ρ1=1 and ρ2 ≠ 2 

A set of correcting sequences is provided for 
building a C2(n−2)(ρ, ε) for each of k1=2, k1=3, and 
k1≥4. 
Case 2.1.1 k1=2 

Since V(AGn) is defined as an even permutation 
of 1, 2, …, n, if k1=|C1| = 2, then C1 = (2 s1,2) and 
c≥2. As mentioned above, the tail position of 
s1,2-pair should not be s1,2 and is distributed as s2,1. 
The correcting sequences of s1,2-pair are listed as 
follows: 

〈s1,2
+: 2^s2,1, s2,2, s2,3, …, s2,k2, C3, C4, …, Cc, s1,2, s2,1〉, 

〈s1,2
−: 1^s2,1, s2,2, s2,3, …, s2,k2, C3, C4, …, Cc, s2,1〉. 

The first vertex of s1,2
+-path and the first vertex 

of s1,2
−-path are disjoint, because they are two 

distinct neighbors of ρ. Symbol 1 (2) of the first 
vertex of s1,2

+-path (s1,2
−-path) is not at position s2,1. 

Additionally, every vertex of s1,2
+-path (s1,2

−-path) 
excluding the first vertex has symbol 2 (1) at 
position s2,1. Thus s1,2

+-path and s1,2
−-path are 

vertex-disjoint. 
Since the tail of s1,2-pair is s2,1, the tail position 

of s2,1-pair should not be s2,1 and is distributed as 
s1,2. The correcting sequences of s2,1-pair are listed 
as follows: 

〈s2,1
+: s2,2, s2,3, …, s2,k2, C3, C4, …, Cc, s2,1, s1,2〉, 

〈s2,1
−: s2,2, s2,3, …, s2,k2, 1^s1,2, C3, C4, …, Cc, s2,1, s1,2〉. 

Actually, every vertex in Πs(s2,1
+-path; 0, s1,2) 
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has symbol 2 at position s1,2. That is, Πs(s2,1
+-path; 

0, s1,2) is disjoint to Πs(s2,1
−-path; 1^s1,2, s1,2). Let μ 

be the first symbol in 〈C3, C4, …, Cc, s2,1〉. Notably, 
C3, C4, …, and Cc may not exist. Symbol μ of 
every vertex in Πs(s2,1

−-path; 0, 1^s1,2) is not fixed. 
Thus, Πs(s2,1

−-path; 0, 1^s1,2) is disjoint to 
Πs(s2,1

+-path; μ, s1,2). According to Lemma 2, 
Πs(s2,1

+-path; 0, μ) is disjoint to Πs(s2,1
−-path; 0, 

1^s1,2). Therefore, s2,1
+-path and s2,1

−-path are 
vertex-disjoint. 

Based on misplaced symbols in Ci = (si,1 si,2… 
si,ki

) and the built s2,1-pair, (k2−1 + k3 + k4 + … + kc) 
pairs or 2(k2−1 + k3 + k4 +… + kc) paths are 
constructed as follows: 

〈si,1
+: si,2, si,3, …, si,ki, s1,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, 2^si,1, s1,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,2
+: si,3, si,4, …, si,ki, si,1, s1,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, 2^si,2, s1,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 

si,2〉, 
…… 
〈si,ki

+: si,1, si,2 …, si,ki−1, s1,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,ki〉, 
〈si,ki

 −: si,1, si,2 …, si,ki−1, 2^si,ki, s1,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
si,ki〉. 

Because every vertex in Πs(si,1
+-path; 0, si,1) has 

symbol 1 at position si,1, Πs(si,1
+-path; 0, si,1) is 

disjoint to Πs(si,1
−-path; 2^si,1, si,1). Naturally, 

symbol s1,2 of every vertex in Πs(si,1
−-path; 0, s1,2) 

is not fixed. Thus, Πs(si,1
+-path; s1,2, si,1) is disjoint 

to Πs(si,1
−-path; 0, s1,2). Since Πs(si,1

−-path; 0, 2^si,1) 
has not symbol 1 at position si,1, Πs(si,1

+-path; 0, 
s1,2) and Πs(si,1

−-path; 0, 2^si,1) are vertex-disjoint. 
Therefore, si,1

+-path and si,1
−-path are 

vertex-disjoint. Similarly, si,2-pair, si,3-pair, …, and 
si,ki

-pair are also vertex-disjoint. 
Let si,α-pair and si',β-pair be any two pairs of the 

constructed (k2−1 + k3 + k4 +… + kc) pairs, where 
2≤i, i'≤c, 1≤α, β≤ki, si,α ≠ s2,1 and si',β ≠ s2,1. Since 
symbol 1 of every vertex in si,α

+-path (si',β
+-path) is 

placed at position si,α (si',β), si,α
+-path and si',β

+-path 
are vertex-disjoint. Undoubtedly, Πs(si,α

−-path; 0, 
si,α) is vertex-disjoint to Πs(si',β

+-path; si,α, si',β). 
Because symbol 2 of every vertex in Πs(si',β

+-path; 
0, si,α) is not placed at position si,α, Πs(si,α

−-path; 
2^si,α, si,α) is vertex-disjoint to Πs(si',β

+-path; 0, si,α). 
Let si,α⊕1 (si',β⊕1) represent the next symbol of si,α 
(si',β) in ci (ci'). Every vertex in Πs(si,α

−-path; si,α⊕1, 
2^si,α) has fixed si,α⊕1 and every vertex in 
Πs(si',β

+-path; 0, si,α) has not; every vertex in 
Πs(si',β

+-path; si',β⊕1, si,α) has fixed si',β⊕1 and every 
vertex in Πs(si,α

−-path; 0, si,α⊕1) has not, and 
Πs(si,α

−-path; 0, si,α⊕1) and Πs(si',β
+-path; 0, si',β⊕1) 

are two distinct neighbors of ρ. Thus, Πs(si,α
−-path; 

0, 2^si,α) and Πs(si',β
+-path; 0, si,α) are 

vertex-disjoint. Consequently, si,α
−-path and 

si',β
+-path are vertex-disjoint. Similarly, si,α

+-path 
and si',β

−-path are vertex-disjoint. 
For every fixed symbol ej, the correcting 

sequences of the ej-pair are shown below: 
〈ej

+: s1,2, C2, C3, …, Cc, ej〉, 
〈ej

−: 2^ej, s1,2, C2, C3,…, Cc, ej〉. 

