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Abstract

Let LTQ,, denote the n-dimensional locally twisted
cube. Hsieh and Tu (2009) [13] presented an algo-
rithm to construct n edge-disjoint spanning trees
rooted at vertex 0 in LTQ,. Later on, Lin et
al. (2010) [23] proved that Hsieh and Tu’s spanning
trees are indeed independent spanning trees (ISTs
for short), i.e., all spanning trees are rooted at the
same vertex r and for any other vertex v(# r), the
paths from v to r in any two trees are vertex-disjoint
except the two end vertices v and 7. Shortly after-
wards, Liu et al. (2011) [24] pointed out that LT'Q,,
fails to be vertex-transitive for n > 4 and proposed
an algorithm for constructing n ISTs rooted at an
arbitrary vertex of LT'Q,. Although this algorithm
can simultaneously construct n ISTs in parallel, it
is not fully parallelized for the construction of each
spanning tree. In this paper, we revisit the problem
of constructing n ISTs rooted at an arbitrary ver-
tex of LTQ,. As a consequence, we present a fully
parallelized approach that is obtained from Hsieh
and Tu’s algorithm with a slight modification.

Keyword: independent spanning trees; edge-
disjoint spanning trees; locally twisted cubes; inter-
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1 Introduction

Interconnection networks are usually modeled as
undirected simple graphs G = (V, E), where the
vertex set V(= V/(G)) represents the set of pro-
cessing elements and the edge set E(= E(G)) rep-
resents the set of communication channels, respec-
tively. A tree is a connected graph without cycle.
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A rooted tree is a tree with a distinguished ver-
tex called the root. A subgraph T in a graph G
is called a spanning tree if T is a tree such that
V(T) =V(G). Let 7 be a set of k spanning trees
of G rooted at a vertex r. We say that .7 is edge-
disjoint if the paths from any vertex v(# r) to r
on the k trees share no common directed edges. By
contrast, 7 is said to be independent if the paths
from any vertex v(# r) to r on the k trees have no
common vertex except « and y (i.e., the paths are
internally vertez-disjoint).

Constructing independent spanning trees (ISTs
for short) in networks have been studied from
not only the theoretical point of view but also
some practical applications such as fault-tolerant
broadcasting [1,19] and secure message distribu-
tion [1,31,40]. Let G be a graph and denote
G — F the graph obtained from G by removing
a set of vertices F. A graph G is k-connected if
[V(G)| > k and G — F is connected for every sub-
set F C V(G) with |F| < k. A conjecture proposed
by Zehavi and Itai [49] says that any k-connected
graph has k£ ISTs rooted at an arbitrary vertex
r. Henceforth, we refer the conjecture as the IST-
Conjecture. From then on, the IST-Conjecture has
been confirmed only for k-connected graphs with
k < 4 (see [19] for k = 2, [8,49] for k = 3, and [9] for
k = 4), and it is still open for k-connected graphs
with £ > 5. In addition, by providing construc-
tion schemes of ISTs, the IST-Conjecture has been
agreed for several restricted classes of graphs or di-
graphs. For example, the graph classes related to
planarity [16, 17,27, 28], graph classes defined by
Cartesian product [3, 29, 32, 33, 36, 42, 46], special
classes of digraphs [10,12,18,37], variations of hy-
percubes [4-7,24, 34, 35, 40], subclasses of Cayley
graphs [21,22,31,41,44,45], and chordal ring [20,43].

The family of locally twisted cubes was first
introduced by Yang et al. [47] as a variation of
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hypercube architecture to achieving the improve-
ment in diameter. Hsieh and Tu [13] studied the
construction of edge-disjoint spanning trees on lo-
cally twisted cubes. Since the n-dimensional locally
twisted cube LT'Q,, is n-connected, they presented
an algorithm to construct n edge-disjoint spanning
trees rooted at vertex 0. At a later time, Lin et
al. [23] proved that Hsich and Tu’s spanning trees
are indeed independent. Liu et al. [24] pointed out
that LTQ), fails to be vertex-transitive for n > 4
and it does satisfy the even-odd-vertex-transitive
property. Thus, the proof of [23], together with
Hsieh and Tu’s algorithm [13], does not solve the
IST-Conjecture on LTQ,. Furthermore, Liu et
al. [24] proposed an algorithm for constructing n
ISTs rooted at an arbitrary vertex of LTQ,,, and
thus confirmed the IST-Conjecture for LTQ,,. Al-
though the algorithm in [24] can simultaneously
construct n ISTs in parallel, it is not fully paral-
lelized for the construction of each spanning tree
(in fact, it looks like a constructing scheme of bi-
nomial tree in a recursive fashion). In this paper,
with a slight modification from Hsieh and Tu’s algo-
rithm, we present a fully parallelized approach for
constructing n ISTs rooted at an arbitrary vertex
of LTQ,.

