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Abstract

Let LTQn denote the n-dimensional locally twisted
cube. Hsieh and Tu (2009) [13] presented an algo-
rithm to construct n edge-disjoint spanning trees
rooted at vertex 0 in LTQn. Later on, Lin et
al. (2010) [23] proved that Hsieh and Tu’s spanning
trees are indeed independent spanning trees (ISTs
for short), i.e., all spanning trees are rooted at the
same vertex r and for any other vertex v(6= r), the
paths from v to r in any two trees are vertex-disjoint
except the two end vertices v and r. Shortly after-
wards, Liu et al. (2011) [24] pointed out that LTQn
fails to be vertex-transitive for n > 4 and proposed
an algorithm for constructing n ISTs rooted at an
arbitrary vertex of LTQn. Although this algorithm
can simultaneously construct n ISTs in parallel, it
is not fully parallelized for the construction of each
spanning tree. In this paper, we revisit the problem
of constructing n ISTs rooted at an arbitrary ver-
tex of LTQn. As a consequence, we present a fully
parallelized approach that is obtained from Hsieh
and Tu’s algorithm with a slight modification.

Keyword: independent spanning trees; edge-
disjoint spanning trees; locally twisted cubes; inter-
connection networks; fault-tolerant broadcasting;

1 Introduction

Interconnection networks are usually modeled as
undirected simple graphs G = (V,E), where the
vertex set V (= V (G)) represents the set of pro-
cessing elements and the edge set E(= E(G)) rep-
resents the set of communication channels, respec-
tively. A tree is a connected graph without cycle.
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A rooted tree is a tree with a distinguished ver-
tex called the root. A subgraph T in a graph G
is called a spanning tree if T is a tree such that
V (T ) = V (G). Let T be a set of k spanning trees
of G rooted at a vertex r. We say that T is edge-
disjoint if the paths from any vertex v(6= r) to r
on the k trees share no common directed edges. By
contrast, T is said to be independent if the paths
from any vertex v(6= r) to r on the k trees have no
common vertex except x and y (i.e., the paths are
internally vertex-disjoint).

Constructing independent spanning trees (ISTs
for short) in networks have been studied from
not only the theoretical point of view but also
some practical applications such as fault-tolerant
broadcasting [1, 19] and secure message distribu-
tion [1, 31, 40]. Let G be a graph and denote
G − F the graph obtained from G by removing
a set of vertices F . A graph G is k-connected if
|V (G)| > k and G − F is connected for every sub-
set F ⊆ V (G) with |F | < k. A conjecture proposed
by Zehavi and Itai [49] says that any k-connected
graph has k ISTs rooted at an arbitrary vertex
r. Henceforth, we refer the conjecture as the IST-
Conjecture. From then on, the IST-Conjecture has
been confirmed only for k-connected graphs with
k 6 4 (see [19] for k = 2, [8,49] for k = 3, and [9] for
k = 4), and it is still open for k-connected graphs
with k > 5. In addition, by providing construc-
tion schemes of ISTs, the IST-Conjecture has been
agreed for several restricted classes of graphs or di-
graphs. For example, the graph classes related to
planarity [16, 17, 27, 28], graph classes defined by
Cartesian product [3, 29, 32, 33, 36, 42, 46], special
classes of digraphs [10, 12, 18, 37], variations of hy-
percubes [4–7, 24, 34, 35, 40], subclasses of Cayley
graphs [21,22,31,41,44,45], and chordal ring [20,43].

The family of locally twisted cubes was first
introduced by Yang et al. [47] as a variation of
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hypercube architecture to achieving the improve-
ment in diameter. Hsieh and Tu [13] studied the
construction of edge-disjoint spanning trees on lo-
cally twisted cubes. Since the n-dimensional locally
twisted cube LTQn is n-connected, they presented
an algorithm to construct n edge-disjoint spanning
trees rooted at vertex 0. At a later time, Lin et
al. [23] proved that Hsieh and Tu’s spanning trees
are indeed independent. Liu et al. [24] pointed out
that LTQn fails to be vertex-transitive for n > 4
and it does satisfy the even-odd-vertex-transitive
property. Thus, the proof of [23], together with
Hsieh and Tu’s algorithm [13], does not solve the
IST-Conjecture on LTQn. Furthermore, Liu et
al. [24] proposed an algorithm for constructing n
ISTs rooted at an arbitrary vertex of LTQn, and
thus confirmed the IST-Conjecture for LTQn. Al-
though the algorithm in [24] can simultaneously
construct n ISTs in parallel, it is not fully paral-
lelized for the construction of each spanning tree
(in fact, it looks like a constructing scheme of bi-
nomial tree in a recursive fashion). In this paper,
with a slight modification from Hsieh and Tu’s algo-
rithm, we present a fully parallelized approach for
constructing n ISTs rooted at an arbitrary vertex
of LTQn.

The rest of this paper is organized as fol-
lows. Section 2 formally gives the definition of lo-
cally twisted cubes and introduces our constructing
scheme of ISTs for LTQn. Section 3 shows the cor-
rectness by proving the independency of the con-
structed spanning trees. The final section contains
our concluding remarks.

2 Constructing ISTs on LTQn

in parallel

Let ⊕ denote the modulo 2 addition. For n > 2,
the n-dimensional locally twisted cube LTQn is a
graph with {0, 1}n as its vertex set, and two vertices
x = xn−1xn−2 · · ·x0 and y = yn−1yn−2 · · · y0 are
adjacent in LTQn if and only if either

(1) there is an integer i ∈ {2, 3, . . . , n − 1} such
that xi = ȳi and xi−1 = yi−1⊕x0, and xj = yj
for all remaining bits, or

(2) there is an integer i ∈ {0, 1} such that xi = ȳi,
and xj = yj for all remaining bits.