Every vertex in Πs(ej
+-path; 0, ej) has symbol 1 

at position ej. Therefore, Πs(ej
+-path; 0, ej) is 

vertex-disjoint to Πs(ej
−-path; 2^ej, ej). Because 

symbol 1 in Πs(ej
−-path; 0, 2^ej) is not at position 

ej, Πs(ej
−-path; 0, 2^ej) and Πs(ej

+-path; 0, ej) are 
vertex-disjoint. Thus, Πs(ej

+-path; 0, ej) and 
Πs(ej

−-path; 0, ej) are vertex-disjoint. 
Let eα-pair and eβ-pair be any two distinct 

f-pairs, where 1≤α, β≤f. Since symbol 1 of every 
vertex in eα+-path (eβ+-path) is placed at position eα 
(eβ), eα+-path and eβ+-path are vertex-disjoint. 
eα+-path is vertex-disjoint to eβ−, because every 
vertex in Πs(eα+-path; 0, eα) has symbol 1 at 
position eα but symbol 1 in Πs(eβ−-path; 0, eβ) is 
not at position eβ. Certainly, eα−-path is 
vertex-disjoint to eβ+-path. 

Let η represent vertex Πs(s1,2
+-path; 0, 2^s2,1). 

Uniquely, η1 and η2 are s1,2 and s1,1, respectively. 
Thus, η is vertex-disjoint to s2,1-pair. Πs(s1,2

+-path; 
2^s2,1, s2,1) is vertex-disjoint to s2,1-pair because 
symbol 2 is not at position s2,1 in every vertex of 
s2,1-pair. s1,2

−-path is vertex-disjoint to s2,1-pair by 
Lemma 1, since s2,1 is prior to s1,2 in the correcting 
sequences for s2,1-pair and the first (last) symbol 
of the correcting sequence for s1,2

−-path is s1,2 (s2,1). 
Therefore, s1,2-pair and s2,1-pair are vertex-disjoint. 

Restated, η is unique and vertex-disjoint to 
si,α-pair, where 2≤i≤c, 1≤α≤ki, si,α ≠ s2,1. 
Πs(s1,2

+-path; 2^s2,1, s2,1) is vertex-disjoint to 
si,α-pair because every vertex in si,α-pair has 
symbol 2 not at position s2,1. Thus, s1,2

+-path is 
vertex-disjoint to si,α-pair. Let δ represent vertex 
Πs(s1,2

−-path; 0, 1^s2,1). Uniquely, δ1 and δ2 are s1,1 
and symbol 1, respectively. Hence, δ is 
vertex-disjoint to si,α-pair. Πs(s1,2

−-path; 1^s2,1, s2,1) 
is vertex-disjoint to si,α-pair because symbol 1 is 
not at position s2,1 in every vertex of si,α-pair. Thus, 
s1,2

−-path is vertex-disjoint to si,α-pair. Therefore, 
s1,2-pair and si,α-pair are vertex-disjoint. 

Every vertex in s2,1
+-path has symbol 2 at 

position s1,2 and every vertex in si,α-pair has 
symbol 2 not at position s1,2. Thus, s2,1

+-path are 
vertex-disjoint to si,α-pair. 

Let θ represent vertex Πs(s2,1
−-path; 0, s2,2). 

Uniquely, θ1 and θ2 are s2,2 and symbol 1, 
respectively. Hence, θ is vertex-disjoint to si,α-pair. 
Πs(s2,1

−-path; s2,2, s1,2) has first fixed s2,2 and finally 
fixed s1,2, and si,α-pair has fixed s1,2 prior to s2,2. By 
Lemma 1, s2,1

−-path is vertex-disjoint to si,α-pair. 
f-pair and si,α-pair are vertex-disjoint because 

every ej-pair has modified ej symbol but m-pair 
never modifies any ej symbol. Similarly, f-pair is 
disjoint to s1,2-pair and s2,1-pair. 

From the above discussion, it has become clear 
that every two distinct pairs are vertex-disjoint. 
Referring to Case 2.1.1 described above, there are 
4 groups of paths constructed which are 1 s1,2-pair, 
1 s2,1-pair, (k2−1 + k3 + k4 + … + kc) m-pairs, and f 
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f-pairs. In total, 2(n－2) vertex-disjoint paths are 
built. Significantly, every ej

−-path is the longest 
path. Thus, the length of every constructed path is 
bound above by d(ρ, ε)+4 because at most 4 extra 
edges, where 1 (3) is for ej

− operation (unfixing 
and refixing symbol 2), should be added to the 
corresponding shortest path. 
Case 2.1.2 k1=3 

Namely, C1 = (2 s1,2 s1,3). The correcting 
sequences are listed as follows: 

〈s1,2
+: s1,3, C2, C3, …, Cc, s1,2〉, 

〈s1,2
−: C2, C3, …, Cc, s1,3〉. 

〈s1,k1
+: s1,2, C2, C3, …, Cc, s1,k1〉, 

〈s1,k1
−: 2^s1,2, C2, C3, …, Cc, s1,k1, s1,2〉. 

〈si,1
+: si,2, si,3, …, si,ki, s1,2, s1,3, C2, C3,…, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, 2^si,1, s1,2, s1,3, C2, C3,…, Ci−1, Ci+1, Ci+2, …, Cc, 

si,1〉, 
〈si,2

+: si,3, si,4, …, si,ki, si,1, s1,2, s1,3, C2, C3,…, Ci−1, Ci+1, Ci+2, …, Cc, 
si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, 2^si,2, s1,2, s1,3, C2, C3,…, Ci−1, Ci+1, Ci+2, …, 

Cc, si,2〉, 
…… 
〈si,ki

+: si,1, si,2, …, si,ki −1, s1,2, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
si,ki〉, 

〈si,ki
−: si,1, si,2, …, si,ki−1, 2^si,ki

, s1,2, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, 
Cc, si,ki〉. 

〈ej
+: s1,2, s1,k1

, C2, C3,…, Cc, ej〉, 

〈ej
−: 2^ej, s1,2, s1,k1

, C2, C3,…, Cc, ej〉. 

Similar to Case 2.1.1, any two distinct built 
paths in Case 2.1.2 are vertex-disjoint. This case 
provides rules for constructing s1,2-pair, s1,3-pair, 
(k2 + k3 + … + kc) m-pairs, and f f-pairs. Totally, 
2(n－2) vertex-disjoint paths are built. Referring 
to Case 2.1.1, the length of every constructed path 
in Case 2.1.2 is bound above by d(ρ, ε)+4 because 
at most 4 extra edges should be added to the 
corresponding shortest path. 
Case 2.1.3 k1≥ 4 

Under this condition, |C1| ≥ 4 and C1 = (2 s1,2 s1,3 
s1,4 …s1,k1). The correcting sequences are listed as 
follows: 

〈s1,2
+: s1,3, s1,4,…, s1,k1−1, C2, C3,…, Cc, s1,2, s1,k1〉, 

〈s1,2
−: 1^s1,k1, s1,3, s1,4,…, s1,k1−1, C2, C3,…, Cc, s1,k1〉. 

〈s1,k1
+: 2^s1,2, s1,3, s1,4,…, s1,k1, C2, C3,…, Cc, s1,2〉, 

〈s1,k1
−: 1^s1,2, s1,3, s1,4,…, s1,k1, C2, C3,…, Cc, s1,2〉. 