The rest of this paper is organized as fol-
lows. Section 2 formally gives the definition of lo-
cally twisted cubes and introduces our constructing
scheme of ISTs for LT'Q,,. Section 3 shows the cor-
rectness by proving the independency of the con-
structed spanning trees. The final section contains
our concluding remarks.

2 Constructing ISTs on LTQ),
in parallel

Let @ denote the modulo 2 addition. For n > 2,
the n-dimensional locally twisted cube LTQ, is a
graph with {0,1}" as its vertex set, and two vertices
T = Tp-1Tp—2To and ¥y = Yp_1Yn—2- Yo are
adjacent in LTQ,, if and only if either
(1) there is an integer ¢ € {2,3,...,n — 1} such
that z; = ¢; and ;1 = y;—1 Dz, and T; =Y
for all remaining bits, or
(2) there is an integer ¢ € {0, 1} such that z; = ¥,
and z; = y; for all remaining bits.

If one of the above conditions is fulfilled, then
y is called the i-neighbor of x and is denoted by
y = N;(z). Figure 1 shows the graphs LT'Qs and
LTQ,, respectively. The locally twisted cube can
be equivalently defined by the following recursive
fashion:

(1) LT Q> is a graph consisting of four vertices la-
beled with 00, 01, 10, and 11, respectively, con-
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nected by four edges (00,01), (00,10), (01,11),
and (10,11).

(2) For n > 3, LTQ, is constructed from two
disjoint copies of LTQ,_1 according to the
following steps: Denote 0LTQ,_1 (respec-
tively, 1LTQ,—_1) the graph obtained by pre-
fixing the label of each vertex in one copy of
LTQ,—1 with 0 (respectively, 1). Each ver-
tex x = 0zy_9Tp_3--+x9 in 0OLTQ,_1 is con-
nected with the vertex 1(z,—2® zg)Zn_3- - To
in 1LTQ,—1 by an edge.

P

AQ' SN

LTQ4

Figure 1: Locally twisted cubes LT'Q3 and LTQ4.

From the above definition, it is clear that LTQ,
is an n-regular graph, and the binary strings of any
two adjacent vertices in LTQ, differ in at most
two successive bits. Yang et al. [47] showed that
LTQ,, has a connectivity of n. Also, from [24], we
know that LT'(Q, possesses the property of even-
odd-vertex-transitive, i.e., for every pair of vertices
T =Tp1Tp—2- To and Yy = Yn_1Yn—2 - Yo With
the same parity (i.e., o = yo), there is an auto-
morphism that maps z to y. More previous results
on LTQ, can be found in the literature, e.g., the
studies of diagnosability [39], mesh embedding [11],
fault-hamiltonicity [14], panconnectivity [25], pan-
cyclicity and fault-pancyclicity [2,15,26,30,38,48].

In this paper, we also use the following notation.
Two paths P and @ joining two distinct vertices
x and y are internally vertex-disjoint, denoted by
P||Q, if V(P)NV(Q) = {z,y}. Let T be a spanning
tree rooted at a vertex r of LT'Q,,. The parent of
a vertex x(# r) in T is denoted by PARENT(T, x).
For z,y € V(T), the unique path from x to y is
denoted by T[z,y]. Hence, two spanning trees T
and T with the same root r are ISTs if and only
if T[z,r]|| T'|x,r] for every vertex x € V(T) \ {r}.



Since LTQ, has connectivity n, the root in each
spanning tree must have a unique child. Let Z,, =
{0,1,...,n —1}. For i € Z,, we denote T; as the
tree such that the root r takes its i-neighbor N;(r)
as the unique child. Let N;(r) = ch—1¢n—2- - .
For each vertex © = zp,_12p_o - 20 € V(T;) \ {r},
we define I;(z) = {j € Z,,: x; # ¢;} and o;(x)
{j € Ii(z): j > i}|. Moreover, if i # 0, ¢g = 1 and
a;(x) is odd, we let H;(z) = (I;(z) U {i}) \ (L;(z) N
{i}); otherwise, let H;(x) = I;(z). Also, we define
the following function:

NEXT(i,2) =

if H;(z) # 0 and ¢ < min H;(z);
max{j € H;(x): j < i}

)
max H;(x)

otherwise.

That is, we regard H;(z) as a cyclic ordered set in
decreasing order. If H;(x) = 0 or i € H;(x), the
function outputs i; otherwise, the function outputs
the next element in the cyclic order of H;(x) with
respect to 7.

In what follows, we present a fully parallelized al-
gorithm for constructing n spanning trees with an
arbitrary vertex r = r,_17n_o - 79 as their com-
mon root in LT'Q),,. For each vertex x € V(LTQ,)\
{r} with binary string © = z,_12,_2---To, the
construction can be carried out by describing the
parent of x in each spanning tree T;.