If one of the above conditions is fulfilled, then
y is called the i-neighbor of x and is denoted by
y = Ni(x). Figure 1 shows the graphs LTQ3 and
LTQ4, respectively. The locally twisted cube can
be equivalently defined by the following recursive
fashion:

(1) LTQ2 is a graph consisting of four vertices la-
beled with 00, 01, 10, and 11, respectively, con-

nected by four edges (00,01), (00,10), (01,11),
and (10,11).

(2) For n > 3, LTQn is constructed from two
disjoint copies of LTQn−1 according to the
following steps: Denote 0LTQn−1 (respec-
tively, 1LTQn−1) the graph obtained by pre-
fixing the label of each vertex in one copy of
LTQn−1 with 0 (respectively, 1). Each ver-
tex x = 0xn−2xn−3 · · ·x0 in 0LTQn−1 is con-
nected with the vertex 1(xn−2⊕x0)xn−3 · · ·x0
in 1LTQn−1 by an edge.

010 011

110 101

000

100 111

001

LTQ3

0110 0101

0100 0111

1101

1111

1110

1100

0010 10100011 1011

0001 1001 10000000

LTQ4

Figure 1: Locally twisted cubes LTQ3 and LTQ4.

From the above definition, it is clear that LTQn
is an n-regular graph, and the binary strings of any
two adjacent vertices in LTQn differ in at most
two successive bits. Yang et al. [47] showed that
LTQn has a connectivity of n. Also, from [24], we
know that LTQn possesses the property of even-
odd-vertex-transitive, i.e., for every pair of vertices
x = xn−1xn−2 · · ·x0 and y = yn−1yn−2 · · · y0 with
the same parity (i.e., x0 = y0), there is an auto-
morphism that maps x to y. More previous results
on LTQn can be found in the literature, e.g., the
studies of diagnosability [39], mesh embedding [11],
fault-hamiltonicity [14], panconnectivity [25], pan-
cyclicity and fault-pancyclicity [2, 15,26,30,38,48].

In this paper, we also use the following notation.
Two paths P and Q joining two distinct vertices
x and y are internally vertex-disjoint, denoted by
P ||Q, if V (P )∩V (Q) = {x, y}. Let T be a spanning
tree rooted at a vertex r of LTQn. The parent of
a vertex x(6= r) in T is denoted by parent(T, x).
For x, y ∈ V (T ), the unique path from x to y is
denoted by T [x, y]. Hence, two spanning trees T
and T ′ with the same root r are ISTs if and only
if T [x, r] ||T ′[x, r] for every vertex x ∈ V (T ) \ {r}.
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Since LTQn has connectivity n, the root in each
spanning tree must have a unique child. Let Zn =
{0, 1, . . . , n − 1}. For i ∈ Zn, we denote Ti as the
tree such that the root r takes its i-neighbor Ni(r)
as the unique child. Let Ni(r) = cn−1cn−2 · · · c0.
For each vertex x = xn−1xn−2 · · ·x0 ∈ V (Ti) \ {r},
we define Ii(x) = {j ∈ Zn : xj 6= cj} and αi(x) =
|{j ∈ Ii(x) : j > i}|. Moreover, if i 6= 0, c0 = 1 and
αi(x) is odd, we let Hi(x) = (Ii(x)∪ {i}) \ (Ii(x)∩
{i}); otherwise, let Hi(x) = Ii(x). Also, we define
the following function:

next(i, x) =
i if Hi(x) = ∅;
maxHi(x) if Hi(x) 6= ∅ and i < minHi(x);

max{j ∈ Hi(x) : j 6 i} otherwise.

That is, we regard Hi(x) as a cyclic ordered set in
decreasing order. If Hi(x) = ∅ or i ∈ Hi(x), the
function outputs i; otherwise, the function outputs
the next element in the cyclic order of Hi(x) with
respect to i.

In what follows, we present a fully parallelized al-
gorithm for constructing n spanning trees with an
arbitrary vertex r = rn−1rn−2 · · · r0 as their com-
mon root in LTQn. For each vertex x ∈ V (LTQn)\
{r} with binary string x = xn−1xn−2 · · ·x0, the
construction can be carried out by describing the
parent of x in each spanning tree Ti.

Algorithm Constructing-ISTs
Input: All vertices of LTQn and an arbitrary root

r = rn−1rn−2 · · · r0.
Output: n ISTs T0, T1, . . . , Tn−1 root at r.
1: for i = 0 to n− 1 do in parallel

/* construct Ti simultaneously */
2: for each vertex x = xn−1xn−2 · · ·x0 in LTQn

do in parallel /* generate parent of each
vertex x simultaneously */

3: j = next(i, x)
4: if j > 2 and x0 = 1 then
5: parent(Ti, x) =

x+ (−1)xj × 2j + (−1)xj−1 × 2j−1

6: else
7: parent(Ti, x) = x+ (−1)xj × 2j

Figure 2: Algorithm for constructing n spanning
trees in LTQn.