〈s1,3
+: s1,4, s1,5,… , s1,k1, s1,2, C2, C3,…, Cc, s1,3〉, 

〈s1,3
−: s1,4, s1,5,… , s1,k1, 2^s1,3, s1,2, C2, C3,…, Cc, s1,3〉, 

〈s1,4
+: s1,5, s1,6,… , s1,k1, s1,2, s1,3, C2, C3,…, Cc, s1,4〉, 

〈s1,4
−: s1,5, s1,6,… , s1,k1, 2^s1,4, s1,2, s1,3, C2, C3,…, Cc, s1,4〉, 

…… 
〈s1,k1−1

+: s1,k1, s1,2, s1,3, …, s1,k1−2, C2, C3,…, Cc, s1,k1−1〉, 
〈s1,k1−1

−: s1,k1, 2^s1,k1−1, s1,2, s1,3, … , s1,k1−2, C2, C3,…, Cc, s1,k1−1〉. 

〈si,1
+: si,2, si,3, …, si,ki, s1,2, s1,3, …, s1,k1,C2, C3,…, Ci−1, Ci+1, Ci+2, …, Cc, 

si,1〉, 
〈si,1

−: si,2, si,3, …, si,ki, 2^si,1, s1,2, s1,3, …, s1,k1, C2, C3, …, Ci−1, Ci+1, Ci+2, 
…, Cc, si,1〉, 

〈si,2
+: si,3, si,4, …, si,ki, si,1, s1,2, s1,3, …, s1,k1,C2, C3, …, Ci−1, Ci+1, Ci+2, 

…, Cc, si,2〉, 
〈si,2

−: si,3, si,4, …, si,ki, si,1, 2^si,2, s1,2, s1,3, …, s1,k1, C2, C3, …, Ci−1, Ci+1, 
Ci+2, …, Cc, si,2〉, 

…… 
〈si,ki

+: si,1, si,2, …, si,ki−1, s1,2, s1,3, …, s1,k1,C2, C3, …, Ci−1, Ci+1, Ci+2, …, 
Cc, si,ki〉, 

〈si,ki
−: si,1, si,2, …, si,ki−1, 2^si,ki, s1,2, s1,3, …, s1,k1, C2, C3, …, Ci−1, Ci+1, 

Ci+2, …, Cc, si,ki〉. 
〈ej

+: s1,2, s1,3, …, s1,k1, C2, C3, …, Cc, ej〉, 
〈ej

−: 2^ej, s1,2, s1,3, …, s1,k1, C2, C3, …, Cc, ej〉. 

Similar to Case 2.1.1, any two distinct built 
paths in Case 2.1.3 are vertex-disjoint. This case 
provides rules for constructing s1,2-pair, s1, k1

-pair, 
(k1 – 2 + k2 + k3 + … + kc) m-pairs, and f f-pairs. 
Totally, 2(n－2) vertex-disjoint paths are built. 
Referring to Cases 2.1.1, the length of every 
constructed path in Case 2.1.3 is bound above by 
d(ρ, ε)+4 because at most 4 extra edges should be 
added to the corresponding shortest path. 
Case 2.2: ρ1=2 and ρ2 ≠ 1 

A set of correcting sequences is proposed for 
building a C2(n−2)(ρ, ε) for each of k1=3 and k1≥4. 
Case 2.2.1 k1 = 3 

When c = 1, C1 = (1 2 s1,3) and the correcting 
sequences of s1,3-pair are 〈s1,3

+: s1,3〉 and 〈s1,3
−:〉. 

Notably, the sequence 〈s1,3
−:〉 indicates that no 

more symbols should be fixed after doing s1,3
− 

operation. 
For every fixed symbol ej, the correcting 

sequences of ej-pair are 〈ej
+: s1,k1

, ej〉 and 〈ej
−: 1^ej, 

s1,k1
, ej〉. 

When c ≥ 2, ρ = (1 2 s1,3)C2C3 … Cc. The 
correcting sequences of s1,3-pair are listed below: 

〈s1,3
+: 1^s2,1, s1,3, s2,2, s2,3, … s2,k2, C3 C4 …Cc, s2,1〉, 

〈s1,3
−: 2^s2,1, s2,2, s2,3, … s2,k2, C3 C4 …Cc, s2,1〉. 

〈s2,1
+: s2,2, s2,3, … s2,k2, C3 C4 …Cc, s2,1, s1,3〉, 

〈s2,1
−: s2,2, 2^s1,3, s2,3, s2,4, … s2,k2, s2,1, C3 C4 …Cc, s1,3〉. 

〈s2,j
+: s2,(j mod k2)+1, s2,((j+1) mod k2)+1, … s2,((j+k2−3) mod k2)+1, s2,((j+k2−2) mod k2)+1, 

s1,3, C3 C4 … Cc, s2,j〉, 
〈s2,j

−: s2,(j mod k2)+1, s2,((j+1) mod k2)+1, … s2,((j+k2−3) mod k2)+1, s2,((j+k2−2)) mod k2)+1, 
1^s2,j, s1,3, C3 C4 … Cc, s2,j〉. 

〈si,1
+: si,2, si,3, …, si,ki, s1,3, C2, C3,…, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, 1^si,1, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,2
+: si,3, si,4, …, si,ki, si,1, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, 1^si,2, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 

si,2〉, 
…… 
〈si,ki

+: si,1, si,2, …, si,ki−1, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, si,ki〉, 
〈si,ki

−: si,1, si,2, …, si,ki−1, 1^si,ki, s1,3, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
si,ki〉. 

〈ej
+: s1,k1

, C2, C3,…, Cc, ej〉, 
〈ej

 −: 1^ej, s1,k1
, C2, C3,…, Cc, ej〉. 

Similar to the construction of ej-pair in Case 
2.1.1, ej

+-path and ej
−-path are vertex-disjoint. 

Any two distinct built paths in Case 2.2.1 are 
vertex-disjoint because their constructions are 
very similar to Case 2.1.1. This case provides 
rules for constructing s1,3-pair, s2,1-pair, (k2－1) 
s2,j-pair, and (k3 + … + kc) m-pairs, and f f-pairs. 
Totally, 2(n－2) vertex-disjoint paths are built. 
Case 2.2.2 k1 ≥ 4 

Under this condition, |C1| ≥ 4 and C1 = (1 2 s1,3 
s1,4 …s1,k1). The correcting sequences of s1,3-pair are 
shown below: 

〈s1,3
+: s1,4, … , s1,k1−1, C2, C3, …, Cc, s1,3, s1,k1

〉, 
〈s1,3

−: s1,4, … , s1,k1−1, 2^s1,k1
, C2, C3, …, Cc, s1,k1

〉. 

〈 s1,k1
+: 1^s1,3, C2, C3,…, Cc, s1,4, s1,5,… , s1,k1

, s1,3〉, 
〈 s1,k1

−: 2^s1,3, C2, C3,…, Cc, s1,4, s1,5,… , s1,k1
, s1,3〉. 