Algorithm CONSTRUCTING-ISTS
Input: All vertices of LT'Q,, and an arbitrary root
T =7Tn—-1Tn—2---70.
Output: n ISTs Ty, T1,...,T,—1 root at r.
1: for i =0ton — 1 do in parallel
/* construct T; simultaneously */

2: for each vertex x = xp_1Tn_2---xo in LTQ,
do in parallel /* generate parent of each
vertex = simultaneously */
3: j = NEXT(4, z)
4: if 5 > 2 and 2o = 1 then
5: PARENT(T;, z) =
x4 (=1)% x 2 4 (=1)%-1 x 2071
6: else
7 PARENT(T;,2) = x + (—1)% x 27

Figure 2: Algorithm for constructing n spanning
trees in LTQ.,.

Example 1. Consider LT(Q4 and suppose we
choose » = 10115 = 11 as the common root. For
conciseness, we represent a vertex in LTQ4 by
decimal. We describe how the CONSTRUCTING-
ISTs algorithm constructs T in LT Q4 as follows.
Clearly, the 2-neighbor of r is Na(11) = czeacicp =
11015 = 13. Let z(# r) be an arbitrary vertex
in LTQ4 with x = x3xom129. If 0 < = < 7,
then ag(z) = 1; otherwise, as(x) = 0. Since

258

The 31st Workshop on Combinatorial Mathematics and Computation Theory

i =2 and ¢y = 1, we have Hao(z) = Ix(z) \ {2}
for z € {0,1,2,3} and Ha(x) = Ix(x) U {2} for
x € {4,5,6,7}. Also, we have Hy(z) = I2(x) for
8 <z < 15 and = # 11. Consequently, we can
determine j = 0 when z € {0,12}; j = 1 when
x € {2,3,14,15}; j = 3 when = 1; and j = 2
otherwise. For x € {1,5,7,9,13}, since j > 2 and
xo = 1, we have PARENT(Ts,z) = x + (—1)% X
27 4 (=1)%i-1 x 2971 according to Line 5 of the
algorithm. Otherwise, we have PARENT(Ty,x) =
2+ (—1)% x27 according to Line 7 of the algorithm.
Table 1 summarizes the information for construct-
ing T; for 0 <i<3in LTQy.

Figure 3 illustrates the construction for LTQ,
using Algorithm CONSTRUCTING-ISTS. For conve-

nience, we adopt the notation x £2, y (respectively,
+274201 )
x —— y) to mean that x +2* = y (respectively,
x+2°+ 27! = y) and x and y are adjacent in
52
LTQ,. For instance, we have T5[6,11] = 6 =%
ol 490 423492 92491
2—=0-—7—>1

— 13 —— 11 in Figure 3.

Figure 3: Four ISTs of LTQy4.

3 Correctness

In this section, we will show the validity of the al-
gorithm. Firstly, we prove the reachability between
every vertex (% r) and the vertex r in T}, thereby
proving the existence of a unique path from z to
the root in the tree.

Theorem 1. Let r be an arbitrary vertex of LTQ,,.
The construction of T; fori € Z,, are spanning trees
with a common root at r.
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Table 1: The parent of vertices © € V(LTQ4) \ {11} in T; with root r = 10112 = 11.