Example 1. Consider LTQ4 and suppose we
choose r = 10112 = 11 as the common root. For
conciseness, we represent a vertex in LTQ4 by
decimal. We describe how the Constructing-
ISTs algorithm constructs T2 in LTQ4 as follows.
Clearly, the 2-neighbor of r is N2(11) = c3c2c1c0 =
11012 = 13. Let x(6= r) be an arbitrary vertex
in LTQ4 with x = x3x2x1x0. If 0 6 x 6 7,
then α2(x) = 1; otherwise, α2(x) = 0. Since

i = 2 and c0 = 1, we have H2(x) = I2(x) \ {2}
for x ∈ {0, 1, 2, 3} and H2(x) = I2(x) ∪ {2} for
x ∈ {4, 5, 6, 7}. Also, we have H2(x) = I2(x) for
8 6 x 6 15 and x 6= 11. Consequently, we can
determine j = 0 when x ∈ {0, 12}; j = 1 when
x ∈ {2, 3, 14, 15}; j = 3 when x = 1; and j = 2
otherwise. For x ∈ {1, 5, 7, 9, 13}, since j > 2 and
x0 = 1, we have parent(T2, x) = x + (−1)xj ×
2j + (−1)xj−1 × 2j−1 according to Line 5 of the
algorithm. Otherwise, we have parent(T2, x) =
x+(−1)xj×2j according to Line 7 of the algorithm.
Table 1 summarizes the information for construct-
ing Ti for 0 6 i 6 3 in LTQ4.

Figure 3 illustrates the construction for LTQ4

using Algorithm Constructing-ISTs. For conve-

nience, we adopt the notation x
±2i−→ y (respectively,

x
±2i±2i−1

−−−−−→ y) to mean that x±2i = y (respectively,
x ± 2i ± 2i−1 = y) and x and y are adjacent in

LTQn. For instance, we have T2[6, 11] = 6
−22−→

2
−21−→ 0

+20−→ 1
+23+22

−−−→ 13
−22+21

−−−→ 11 in Figure 3.
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Figure 3: Four ISTs of LTQ4.

3 Correctness

In this section, we will show the validity of the al-
gorithm. Firstly, we prove the reachability between
every vertex x(6= r) and the vertex r in Ti, thereby
proving the existence of a unique path from x to
the root in the tree.

Theorem 1. Let r be an arbitrary vertex of LTQn.
The construction of Ti for i ∈ Zn are spanning trees
with a common root at r.
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Table 1: The parent of vertices x ∈ V (LTQ4) \ {11} in Ti with root r = 10112 = 11.

i = 3, N3(11) = 01112 = 7

x binary string I3(x) α3(x) H3(x) j = next(3, x) x0 xj xj−1 parent(T3, x)

0 0000 {0, 1, 2} even {0, 1, 2} 2 0 0 0 = 0 + 22 = 4

1 0001 {1, 2} even {1, 2} 2 1 0 0 = 1 + 22 + 21 = 7

2 0010 {0, 2} even {0, 2} 2 0 0 1 = 2 + 22 = 6

3 0011 {2} even {2} 2 1 0 1 = 3 + 22 − 21 = 5

4 0100 {0, 1} even {0, 1} 1 0 0 0 = 4 + 21 = 6

5 0101 {1} even {1} 1 1 0 1 = 5 + 21 = 7

6 0110 {0} even {0} 0 0 0 - = 6 + 20 = 7

7 0111 ∅ even ∅ 3 1 0 1 = 7 + 23 − 22 = 11

8 1000 {0, 1, 2, 3} even {0, 1, 2, 3} 3 0 1 0 = 8− 23 = 0

9 1001 {1, 2, 3} even {1, 2, 3} 3 1 1 0 = 9− 23 + 22 = 5

10 1010 {0, 2, 3} even {0, 2, 3} 3 0 1 0 = 10− 23 = 2

12 1100 {0, 1, 3} even {0, 1, 3} 3 0 1 1 = 12− 23 = 4

13 1101 {1, 3} even {1, 3} 3 1 1 1 = 13− 23 − 22 = 1

14 1110 {0, 3} even {0, 3} 3 0 1 1 = 14− 23 = 6

15 1111 {3} even {3} 3 1 1 1 = 15− 23 − 22 = 3

i = 2, N2(11) = 11012 = 13

x binary string I2(x) α2(x) H2(x) j = next(2, x) x0 xj xj−1 parent(T2, x)

0 0000 {0, 2, 3} odd {0, 3} 0 0 0 - = 0 + 20 = 1

1 0001 {2, 3} odd {3} 3 1 0 0 = 1 + 23 + 22 = 13

2 0010 {0, 1, 2, 3} odd {0, 1, 3} 1 0 1 0 = 2− 21 = 0

3 0011 {1, 2, 3} odd {1, 3} 1 1 1 1 = 3− 21 = 1

4 0100 {0, 3} odd {0, 2, 3} 2 0 1 0 = 4− 22 = 0

5 0101 {3} odd {2, 3} 2 1 1 0 = 5− 22 + 21 = 3

6 0110 {0, 1, 3} odd {0, 1, 2, 3} 2 0 1 1 = 6− 22 = 2

7 0111 {1, 3} odd {1, 2, 3} 2 1 1 1 = 7− 22 − 21 = 1

8 1000 {0, 2} even {0, 2} 2 0 0 0 = 8 + 22 = 12

9 1001 {2} even {2} 2 1 0 0 = 9 + 22 + 21 = 15

10 1010 {0, 1, 2} even {0, 1, 2} 2 0 0 1 = 10 + 22 = 14

12 1100 {0} even {0} 0 0 0 - = 12 + 20 = 13

13 1101 ∅ even ∅ 2 1 1 0 = 13− 22 + 21 = 11

14 1110 {0, 1} even {0, 1} 1 0 1 0 = 14− 21 = 12

15 1111 {1} even {1} 1 1 1 1 = 15− 21 = 13

i = 1, N1(11) = 10012 = 9

x binary string I1(x) α1(x) H1(x) j = next(1, x) x0 xj xj−1 parent(T1, x)