〈s1,4
+: s1,5, s1,6, … , s1,k1

, C2, C3, …, Cc, s1,3, s1,4〉, 
〈s1,4

−: s1,5, s1,6, … , s1,k1
, 1^s1,4, C2, C3, …, Cc, s1,3, s1,4〉, 

〈s1,5
+: s1,6, s1,7, … , s1,k1

, C2, C3, …, Cc, s1,3, s1,4, s1,5〉, 
〈s1,5

−: s1,6, s1,7, … , s1,k1
, 1^s1,5, C2, C3, …, Cc, s1,3, s1,4, s1,5〉, 
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…… 
〈s1, k1−1

+: s1,k1
, C2, C3, …, Cc, s1,3, s1,4, … , s1,k1−1〉, 

〈s1, k1−1
−: s1,k1

, 1^s1,k1−1, C2, C3, …, Cc, s1,3, s1,4, … , s1,k1−1〉. 
〈si,1

+: si,2, si,3, …, si,ki
, C2, C3,…, Ci−1, Ci+1, Ci+2, …, Cc, s1,3, s1,4, … , 

s1,k1
, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki

, 1^si,1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,3, s1,4, 
… , s1,k1

, si,1〉, 
〈si,2

+: si,3, si,4, …, si,ki
, si,1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,3, s1,4, 

… , s1,k1
, si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki

, si,1, 1^si,2, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,3, 
s1,4, … , s1,k1

, si,2〉, 

…… 
〈si,ki

+: si,1, si,2, …si,ki−1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,3, s1,4, … , 
s1,k1

, si,ki
〉, 

〈si,ki
−: si,1, si,2, …si,ki−1, 1^si,ki

, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,3, s1,4, 
… , s1,k1

, si,ki
〉. 

〈 ej
+: s1,3, s1,4, … , s1,k1

, C2, C3, …, Cc, ej〉, 
〈 ej

−: 1^ej, s1,3, s1,4, … , s1,k1
, C2, C3, …, Cc, ej〉. 

Any two distinct built paths are vertex-disjoint 
because their constructions are very similar to 
Case 2.2.1. This case provides rules for 
construction s1,3-pair, s1, k1

-pair, (k1 – 2 + k2 + k3 + 
… + kc) m-pairs, and f f-pairs. Totally, 2(n－2) 
vertex-disjoint paths are built. Significantly, every 
ej

−-path is the longest path. Thus, the length of 
every constructed path is bound above by d(ρ, 
ε)+4 because at most 4 extra edges, where 1 (3) is 
for ej

− operation (unfixing and refixing symbol 2), 
should be added to the corresponding shortest 
path. 
Case 2.3: ρ1 ≠ 1 and ρ2=2 

The rules of correcting sequences of Case 2.3 
are divided into three cases according to k1=2, 
k1=3, and k1≥4. Those constructed rules in Case 
2.1 can be applied on Case 2.3 since every cycle 
structure in Case 2.3 are similar to Case 2.1 and 
only symbol 2 in C1 is replaced by symbol 1. 
Nevertheless, replacing symbol 1 or symbol 2 in 
C1 delivers a new vertex, which has even 
permutation, so that is also a vertex in AGn 
absolutely. 

The paths construction of Case 2.3 is similar to 
Case 2.1. The length of the longest C2(n−2)(ρ, ε) 
built in Case 2.3 is the same as that of Case 2.1. 
Case 2.4: ρ1 ≠ 2 and ρ2=1 

The paths construction of Case 2.4 is similar to 
Case 2.2 likewise and only symbol 1 (respectively, 
2) in C1 is replaced by symbol 2 (respectively, 1). 
Thus, the length of the longest C2(n−2)(ρ, ε) built in 
Case 2.4 is the same as that of Case 2.2. 

According to the statements described in Case 2, 
the following lemma holds. 
Lemma 6. The 2(n−2) paths constructed in Case 
2 are vertex-disjoint. 
Lemma 7. In Case 2, l(C2(n−2)(ρ, ε)) ≤ d(AGn)+2. 
Proof. Referring to the constructions of all paths 
in Cases 2 the length of every longest path is at 
most d(ρ, ε)+2. Two extra edges are added for path 
disjoint. 

Recall that d(ρ, ε)=n+c−l−2 if ρ1 ≠ 1 and ρ2 = 2 
or ρ1 = 1 and ρ2 ≠ 2 [6]. After maximizing 
(n+c−l−2)+2 and substituting c with n−1/2, l 
with 1, the length of the longest path is at most 
n+n−1/2−1. Then, n+n−1/2−1 = n+(n−1)/2−1 
= (3n−3)/2 = d(AGn)+2 if n is odd, and 
n+n−1/2−1 = n+(n−2)/2−1 = (3n−4)/2 = 
d(AGn)+2 if n is even. 

Recall that d(ρ, ε) is n+c−l−3 if 1, 2 ∈ Ci, 1≤i≤k 
and |Ci|≥3 [6] After maximizing (n+c−l−3)+2 and 
substituting c with 1+ n−3/2 and l with 0, the 
length of the longest path is at most 
n+(1+n−3/2)−3+2. Hence, n+(1+(n−3)/2)−3+2 = 
(3n−3)/2 = d(AGn)+2 if n is odd, and 
n+(1+(n−4)/2)−3+2 = (3n−4)/2 = d(AGn)+1 if n is 
even. In Case 2, l(C2(n−2)(ρ, ε)) ≤ d(AGn)+2. 

Therefore, the length of the containers 
constructed in Case 2 is bounded above by 
d(AGn)+2. ■ 
4.3  Case 3: {ρ1, ρ2}∩{1, 2} = φ 

This case is divided into two subcases Cases 3.1 
and 3.2 according to symbols 1 and 2 belong to C1 
or not. Let C#

i  = (si,1 si,2…si,ki
)#, where 2≤i≤c, 

denote a cycle in a correcting sequence and 
indicate that symbol 1 or 2 should be kept at 
position 1 or 2 when fixing each symbol of C#

i. 
Case 3.1: 1, 2 ∈ C1 

Assume ρ=(1 t1 t2 …tw 2 u1 u2 … 
uw′)C2C3…Cce1e2… el , where w (w') represents 
the number of symbols from symbol 1 (2) to 
symbol 2 (1) in C1. Hence, Case 3.1 is divided into 
Case 3.1.1 w=1, w′=1, Case 3.1.2 w=1, w′≥2, Case 
3.1.3 w≥2, w′≥2, and Case 3.1.4 w≥2, w′=1. 

In Case 3.1, some paths have similar structures 
between subcases. Each of those paths having 
similar structures has the same first and last 
symbols of its correcting sequence. Generally, the 
paths built by first doing α+ or α− operation and α 
∈ {C2, C3,…, Cc, e1, e2,…, el} have similar 
structures. Moreover, in Cases 3.1.2 and 3.1.3, the 
paths built by first doing α+ or α− operation and α 
∈ {u2, u3, …, uw′−1} have similar structures. 
Additionally, in Cases 3.1.3 and 3.1.4, paths built 
by first doing α+ or α− operation and α ∈ {t2, t3, …, 
tw−1} having similar structures. Thus, the proofs of 
vertex-disjoint (respectively, length computation) 
of those paths with similar structures are the same. 
Case 3.1.1 w = 1, w′ = 1 

Assume that symbol 1 (2) of ρ is at position α 
and let t denote the tail symbol of a correcting 
sequence. For vertex-disjoint, build every path 
with α ≠ t by first doing α+ (α−) operation and then 
t− (t+) operation. 