0 0000 {0, 3} odd {0, 1, 3} 1 0 0 0 = 0 + 21 = 2

1 0001 {3} odd {1, 3} 1 1 0 1 = 1 + 21 = 3

2 0010 {0, 1, 3} odd {0, 3} 0 0 0 - = 2 + 20 = 3

3 0011 {1, 3} odd {3} 3 1 0 0 = 3 + 23 + 22 = 15

4 0100 {0, 2, 3} even {0, 2, 3} 0 0 0 - = 4 + 20 = 5

5 0101 {2, 3} even {2, 3} 3 1 0 1 = 5 + 23 − 22 = 9

6 0110 {0, 1, 2, 3} even {0, 1, 2, 3} 1 0 1 0 = 6− 21 = 4

7 0111 {1, 2, 3} even {1, 2, 3} 1 1 1 1 = 7− 21 = 5

8 1000 {0} even {0} 0 0 0 - = 8 + 20 = 9

9 1001 ∅ even ∅ 1 1 0 1 = 9 + 21 = 11

10 1010 {0, 1} even {0, 1} 1 0 1 0 = 10− 21 = 8

12 1100 {0, 2} odd {0, 1, 2} 1 0 0 0 = 12 + 21 = 14

13 1101 {2} odd {1, 2} 1 1 0 1 = 13 + 21 = 15

14 1110 {0, 1, 2} odd {0, 2} 0 0 0 - = 14 + 20 = 15

15 1111 {1, 2} odd {2} 2 1 1 1 = 15− 22 − 21 = 9

i = 0, N0(11) = 10102 = 10

x binary string I0(x) α0(x) H0(x) j = next(0, x) x0 xj xj−1 parent(T0, x)

0 0000 {1, 3} even {1, 3} 3 0 0 0 = 0 + 23 = 8

1 0001 {0, 1, 3} even {0, 1, 3} 0 1 1 - = 1− 20 = 0

2 0010 {3} odd {3} 3 0 0 0 = 2 + 23 = 10

3 0011 {0, 3} odd {0, 3} 0 1 1 - = 3− 20 = 2

4 0100 {1, 2, 3} odd {1, 2, 3} 3 0 0 1 = 4 + 23 = 12

5 0101 {0, 1, 2, 3} odd {0, 1, 2, 3} 0 1 1 - = 5− 20 = 4

6 0110 {2, 3} even {2, 3} 3 0 0 1 = 6 + 23 = 14

7 0111 {0, 2, 3} even {0, 2, 3} 0 1 1 - = 7− 20 = 6

8 1000 {1} odd {1} 1 0 0 0 = 8 + 21 = 10

9 1001 {0, 1} odd {0, 1} 0 1 1 - = 9− 20 = 8

10 1010 ∅ even ∅ 0 0 0 - = 10 + 20 = 11

12 1100 {1, 2} even {1, 2} 2 0 1 0 = 12− 22 = 8

13 1101 {0, 1, 2} even {0, 1, 2} 0 1 1 - = 13− 20 = 12

14 1110 {2} odd {2} 2 0 1 1 = 14− 22 = 10

15 1111 {0, 2} odd {0, 2} 0 1 1 - = 15− 20 = 14
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Proof. From Constructing-ISTs, we know that
every vertex v ∈ V (LTQn) implies v ∈ Ti. It
follows that Ti is a spanning subgraph of LTQn.
Hereafter, for every vertex v ∈ V (LTQn) \ {r},
all indices of elements of Hi(v) are taken modulo
|Hi(v)|. Let x = xn−1xn−2 · · ·x0 be any vertex of
LTQn. We claim that Ti[x, r] is the unique path
connecting x and r in Ti. Clearly, if Hi(x) = ∅,
then x = Ni(r) and next(i, x) = i. If i > 2 and
x0 = 1, let J = (−1)xi×2i+(−1)xi−1×2i−1; other-

wise, let J = (−1)xi × 2i. Thus, Ti[x, r] = x
J−→ r

is the desired path that connects x and r in Ti.
Next, we suppose that Hi(x) = {j0, j1, . . . , jp−1} is
nonempty and j0 < j1 < · · · < jp−1. Consider the
following two cases:
Case 1: i /∈ Hi(x). We assume that jk =

next(i, x) is the next element in the cyclic order
of Hi(x) with respect to i, where 0 6 k 6 p − 1.
If jk > 2 and x0 = 1, let J1 = (−1)xjk × 2jk +
(−1)xjk−1×2jk−1; otherwise, let J1 = (−1)xjk×2jk .
Thus, we have parent(Ti, x) = x + J1. Let
y = yn−1yn−2 · · · y0 = x + J1 be such a vertex
and consider the following scenarios for Hi(y). For
jk > 2 and x0 = 1, if jk−1 = jk − 1, then Hi(y) =
Hi(x) \ {jk, jk−1}; otherwise, Hi(y) = (Hi(x) \
{jk})∪{jk−1}. On the other hand (i.e., jk ∈ {0, 1}
or x0 = 0), we have Hi(y) = Hi(x) \ {jk}. By
a similar argument, we let j` = next(i, y) and
z = zn−1zn−2 · · · z0 = parent(Ti, y) = y + J2,
where J2 = (−1)xj` × 2j` + (−1)xj`−1 × 2j`−1 for
j` > 2 and y0 = 1; or J2 = (−1)xj` × 2j` otherwise.
Again, we can determine Hi(z) according to j`, y0
and the condition j`−1 = j`−1 or j`−1 6= j`−1. By
this way, we find a sequence of vertices y, z, . . . , w
in Ti such that Hi(w) = ∅, and thus w = Ni(r).

Recall that we have constructed Ti[w, r] = w
J−→ r

for connecting Ni(r) and r in Ti. Therefore, we ob-
tain the following unique path that connects x and
r in Ti:

Ti[x, r] = x
J1−→ y

J2−→ z
J3−→ · · · Jd−→ w

J−→ r.