The correcting sequences are listed as follows: 
〈t1

+: 2^u1, C2, C3, …, Cc, u1〉, 
〈t1

−: C2
#, C3

#, …, Cc
#, t1, u1〉. 

〈u1
+: C2

#, C3
#, …, Cc

#, u1, t1〉, 
〈u1

−: 1^t1, C2, C3, …, Cc, t1〉. 
〈si,1

+: si,2, si,3, …, si,ki, u1, 1^si,1, t1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
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si,1〉, 
〈si,1

−: si,2,si,3, …, si,ki, t1, 2^si,1, u1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
si,1〉, 

〈si,2
+: si,3, si,4, …, si,ki, si,1, u1, 1^si,2, t1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 

si,2〉, 
〈si,2

−: si,3, si,4, …, si,ki, si,1, t1, 2^si,2, u1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
si,2〉, 

…… 
〈si,ki

+: si,1, si,2, …, si,ki−1, u1, 1^si,ki, t1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 
si,ki〉, 

〈si,ki
−: si,1, si,2, …, si,ki−1, t1, 2^si,ki, u1, C2, C3, …, Ci−1, Ci+1, Ci+2, …, Cc, 

si,ki〉. 
〈ej

+: u1, 1^ej, t1, , C2, C3, …, Cc, ej〉, 
〈ej

−: t1, 2^ej, u1, C2, C3, …, Cc, ej〉. 
With the aid of Corollary 3 and carefully 

checking each vertex of each constructed path, 
every two built paths are vertex-disjoint. There are 
4 groups of paths constructed which are 1 t1-pair, 
1 u1-pair, (k2 + k3 + k4 + … + kc) m-pairs, and f 
f-pairs. In total, 2(2+k2 + k3 + k4 + … + kc) = 2(n−2) 
vertex-disjoint paths are built. Significantly, every 
ej

−-path is the longest path. Thus, the length of 
every constructed path is bound above by d(ρ, 
ε)+4 because at most 4 extra edges, where 1 (3) is 
for ej

− operation (unfixing and refixing symbol 2), 
should be added to the corresponding shortest 
path. 
Case 3.1.2 w = 1, w′ ≥ 2 

In the following, we construct each pair one by 
one according to the provided correcting 
sequences. 

〈t1
+: 2^uw', u1, u2, …, uw'−1, C2, C3, …, Cc, uw'〉, 

〈t1
−: 2^u1, u2, u3, …, uw', C2, C3, …, Cc, t1, u1〉. 

〈u1
+: u2, u3, …, uw'−1, C2, C3, …, Cc, uw', u1, t1〉, 

〈u1
−: u2, u3, …, uw'−1, C2, C3, …, Cc, t1, uw'〉. 

〈uw'
+: 1^t1, u1, u2, …, uw', C2, C3, …, Cc, t1〉, 

〈uw'
−: 1^u1, u2, u3, …, uw', t1, C2, C3, …, Cc, u1〉. 

〈u2
+: u3, u4, …, uw', u1, 1^u2, t1, C2, C3, …, Cc, u2〉, 

〈u2
−: u3, u4, …, uw', t1, 2^u2, u1, C2, C3, …, Cc, u2〉, 

〈u3
+: u4, u5, …, uw', u1, u2, 1^u3, t1, C2, C3, …, Cc, u3〉, 

〈u3
−: u4, u5, …, uw', t1, 2^u3, u1, u2, C2, C3, …, Cc, u3〉, 

…… 
〈uw'−1

+: uw', u1, u2, …, uw'−2, 1^uw'−1, t1,C2, C3, …, Cc, uw'−1〉, 
〈uw'−1

−: uw', u1, u2, …, uw'−2, t1, 2^uw'−1, C2, C3, …, Cc, uw'−1〉. 
〈si,1

+: si,2, si,3, …, si,ki, u1, u2, …, uw', 1^si,1, t1, C2, C3, …, Ci−1, Ci+1, Ci+2, 
…, Cc, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, t1, 2^si,1, u1, u2 …, uw', C2, C3, …, Ci−1, Ci+1, Ci+2, 

…, Cc, si,1〉, 
〈si,2

+: si,3, si,4, …, si,ki, si,1, u1, u2, …, uw', 1^si,2, t1, C2, C3, …, Ci−1, Ci+1, 
Ci+2, …, Cc, si,1〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, t1, 2^si,2, u1, u2, …, uw', C2, C3, …, Ci−1, Ci+1, 

Ci+2, …, Cc, si,1〉, 
…… 
〈si,ki

+: si,1, si,2, …, si,ki−1, u1, u2, …, uw', 1^si,ki, t1, C2, C3, …, Ci−1, Ci+1, 
Ci+2, …, Cc, si,ki〉, 

〈si,ki
−: si,1, si,2, …, si,ki −1, t1, 2^si,ki, u1, u2 …, uw', C2, C3, …, Ci−1, Ci+1, 

Ci+2, …, Cc, si,ki〉. 
〈ej

+: u1, u2, …, uw', 1^ej, t1, C2, C3, …, Cc, ej〉, 
〈ej

−: t1, 2^ej, u1, u2, …, uw', C2, C3, …, Cc, ej〉. 
According to Lemma 1 and Corollary 3 and 

carefully checking each vertex of each constructed 
path, the built 2(n−2) paths are vertex-disjoint. 
Case 3.1.3 w ≥ 2, w′ ≥ 2 

The correcting sequences are listed below: 
〈t1

+: t2, t3, …, tw, 2^uw', u1, u2, …, uw'−1, C2, C3, …, Cc, uw'〉, 
〈t1

−: t2, t3, …, tw, t1, u1, u2, …, uw'−1, C2, C3, …, Cc, uw'〉. 
〈tw

+: 2^t1, t2, t3, …, tw, u1, u2, …, uw', C2, C3, …, Cc, t1〉, 
〈tw

−: 2^u1, u2, u3,…, uw', t1, t2, …, tw, C2, C3, …, Cc, u1〉. 
〈u1

+: u2, u3, …, uw', 1^tw, u1, t1, t2, …, tw−1, C2, C3, …, Cc, tw〉, 
〈u1

−: u2, u3, …, uw'−1, t1, t2, …, tw−1, C2, C3, …, Cc, uw', tw〉. 

〈uw’
+: 1^t1, t2, t3, …, tw, u1, u2, …, uw', C2, C3, …, Cc, t1〉, 

〈uw’
−: 1^u1, u2, u3, …, uw', t1, t2, …, tw, C2, C3, …, Cc, u1〉. 

〈t2
+: t3, t4, …, tw, u1, u2, …, uw', 1^t2, t1, C2, C3, …, Cc, t2〉, 

〈t2
−: t3, t4, …, tw, 2^t2, u1, u2, …, uw’, t1, C2, C3, …, Cc, t2〉, 

〈t3
+: t4, t5, …, tw, u1, u2, …, uw', 1^t3, t1, t2, C2, C3, …, Cc, t3〉, 

〈t3
−: t4, t5, …, tw, 2^t3, u1, u2, …, uw', t1, t2, C2, C3, …, Cc, t3〉, 

…… 
〈tw−1

+: tw, u1, u2, …, uw', 1^tw−1, t1, t2, …, tw−2, C2, C3, …, Cc, tw−1〉, 
〈tw−1

−: tw, 2^tw−1, u1, u2, …, uw', t1, t2, …, tw−2, C2, C3, …, Cc, tw−1〉. 
〈u2

+: u3, u4, …, uw', u1, 1^u2, t1, t2, …, tw, C2, C3, …, Cc, u2〉, 
〈u2

−: u3, u4, …, uw', t1, t2, …, tw, 2^u2, u1, C2, C3, …, Cc, u2〉, 
〈u3

+: u4, u5, …, uw', u1, u2, 1^u3, t1, t2, …, tw, C2, C3, …, Cc, u3〉, 
〈u3

−: u4, u5, …, uw', t1, t2, …, tw,2^u3, u1, u2, C2, C3, …, Cc, u3〉, 
…… 
〈uw'−1

+: uw', u1, u2, …, uw'−2, 1^uw'−1, t1, t2, …, tw, C2, C3, …, Cc, uw'−1〉, 
〈uw'−1

−: uw', t1, t2, …, tw, 2^uw'−1, u1, u2, …, uw'−2, C2, C3, …, Cc, uw'−1〉. 
〈si,1

+: si,2, si,3, …, si,ki, u1, u2 …, uw', 1^si,1, t1, t2, …, tw, C2, C3, …, Ci−1, 
Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, t1, t2, …, tw, 2^si,1, u1, u2 …, uw', C2, C3, …, Ci−1, 

Ci+1, Ci+2, …, Cc, si,1〉, 
〈si,2

+: si,3, si,4, …, si,ki, si,1, u1, u2 …, uw', 1^si,2, t1, t2, …, tw, C2, C3, …, 
Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, t1, t2, …, tw, 2^si,2, u1, u2 …, uw', C2, C3, …, 

Ci−1, Ci+1, Ci+2, …, Cc, si,1〉, 
…… 
〈si,ki

+: si,1, si,2, …, si,ki−1, u1, u2, …, uw', 1^si,ki, t1, t2, …, tw, C2, C3, …, 
Ci−1, Ci+1, Ci+2, …, Cc, si,ki〉, 

〈si,ki
−: si,1, si,2, …, si,ki−1, t1, t2, …, tw, 2^si,ki, u1, u2 …, uw', C2, C3, …, 

Ci−1, Ci+1, Ci+2, …, Cc, si,ki〉. 
〈ej

+: u1, u2 …, uw', 1^ej, t1, t2, …, tw, C2, C3, …, Cc, ej〉, 
〈ej

−: t1, t2, …, tw, 2^ej, u1, u2 …, uw', C2, C3, …, Cc, ej〉. 
Similar to Case 3.1.2, the built 2(n−2) paths are 

vertex-disjoint. 
Case 3.1.4 w ≥ 2, w′ = 1 

The correcting sequences are listed below: 
〈t1

+: t2, t3, …, tw−1, C2, C3, …, Cc, u1, tw〉, 
〈t1

−: t2, t3, …, tw −1, C2, C3, …, Cc, tw, t1, u1〉. 
〈tw

+: 2^t1, t2, t3, …, tw, u1, C2, C3, …, Cc, t1〉, 
〈tw

−: 2^u1, t1, t2, …, tw', C2, C3, …, Cc, u1〉. 
〈u1

+: 1^t1, t2, t3, …, tw, C2, C3, …, Cc, u1, t1〉, 
〈u1

−: 1^tw, t1, t2, …, tw−1, C2, C3, …, Cc, tw〉. 
Based on misplaced symbols in Ci = (si,1 si,2… 

si,ki
), (k2 + k3 + … + kc) pairs or 2(k2 + k3 + … + kc) 

paths are constructed the same to Case 3.1.3. 
ej-path are constructed the same to Case 3.1.3. 

According to Lemma 1 and Corollary 3 and 
carefully checking each vertex of each constructed 
path, the built 2(n−2) paths are vertex-disjoint. 

Significantly, every ej
−-path is the longest path. 

Thus, the length of every constructed path is 
bound above by d(ρ, ε)+4 because at most 4 extra 
edges, where 1 (3) is for ej

− operation (unfixing 
and refixing symbol 2), should be added to the 
corresponding shortest path. 
Case 3.2: 1 ∈ C1, 2 ∈ C2 

In Case 3.2, assume ρ=(1 s1,2 s1,3 … s1,k1
)(2 s2,2 

s2,3 … s2,k2
)C3C4…Cce1e2… el. This case are 

divided into Case 3.2.1 k1=2, k2=2, Case 3.2.2 
k1=2, k2≥3, Case 3.2.3 k1≥3, k2≥3, and Case 3.2.4 
k1=2, k2≥3. 
Case 3.2.1 k1 = 2, k2 = 2 

Assume ρ=(1 s1,2)(2 s2,2)C3C4…Cce1e2… el. The 
correcting sequences are listed as follows: 

〈s1,2
+: C3

#, C4
#, …, Cc

#, s2,2〉, 
〈s1,2

−: 1^s2,2, s1,2, C3, C4, …, Cc, s2,2〉. 
〈s2,2

+: 2^s1,2, s2,2, C3, C4, …, Cc, s1,2〉, 
〈s2,2

−: C3
#, C4

#, …, Cc
#, s1,2〉. 

〈si,1
+: si,2, si,3, …, si,ki, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s2,2, s2,3, …, 

s2,k2, 2^si,1, s1,2, s1,3, …, s1,k1, si,1〉, 
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〈si,1
−: si,2, si,3, …, si,ki, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,2, s1,3, …, 

s1,k1, 1^si,1, s2,2, s2,3, …, s2,k2, si,1〉, 
〈si,2

+: si,3, si,4, …, si,ki, si,1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s2,2, s2,3, …, 
s2,k2, 2^si,2, s1,2, s1,3, …, s1,k1, si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,2, s1,3, …, 

s1,k1, 1^si,2, s2,2, s2,3, …, s2,k2, si,2〉, 
…… 
〈si,ki

+: si,1, si,2 …, si,ki−1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s2,2, s2,3, …, 
s2,k2, 2^si,ki, s1,2, s1,3, …, s1,k1, si,ki〉, 

〈si,ki
−: si,1, si,2 …, si,ki−1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,2, s1,3, …, 

s1,k1, 1^si,ki, s2,2, s2,3, …, s2,k2, si,ki〉. 
〈ej

+: s2,2, s2,3, …, s2,k2, 2^ej, s1,2, s1,3, …, s1,k1, C3, C4, …, Cc, ej 〉, 
〈ej

−: s1,2, s1,3, …, s1,k1, 1^ej, s2,2, s2,3, …, s2,k2, C3, C4, …, Cc, ej 〉. 