Case 2: i ∈ Hi(x). Suppose i = jk for some k ∈
{0, 1, . . . , p−1}. In this case, we have next(i, x) =
i by definition. If i > 2 and x0 = 1, let Ĵ = (−1)xi×
2i + (−1)xi−1 × 2i−1; otherwise, let Ĵ = (−1)xi ×
2i. Moreover, we let y = parent(Ti, x) = x + Ĵ .
Clearly, jk /∈ H(y), and thus y is in the situation of
Case 1. Let P = Ti[y, r] be the path connecting y
and r in Ti. Therefore, we obtain the unique path

Ti[x, r] by concatenating x
Ĵ−→ y and P . �

To show the independency of T0, T1, . . . , Tn−1, we
assume that p, q ∈ Zn are any two distinct integers.
Let x = xn−1xn−2 · · ·x0 ∈ V (LTQn) \ {r} be any
vertex and two paths P = Tp[x, r] and Q = Tq[x, r]
be constructed in Theorem 1. Without loss of
generality, we assume p > q. Let c = Np(r) =

cn−1cn−2 · · · c0 and d = Nq(r) = dn−1dn−2 · · · d0.
For notational convenience, the subpath of P be-
tween two vertices u, v ∈ V (P ) is denoted by
P (u, v). Moreover, we write yi|P (u, v) = b for
i ∈ Zn and b ∈ {0, 1} to mean that yi is as-
signed to b for every vertex y = yn−1yn−2 · · · y0 in
the path P (u, v). Similarly, we can define Q(u, v)
and yi|Q(u, v) = b by the same way. In what fol-
lows, we always assume that y = yn−1yn−2 · · · y0
is any vertex in P \ {x, r} and z = zn−1zn−2 · · · z0
is any vertex in Q \ {x, r}. In particular, let ŷ =
ŷn−1ŷn−2 · · · ŷ0 (respectively, ẑ = ẑn−1ẑn−2 · · · ẑ0)
be the vertex adjacent to x in P (respectively, in
Q). To show that P ||Q, it suffices to prove that
P (ŷ, c) ∩ Q(ẑ, d) = ∅. For P and Q, we also use
underscore to mark the different bits between the
two paths.

Note that we omit the proof if one of P (ŷ, c) and
Q(ẑ, d) is a null path (i.e., Hp(x) = ∅ or Hq(x) =
∅). Moreover, due to the space limitation, we only
prove Lemmas 2, 3, 4 and 5, and omit the following
four cases: (i) c0 = d0 = 1 and x0 = 0; (ii) c0 = 1
and d0 = x0 = 0; (iii) c0 = d0 = x0 = 1; and (iv)
c0 = x0 = 1 and d0 = 0.

Lemma 2. If c0 = d0 = x0 = 0, then P ||Q.

Proof. Since p > q and c0 = d0 = 0, it implies
r0 = 0 and p > q 6= 0. Moreover, since c0 = d0 = 0,
it follows that Hp(x) = Ip(x) and Hq(x) = Iq(x).
In addition, we have cp 6= dp, cq 6= dq and ci =
di for i ∈ Zn \ {p, q}. Let p′ = next(p, x) and
q′ = next(q, x). We consider the following three
scenarios.

Case 1: xp 6= cp (i.e., p ∈ Hp(x)). In this case,
p = p′ and q > q′. Since x0 = 0, by Line 7 of the
algorithm, we have ŷ = x + (−1)xp × 2p. Thus,
ŷp = cp. Moreover, since Tp takes (−1)cp × 2p

as the last link to connect the root, it implies
yp|P (ŷ, c) = cp. On the other hand, since xp 6= cp
and cp 6= dp, we have xp = dp. Thus, Q never
changes the bit zp in the path and zp|Q(ẑ, d) =
dp 6= cp. As a result, P ||Q. (For example, consider

P = T3[0, 4] : 0000
+23−→ 1000

+22−→ 1100
−23−→ 0100

and Q = T1[0, 4] : 0000
+21−→ 0010

+22−→ 0110
−21−→

0100 in LTQ4.)
Case 2: xq 6= dq (i.e., q ∈ Hq(x)). In this case,

p > p′ and q = q′. Since xq 6= dq and cq 6= dq,
we have xq = cq. Thus, P never changes the bit
yq in the path and yq|P (ŷ, c) = cq. On the other
hand, since x0 = 0, by Line 7 of the algorithm,
we have ẑ = x + (−1)xq × 2q. Thus, ẑq = dq.
Moreover, since Tq takes (−1)dq×2q as the last link
to connect the root, it implies zq|Q(ẑ, d) = dq 6= cq.
As a result, P ||Q. (For example, consider P =

T2[12, 4] : 1100
−22−→ 1000

−23−→ 0000
+22−→ 0100 and

Q = T1[12, 4] : 1100
+21−→ 1110

−23−→ 0110
−21−→ 0100 in

LTQ4.)
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Case 3: xp = cp and xq = dq (i.e., p /∈ Hp(x)
and q /∈ Hq(x)). In this case, p > p′ and q > q′.
Clearly, xp′ 6= cp′ and xq′ 6= dq′ . There are three
subcases as follows.
Case 3.1: p′ = q. Since x0 = 0, by Line 7

of the algorithm, we have ŷ = x + (−1)xp′ × 2p
′
.