According to Lemma 1 and Corollary 3 and 
carefully checking each vertex of each constructed 
path, all built paths are vertex-disjoint. This case 
provides rules for construction s1,2-pair, s2,1-pair, 
(k3 + k4 + … + kc) m-pairs and f f-pairs. Totally, 
2(n－2) vertex-disjoint paths are built. 
Case 3.2.2 k1 = 2, k2 ≥ 3 

The correcting sequences are listed as follows: 
〈s1,2

+: 1^s2,k2, s2,2, s2,3, …, s2,k2－1, C3, C4, …, Cc, s2,k2〉, 
〈s1,2

−: 1^s2,2, s2,3, s2,4, …, s2k2－1, s1,2, C3, C4, …, Cc, s2,2〉. 
〈s2,2

+: s2,3, s2,4, …, s2,k2－1, C3, C4, …, Cc, s2,k2, s2,2, s1,2 〉, 
〈s2,2

−: s2,3, s2,4, …, s2,k2－1, C3, C4, …, Cc, s1,2, s2,k2〉. 
〈s2,k2

+: 2^s1,2,s2,2, s2,3 …, s2,k2−1, C3, C4, …, Cc, s2,k2, s1,2 〉, 
〈s2,k2

−: 2^s2,2, s2,3, s2,4 …, s2,k2, s1,2, C3, C4, …, Cc, s2,2〉. 
〈s2,3

+: s2,4, s2,5, …, s2,k2, 2^s2,3, s1,2, s1,3, …, s1,k1, s2,2, C3, C4, …, Cc, s2,3 
〉, 

〈s2,3
−: s2,4, s2,5, …, s2,k2, s1,2, s1,3, …, s1,k1, 1^s2,3, s2,2, C3, C4,…, Cc, s2,3 

〉, 
〈s2,4

+: s2,5, s2,6, …, s2,k2, 2^s2,4, s1,2, s1,3, …, s1,k1, s2,2, s2,3, C3, C4, …, Cc, 
s2,4 〉, 

〈s2,4
−: s2,5, s2,6, …, s2,k2, s1,2, s1,3, …, s1,k1, 1^s2,4, s2,2, s2,3, C3, C4,…, Cc, 

s2,4 〉, 
…… 
〈s2,k2−1

+: s2,k2, 2^s2,k2−1, s1,2, s1,3, …, s1,k1, s2,2, s2,3, …, s2,k2−2, C3, C4, …, 
Cc, s2,k2−1 〉, 

〈s2,k2−1
−: s2,k2, s1,2, s1,3, …, s1,k1, 1^s2,k2−1, s2,2 s2,3, …, s2,k2−2, C3, C4,…, 

Cc, s2,k2−1 〉, 
〈si,1

+: si,2, si,3, …, si,ki, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s2,2, s2,3, …, 
s2,k2, 2^si,1, s1,2, si,1〉, 

〈si,1
−: si,2, si,3, …, si,ki, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,2, 1^si,1, s2,2, 

s2,3, …, s2,k2, si,1〉, 
〈si,2

+: si,3, si,4, …, si,ki, si,1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s2,2, s2,3, …, 
s2,k2, 2^si,2, s1,2 si,2〉, 

〈si,2
−: si,3, si,4, …, si,ki, si,1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,2, 1^si,2, 

s2,2, s2,3, …, s2,k2, si,2〉, 
…… 
〈si,ki

+: si,1, si,2 …, si,ki−1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s2,2, s2,3, …, 
s2,k2

, 2^si,ki
, s1,2, si,ki

〉, 
〈si,ki

−: si,1, si,2 …, si,ki−1, C3, C4, …, Ci−1, Ci+1, Ci+2, …, Cc, s1,2, 1^si,ki, s2,2, 
s2,3, …, s2,k2, si,ki〉. 

The correcting sequences of ej-pair are the same 
as Case 3.2.1. Similar to Case 3.2.1, the 
constructed 2(n－2) paths are vertex-disjoint. 
Case 3.2.3 k1 ≥ 3, k2 ≥ 3 

The correcting sequences are listed as follows: 
〈s1,2

+: s1,3, s1,4, …, s1,k1, s2,2, s2,3, …, s2,k2−1, C3, C4, …, Cc, s2,k2〉, 
〈s1,2

−: s1,3, s1,4, …, s1,k1, 1^s2,k2, s1,2, s2,2, s2,3, …, s2,k2−1, C3, C4, …, Cc, 
s2,k2〉. 

〈s1,k1
+: 1^s1,2, s2,2, s2,3, …, s2,k2, s1,3, s1,4, …, s1,k1, C3, C4, …, Cc, s1,2〉, 

〈s1,k1
−: 1^s2,2, s1,2, s1,3, …, s1,k1, s2,3, …, s2,k2, C3, C4, …, Cc, s2,2〉. 

〈s2,2
+: s2,3, s2,4, …, s2,k2, 2^s1,k1, s2,2, s1,2, s1,3, …, s1,k1−1, C3, C4, …, Cc, 

s1,k1〉, 
〈s2,2

−: s2,3, s2,4, …, s2,k2, s1,2, s1,3, …, s1,k1−1, C3, C4, …, Cc, s1,k1〉. 
〈s2,k2

+: 2^s1,2, s2,2, s2,3, …, s2,k2, s1,3, s1,4, …, s1,k1
, C3, C4, …, Cc, s1,2〉, 

〈s2,k2
−: 2^s2,2, s1,2, s1,3, …, s1,k1, s2,3, …, s2,k2, C3, C4, …, Cc, s2,2〉. 

〈s1,3
+: s1,4, s1,5, …, s1,k1, s2,2, s2,3, …, s2,k2, 2^s1,3, s1,2, C3, C4,…, Cc, s1,3〉, 

〈s1,3
−: s1,4, s1,5, …, s1,k1, 1^s1,3, s2,2, s2,3, …, s2,k2, s1,2, C3, C4, …, Cc, 

s1,3〉, 
〈s1,4

+: 1,5, s1,6,…, s1,k1, s2,2, s2,3, …, s2,k2, 2^s1,3, s1,2, s1,3, C3, C4, …, Cc, 
s1,4〉, 

〈s1,4
−: 1,5, s1,6,…, s1,k1, 1^s1,4, s2,2, s2,3, …, s2,k2, s1,2, s1,3, C3, C4, …, Cc, 

s1,4〉, 
…… 
〈s1,k1−1

+: s1,k1, s2,2, s2,3, …, s2,k2, 2^s1,k1−1, s1,2, s1,3, …, s1,k1−2, C3, C4, …, 
Cc, s1,k1−1〉, 

〈s1,k1−1
−: s1,k1, 1^s1,k1−1, s2,2, s2,3, …, s2,k2, s1,2, s1,3, …, s1,k1−2, C3, C4, …, 

Cc, s1,k1−1〉. 
〈s2,3

+: s2,4, s2,5, …, s2,k2, 2^s2,3, s1,2, s1,3, …, s1,k1, s2,2, C3, C4, …, Cc, s2,3 
〉, 

〈s2,3
−: s2,4, s2,5, …, s2,k2, s1,2, s1,3, …, s1,k1, 1^s2,3, s2,2, C3, C4,…, Cc, s2,3 

〉, 
〈s2,4

+: s2,5, s2,6, …, s2,k2, 2^s2,4, s1,2, s1,3, …, s1,k1, s2,2, s2,3, C3, C4, …, Cc, 
s2,4 〉, 

〈s2,4
−: s2,5, s2,6, …, s2,k2, s1,2, s1,3, …, s1,k1, 1^s2,4, s2,2, s2,3, C3, C4,…, Cc, 

s2,4 〉, 
…… 
〈s2,k2−1

+: s2,k2, 2^s2,k2−1, s1,2, s1,3, …, s1,k1, s2,2, s2,3, …, s2,k2−2, C3, C4, …, 
Cc, s2,k2−1 〉, 

〈s2,k2−1
−: s2,k2, s1,2, s1,3, …, s1,k1, 1^s2,k2−1, s2,2 s2,3, …, s2,k2−2, C3, C4,…, 

Cc, s2,k2−1 〉. 

Based on misplaced symbols in Ci = (si,1 si,2… 
si,ki

) where 3≤i≤c, (k3 + k4 + … + kc) pairs or 2(k3 + 
k4 + … + kc) paths are constructed as that of Case 
3.2.1. 

The correcting sequences of ej-pair are the same 
as Case 3.2.1. 

This case provides rules for construction 
s1,2-pair, s1,k1

-pair, s2,2-pair, s2,k2
-pair, ((k1－3) + (k2

－3) + (k3 + k4 + … + kc)) m-pairs and f f-pairs. 
Similar to Case 3.2.1, the constructed 2(n－2) 
paths are vertex-disjoint. 
Case 3.2.4 k1 ≥ 3, k2 = 2 

The correcting sequences are listed as follows: 
〈s1,2

+: s1,3, s1,4, …, s1,k1－1, C3, C4, …, Cc, s2,2, s1,k1〉, 
〈s1,2

−: s1,3, s1,4, …, s1,k1－1, C3, C4, …, Cc, s1,k1, s1,2, s2,2〉. 
〈s1,k1

+: 1^s1,2, s1,3, s1,4 …, s1,k1, s2,1, C3, C4, …, Cc, s1,2〉, 
〈s1,k1

−: 1^s2,2, s1,2, s1,3 …, s1,k1−1, C3, C4, …, Cc, s1,k1, s2,2 〉. 
〈s2,2

+: 2^s1,2, s1,3, s1,4, …, s1,k1, s2,2, C3, C4, …, Cc, s1,2〉, 
〈s2,2

−: 2^s1,k1, s1,2, s1,3, …, s1,k1－1, C3, C4, …, Cc, s1,k1〉. 

Based on misplaced symbols in Ci = (si,1 si,2… 
si,ki

) where 3≤i≤c, (k3 + k4 + … + kc) pairs or 2(k3 + 
k4 + … + kc) paths are constructed as that of Case 
3.2.1. The correcting sequences of ej-pair are listed 
as the same to Case 3.2.1. 

This case provides rules for construction 
s1,2-pair, s1,k1

-pair, s2,2-pair, ((k1－2) + (k2－1) + 
(k3 + k4 + … + kc)) m-pairs and f f-pairs. Similar to 
Case 3.2.1, 2(n － 2) vertex-disjoint paths are 
totally built. 

According to the statements described in Case 3, 
the following lemma holds. 
Lemma 8. The 2(n−2) paths constructed in Case 
3 are vertex-disjoint. 
Lemma 9. In Case 3, l(C2(n−2)(ρ, ε)) ≤ d(AGn)+2. 
Proof. Referring to the constructions of all paths 
in Case 3, the length of every longest path is at 
most d(ρ, ε)+2. Two extra edges are added for path 
disjoint. One is the first edge of the path and the 
other one is a bold edge, because adding these two 
edges do not correct any symbol. 

Recall that d(ρ, ε) is n+c−l−3 if 1, 2∈Ci, 1≤i≤k 
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and |Ci|≥3 [6]. After maximizing (n+c−l−3)+2 and 
substituting c with 1+ n−4/2, the length of the 
longest path is at most n+(1+n−4/2)−1. 
Additionally, n+(1+n−4/2)−1 = n+(n−5)/2 = 
(3n−5)/2 = d(AGn)+2 if n is odd, and 
n+(1+n−4/2)−1 = n+(n−4)/2 = (3n−4)/2 = 
d(AGn)+2 if n is even. 

Similarly, recall that d(ρ, ε) is n+c−l−4 if 1∈Ci, 
2∈Cj, 1≤ i, j ≤ k, and i≠j. [6]. After maximizing 
(n+c−l−4)+2 and substituting c with  n/2, the 
length of the longest path is at most n+ n/2−2. 
Moreover, n+ n/2−2 = n+(n−1)/2−2 = (3n−5)/2 
= d(AGn)+2 if n is odd, and n+ n/2−2 = n+(n/2) 
−2 = (3n−4)/2 = d(AGn)+2 if n is even. 

Therefore, the length of the containers 
constructed in Case 3 is at most d(AGn)+2. ■ 
Lemma 10 [9]. If G is a regular graph with 
connectivity κ ≥ 2, then dκ (G) ≥ d(G)+1. 

Combining Lemma 4−10, we then have 
Theorem 11 as described below. 
Theorem 11. d(AGn)+1 ≤ d2(n−2)(AGn) ≤ 
d(AGn)+2. 
 
 
5  Concluding Remarks 
 

In designing a massively parallel computer, we 
try to maximize parallelism and minimize 
transmission delay for fast parallel communication 
in the interconnection network of the computer. 
Moreover, in order to evaluate reliability, fault 
tolerant ability, parallelism and transmission delay 
of an interconnection network, constructing 
node-disjoint paths in an interconnection network 
(or a graph) is very important issue. This work 
presents a novel routing algorithm to construct a 
C2(n−2)(ρ, ε) in an AGn for each vertex ρ. Analysis 
results indicate that the length of each constructed 
C2(n−2)(ρ, ε) is at most d(AGn)+2, and d2(n−2)(AGn) 
is at least d(AGn)+1. These measurement results 
demonstrate that the proposed algorithm can built 
a C2(n−2)(ρ, ε) with length at most d(AGn)+1 or 
d(AGn)+2 in an AGn. Therefore, we assert that the 
wide diameter of any AGn is bounded below 
(above) by d(AGn)+1 (d(AGn)+2). 
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