Thus, ŷp′ = cp′ . Moreover, since it remains un-
changed the bit yp′ for every vertex y ∈ P (ŷ, c),
we have yp′ |P (ŷ, c) = cp′ (i.e., yq|P (ŷ, c) = cq).
On the other hand, since xq = dq and Tq takes
(−1)dq × 2q as the last link to connect the root, it
implies zq|Q(ẑ, d) = dq 6= cq. Thus, P ||Q. (For ex-

ample, consider P = T3[10, 4] : 1010
+22−→ 1110

−21−→
1100

−23−→ 0100 and Q = T2[10, 4] : 1010
−21−→

1000
−23−→ 0000

+22−→ 0100 in LTQ4.)
Case 3.2: q′ = p. Since xp = cp and Tp takes

(−1)cp × 2p as the last link to connect the root, it
implies yp|P (ŷ, c) = cp. On the other hand, since
x0 = 0, by Line 7 of the algorithm, we have ẑ =
x+(−1)xq′×2q

′
. Thus, ẑq′ = dq′ . Moreover, since it

remains unchanged the bit zq′ for every vertex z ∈
Q(ẑ, d), we have zq′ |Q(ẑ, d) = dq′ (i.e., zp|Q(ẑ, d) =
dp 6= cp). Thus, P ||Q. (For example, consider P =

T3[10, 4] : 1010
+22−→ 1110

−21−→ 1100
−23−→ 0100 and

Q = T1[10, 4] : 1010
−23−→ 0010

+22−→ 0110
−21−→ 0100 in

LTQ4.)
Case 3.3: p′ 6= q and q′ 6= p. Clearly, cp′ = dp′

and cq′ = dq′ . In this case, an argument similar to
Case 3.1 shows that yp′ |P (ŷ, c) = cp′ . Also, an ar-
gument similar to Case 3.2 shows that yp|Q(ŷ, c) =
cp. On the other hand, since xp = cp 6= dp,
xp′ 6= cp′ = dp′ and d0 = 0, we have p, p′ ∈ Hq(x).
Let w(= wn−1wn−2 · · ·w0) and w′ be vertices on Q
such that w′ = w + (−1)wp × 2p. Since Q(ẑ, w)
has not dealt with the bit zp′ for every vertex
z ∈ Q(ẑ, w), we have zp′ |Q(ẑ, w) = xp′ 6= cp′ . Also,
since Q(w′, d) has dealt with the bit zp, we have
zp|Q(w′, d) = dp 6= cp. Thus, P (ŷ, c) ∩ (Q(ẑ, w) ∪
Q(w′, d)) = ∅ and P ||Q. (For example, consider

P = T4[26, 4] : 11010
−23−→ 10010

+22−→ 10110
−21−→

10100
−24−→ 00100 and Q = T2[26, 4] : 11010

−21−→
11000

−24−→ 01000
−23−→ 00000

+22−→ 00100 in LTQ5.)
�

Lemma 3. If c0 = x0 = 0 and d0 = 1, then P ||Q.

Proof. Since p > q, c0 = x0 = 0 and d0 = 1,
it implies r0 = 0 and p > q = q′ = 0, where
q′ = next(q, x). Moreover, since x0 6= d0, it fol-
lows that 0 ∈ I0(x)(= H0(x)). Since x0 = c0,
P never changes the bit y0 in the path, and thus
y0|P (ŷ, c) = c0 = 0. On the other hand, by Line 7
of the algorithm, we have ẑ = x + (−1)x0 × 20 =
x + 1. Thus, ẑ0 = 1. Moreover, since it remains
unchanged the bit z0 for every vertex z ∈ Q(ẑ, d),
we have z0|Q(ẑ, d) = 1. Thus, P ||Q. (For exam-

ple, consider P = T3[10, 4] : 1010
+22−→ 1110

−21−→
1100

−23−→ 0100 and Q = T0[10, 4] : 1010
+20−→

1011
−23+22−→ 0111

−21−→ 0101
−20−→ 0100 in LTQ4.)

�

Lemma 4. If c0 = d0 = 0 and x0 = 1, then P ||Q.

Proof. Since p > q and c0 = d0 = 0, it implies
r0 = 0 and p > q 6= 0. Moreover, since c0 = d0 = 0,
it follows that Hp(x) = Ip(x) and Hq(x) = Iq(x).
In addition, we have cp 6= dp, cq 6= dq and ci =
di for i ∈ Zn \ {p, q}. Let p′ = next(p, x) and
q′ = next(q, x). We consider the following three
scenarios.

Case 1: xp 6= cp (i.e., p ∈ Hp(x)). In this case,
p = p′ > 2. Since x0 = 1, by Line 5 of the algo-
rithm, we have ŷ = x+(−1)xp×2p+(−1)xp−1×2p−1.
Thus, ŷp = cp. Moreover, since Tp takes (−1)cp×2p

as the last link to connect the root, it implies
yp|P (ŷ, c) = cp. On the other hand, since xp 6= cp
and cp 6= dp, we have xp = dp. Thus, Q never
changes the bit zp in the path and zp|Q(ẑ, d) =
dp 6= cp. As a result, P ||Q. (For example, consider

P = T3[1, 4] : 0001
+23+22−→ 1101

−20−→ 1100
−23−→ 0100

and Q = T1[1, 4] : 0001
+21−→ 0011

−20−→ 0010
+22−→

0110
−21−→ 0100 in LTQ4.)

Case 2: xp = cp and xq 6= dq (i.e., p /∈ Hp(x)
and q ∈ Hq(x)). In this case, p > p′ and q = q′.
Moreover, we have xp′ 6= cp′ . Since xq 6= dq and
cq 6= dq, it implies xq = cq, and thus p′ 6= q and
cp′ = dp′ . There are two subcases as follows.
Case 2.1: p′ > q. In this case, we have p′ > 2.

Since x0 = 1, by Line 5 of the algorithm, we
have ŷ = x + (−1)xp′ × 2p

′
+ (−1)xp′−1 × 2p

′−1.
Thus, ŷp′ = cp′ . Moreover, since P never changes
the bit yp′ in the succedent path again, it fol-
lows that yp′ |P (ŷ, c) = cp′ . Also, since Tp takes
(−1)cp × 2p as the last link to connect the root, it
implies yp|P (ŷ, c) = cp. On the other hand, let w(=
wn−1wn−2 · · ·w0) and w′ be vertices on Q such that
w′ = w+ (−1)wp × 2p. Since Q(ẑ, w) has not dealt
with the bit zp′ for every vertex z ∈ Q(ẑ, w), we
have zp′ |Q(ẑ, w) = xp′ 6= cp′ . Also, since Q(w′, d)
has dealt with the bit zp, we have zp|Q(w′, d) =
dp 6= cp. Thus, P (ŷ, c) ∩ (Q(ẑ, w) ∪ Q(w′, d)) = ∅
and P ||Q. (For example, consider P = T3[9, 4] :

1001
+22+21−→ 1111

−21−→ 1101
−20−→ 1100

−23−→ 0100

and Q = T1[9, 4] : 1001
+21−→ 1011

−20−→ 1010
−23−→

0010
+22−→ 0110

−21−→ 0100 in LTQ4.)
Case 2.2: q > p′. Since xq = cq and p > q =

q′ > p′, the path P never changes the bit yq. Thus,
yq|P (ŷ, c) = xq. On the other hand, since x0 =
1, by Line 5 of the algorithm, we have ẑ = x +
(−1)xq × 2q + (−1)xq−1 × 2q−1. Thus, ẑq = dq.
Moreover, Tq takes (−1)dq × 2q as the last link to
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connect the root, it follows that zq|Q(ẑ, d) = dq 6=
xq. As a result, P ||Q. (For example, consider P =

T3[15, 4] : 1111
−21−→ 1101

−20−→ 1100
−23−→ 0100 and

Q = T2[15, 4] : 1111
−23−22−→ 1001

−20−→ 1000
−23−→

0000
+22−→ 0100 in LTQ4.)

Case 3: xp = cp and xq = dq (i.e., p /∈ Hp(x)
and q /∈ Hq(x)). Since x0 6= d0, it follows that
p > q > q′ > 0, and thus q′ 6= p. Moreover, we have
xp′ 6= cp′ and xq′ 6= dq′ . There are two subcases as
follows.
Case 3.1: p′ = q. By Line 5 or Line 7 of the algo-

rithm, P first changes the bit xp′ . Thus, ŷp′ = cp′ .
Moreover, since P never changes the bit yp′ in the
succedent path again, it follows that yp′ |P (ŷ, c) =
cp′ = cq. On the other hand, since xq = dq and
Tq takes (−1)dq × 2q as the last link to connect the
root, it follows that zq|Q(ẑ, d) = dq 6= cq. As a
result, P ||Q. (For example, consider P = T3[9, 4] :

1001
+22+21−→ 1111

−21−→ 1101
−20−→ 1100

−23−→ 0100 and

Q = T2[9, 4] : 1001
−20−→ 1000

−23−→ 0000
+22−→ 0100 in

LTQ4.)
Case 3.2: p′ 6= q. In this case, the proof is

similar to Case 2.1. That is, we can show that
yp′ |P (ŷ, c) = cp′ and yp|P (ŷ, c) = cp. On the other
hand, zp′ |Q(ẑ, w) = xp′ 6= cp′ and zp|Q(w′, d) =
dp 6= cp, where w(= wn−1wn−2 · · ·w0) and w′ =
w + (−1)wp × 2p are two adjacent vertices on Q.

(For example, consider P = T3[11, 4] : 1011
+22−21−→

1101
−20−→ 1100

−23−→ 0100 and Q = T1[11, 4] :

1011
−20−→ 1010

−23−→ 0010
+22−→ 0110

−21−→ 0100 in
LTQ4.) �

Lemma 5. If c0 = 0 and d0 = x0 = 1, then P ||Q.

Proof. Since p > q and c0 = 0, we have r0 = 0.
Also, since r0 6= d0 and d0 = x0, it follows that
q = 0 and q′ 6= q. Moreover, c0 = 0 and q = 0 imply
Hp(x) = Ip(x) and H0(x) = I0(x). In addition, we
have cp 6= dp, c0 6= d0 and ci = di for i ∈ Zn \
{p, 0}. Let p′ = next(p, x) and q′ = next(q, x).
We consider the following two scenarios.
Case 1: xp 6= cp (i.e., p ∈ Hp(x)). In this case,

p = p′. Since cp 6= dp and xp 6= cp, it implies
xp = dp. Since xq′ 6= dq′ , we have q′ 6= p. There
are two subcases as follows.
Case 1.1: p > q′. In this case, we have p = p′ >

q′ > q = 0. Since p > 2 and x0 = 1, by Line 5
of the algorithm, we have ŷ = x + (−1)xp × 2p +
(−1)xp−1 × 2p−1. Thus, ŷp = cp. Moreover, since
Tp takes (−1)cp × 2p as the last link to connect
the root, it follows that yp|P (ŷ, c) = cp. On the
other hand, since xp = dp and Q never changes the
bit zp in the path, we have zp|Q(ẑ, d) = dp 6= cp.
This shows that P ||Q. (For example, consider P =

T3[1, 4] : 0001
+23+22−→ 1101

−20−→ 1100
−23−→ 0100 and

Q = T0[1, 4] : 0001
+22+21−→ 0111

−21−→ 0101
−20−→ 0100

in LTQ4.)
Case 1.2: q′ > p. In this case, we have q′ > p =

p′ > q = 0. Clearly, P first changes the bit xp in x
and takes (−1)cp×2p as the last link to connect the
root of Tp. Let w(= wn−1wn−2 · · ·w0) and w′ be
vertices on P such that w′ = w+(−1)wq×2q = w+
(−1)w0 . Since P (ŷ, w) has not dealt with the bit yq′
for every vertex y ∈ P (ŷ, w), we have yq′ |P (ŷ, w) =
xq′ 6= dq′ . Also, since P (w′, c) has dealt with the
bit yq(= y0), we have y0|P (w′, c) = c0 = 0. On
the other hand, since q′ > 2 and x0 = 1, by Line 5
of the algorithm, we have ẑ = x + (−1)xq′ × 2q

′
+

(−1)xq′−1 × 2q
′−1. Thus, ẑq′ = dq′ . Moreover, since

Q never changes the bit zq′ in the succedent path
again, it follows that zq′ |P (ẑ, d) = dq′ . Also, since
x0 = d0 = 1 and Q takes (−1)dq × 2q(= −1) as the
last link to connect the root of T0, it follows that
z0|Q(ẑ, d) = d0 = 1. Thus, (P (ŷ, w) ∪ P (w′, c)) ∩
Q(ẑ, d) = ∅ and P ||Q. (For example, consider P =

T2[15, 4] : 1111
−22−21−→ 1001

−20−→ 1000
−23−→ 0000

+22−→
0100 and Q = T0[15, 4] : 1111

−23−22−→ 0011
+22−21−→

0101
−20−→ 0100 in LTQ4.)

Case 2: xp = cp (i.e., p /∈ Hp(x)). In this case,
p 6= p′. Clearly, xp′ 6= cp′ . There are three subcases
as follows.

Case 2.1: p′ = q. In this case, we have
p > p′ = q = 0. By Line 7 of the algorithm,
we have ŷ = x + (−1)xp′ × 2p

′
= x − 1. Thus,

ŷ0 = 0. Moreover, since P never changes the
bit y0 in the succedent path again, it follows that
y0|P (ŷ, c) = 0. On the other hand, since x0 = 1
and Tq takes (−1)dq × 2q(= −1) as the last link
to connect the root, it follows that z0|Q(ẑ, d) = 1.
This shows that P ||Q. (For example, consider P =

T1[15, 4] : 1111
−20−→ 1110

−23−→ 0110
−21−→ 0100 and

Q = T0[15, 4] : 1111
−23−22−→ 0011

+22−21−→ 0101
−20−→

0100 in LTQ4.)
Case 2.2: q′ = p. In this case, we have

q′ = p > q = 0. Since xp = cp and Tp takes
(−1)cp×2p as the last link to connect the root, it fol-
lows that yp|P (ŷ, c) = cp. On the other hand, since
Q first changes the bit xq′(= xp) in x and never
changes the bit zp in the succedent path again,
it follows that zp|Q(ẑ, d) = dp 6= cp. This shows
that P ||Q. (For example, consider P = T3[11, 4] :

1011
+22−21−→ 1101

−20−→ 1100
−23−→ 0100 and Q =

T0[11, 4] : 1011
−23+22−→ 0111

−21−→ 0101
−20−→ 0100

in LTQ4.)
Case 2.3: p′ 6= q and q′ 6= p. In this case, we

have q′ > p > p′ > q = 0. Since P first changes
the bit xp′ in x, we have ŷp′ = cp′ . Moreover, since
P never changes the bit yp′ in the succedent path
again, it follows that yp′ |P (ŷ, c) = cp′ . Also, since
xp = cp and P takes (−1)cp × 2p as the last link
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to connect the root of Tp, we have yp|P (ŷ, c) = cp.
On the other hand, let w(= wn−1wn−2 · · ·w0) and
w′ be vertices on Q such that w′ = w + (−1)wp ×
2p. Since Q(ẑ, w) has not dealt with the bit zp′ for
every vertex z ∈ Q(ẑ, w), we have zp′ |Q(ẑ, w) =
xp′ 6= cp′ . Also, since Q(w′, d) has dealt with the
bit zp, we have zp|Q(w′, d) = dp 6= cp. This shows
that P ||Q. (For example, consider P = T2[11, 4] :

1011
−21−→ 1001

−20−→ 1000
−23−→ 0000

+22−→ 0100 and

Q = T0[11, 4] : 1011
−23+22−→ 0111

−21−→ 0101
−20−→

0100 in LTQ4.) �

From the above lemmas, we conclude that ISTs
constructed in this paper are independent. Accord-
ing to Theorem 1 and the result of independency,
we obtain the following main theorem.

Theorem 6. Let N = 2n. For LTQn and
an arbitrary vertex r ∈ V (LTQn), Algorithm
Constructing-ISTs can correctly construct n
ISTs rooted at r in O(N logN) time. In partic-
ular, the algorithm can be parallelized on LTQn by
using N processors to run in O(logN) time.

4 Concluding remarks

This paper provides a parallel construction of ISTs
rooted at an arbitrary vertex of locally twisted
cubes. Indeed, all ISTs constructed in here are
isomorphic to those in [13, 24], which have height
n + 1. As we have mentioned earlier, many algo-
rithms have been proposed for constructing ISTs on
some interconnection networks. However, some of
these networks are not vertex-transitive, and thus
the desired ISTs are in need of an arbitrary ver-
tex as the root [4–7, 24, 34, 35]. Although most of
these algorithms can simultaneously construct ISTs
in parallel, the construction of each spanning tree
relies on a recursive expansion and is hard to be
fully parallelized. To the best of our knowledge,
for class of networks without vertex-transitivity, the
present paper is the first to propose the fully par-
allelized approach for constructing ISTs.
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