i=3, N3(11)=01113=7

x  binary string  Is(x) ag(z) Hs(z) j =NEXT(3,z) 20 x; xj—1  PARENT(T3,x)
0 0000 {0,1,2} even {0,1,2} 2 0 0 0 =0+22=4
1 0001 {1,2} even {1,2} 2 1 0 0 =1+224+2' =7
2 0010 {0,2} even {0,2} 2 0 0 1 =2+22=6
3 0011 {2} even {2} 2 1 0 1 =3+22-2'=5
4 0100 {0,1} even {0,1} 1 0 0 0 =442 =6
5 0101 {1} even {1} 1 1 0 1 =5+2'=7
6 0110 {0} even {0} 0 0 0 - =6+2°=7
7 0111 [} even 0 3 1 0 1 =7+2%-22=11
8 1000 {0,1,2,3} even {0,1,2,3} 3 0 1 0 =8-2%=
9 1001 {1,2,3} even {1,2,3} 3 1 1 0 =9-2%4+22=5
10 1010 {0,2,3} even {0,2,3} 3 0 1 0 =10-2%=2
12 1100 {0,1,3} even {0,1,3} 3 0 1 1 =12-2%=4
13 1101 {1,3} even {1,3} 3 1 1 1 =13-2%-22=1
14 1110 {0, 3} even {0, 3} 3 0 1 1 =14-2%=6
15 1111 {3} even {3} 3 1 1 1 =15-2%-22=3
i=2, Np(11) = 1101, =13
x  binary string Iz (x) az(z)  Ha(z) Jj =NEXT(2,z) 20 x; xj—1  PARENT(T:,x)
0 0000 {0,2,3} odd {0,3} 0 0 0 - =0+2°=
1 0001 {2,3} odd {3} 3 1 0 0 =14+2%4+2%2=13
2 0010 {0,1,2,3} odd {0,1,3} 1 0 1 0 =2-2'=0
3 0011 {1,2,3} odd {1,3} 1 1 1 1 =3-2'=1
4 0100 {0, 3} odd {0,2,3} 2 0 1 0 =4-22=0
5 0101 {3} odd {2,3} 2 1 1 0 =5-224+2' =3
6 0110 {0,1,3} odd {0,1,2,3} 2 0 1 1 =6-22=2
7 0111 {1,3} odd {1,2,3} 2 1 1 1 =7-22-2'=1
8 1000 {0,2} even {0,2} 2 0 0 0 =8+22=12
9 1001 {2} even {2} 2 1 0 0 =9+22+2' =15
10 1010 {0, 1,2} even {0,1,2} 2 0 0 1 =10+22 =14
12 1100 {0} even {0} 0 0 0 - =12+2°=13
13 1101 0 even 0 2 1 1 0 =13-2242' =11
14 1110 {0,1} even {0,1} 1 0 1 0 =14-2' =12
15 1111 {1} even {1} 1 1 1 1 =15-2' =13
i=1, N;i(11) =1001, =9
z  binary string I (x) ar(z) Hi(z) j=NeEXT(l,z) xo x; xj—1  PARENT(Tq,x)
0 0000 {0,3} odd {0, 1,3} 1 0 0 0 =0+2'=2
1 0001 {3} odd {1,3} 1 1 0 1 =142'=3
2 0010 {0,1,3} odd {0,3} 0 0 0 - =2+2°=3
3 0011 {1,3} odd {3} 3 1 0 0 =34+224+22=15
4 0100 {0,2,3} even {0,2,3} 0 0 0 - =4+2°=5
5 0101 {2,3} even {2,3} 3 1 0 1 =5+2°-22=9
6 0110 {0,1,2,3}  even {0,1,2,3} 1 0 1 0 =6-2'=4
7 0111 {1,2,3} even {1,2,3} 1 1 1 1 =7-2'=5
8 1000 {0} even {0} 0 0 0 - =8+2°=09
9 1001 0 even 0 1 1 0 1 =9+2' =11
10 1010 {0,1} even {0,1} 1 0 1 0 =10-2' =
12 1100 {0,2} odd {0,1,2} 1 0 0 0 =12+2' =14
13 1101 {2} odd {1,2} 1 1 0 1 =13+2' =15
14 1110 {0,1,2} odd {0,2} 0 0 0 - =14+2°=15
15 1111 {1,2} odd {2} 2 1 1 =15-22-2'=9
i=0, Np(11) =10102 =10
z  binary string  Io(x) ag(z)  Ho(z) j =NeEXT(0,z) o x; xj—1 PARENT(Tp, )
0 0000 {1,3} even {1,3} 3 0 0 0 =0+2%=38
1 0001 {0,1,3} even {0,1,3} 0 1 1 - =1-2°=0
2 0010 {3} odd {3} 3 0 0 0 =2+2%=10
3 0011 {0, 3} odd {0, 3} 0 1 1 - =3-20=2
4 0100 {1,2,3} odd {1,2,3} 3 0 0 1 =4+2% =12
5 0101 {0,1,2,3} odd {0,1,2,3} 0 1 1 - =5-20=4
6 0110 {2,3} even {2,3} 3 0 0 1 =64+22=14
7 0111 {0,2,3} even {0,2,3} 0 1 1 - =7-2"=6
8 1000 {1} odd {1} 1 0 0 0 =8+2' =10
9 1001 {0,1} odd {0,1} 0 1 1 - =9-20=38
10 1010 ] even ] 0 0 0 - =104+2°=11
12 1100 {1,2} even {1,2} 2 0 1 0 =12-22=3
13 1101 {0,1,2} even {0,1,2} 0 1 1 - =13-20=12
14 1110 {2} odd {2} 2 0 1 1 =14-22=10
15 1111 {0,2} odd {0, 2} 0 1 1 - =15-2°=14
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Proof. From CONSTRUCTING-ISTS, we know that
every vertex v € V(LTQ,) implies v € T;. Tt
follows that T; is a spanning subgraph of LTQ,.
Hereafter, for every vertex v € V(LTQ,) \ {r},
all indices of elements of H;(v) are taken modulo
|H;(v)|]. Let @ = 2p_12p_2---xo be any vertex of
LTQ,. We claim that T;[z,r] is the unique path
connecting x and r in T;. Clearly, if H;(x) = 0,
then z = N;(r) and NEXT(¢,2) = i. If ¢ > 2 and
xg = 1,let J = (—1)% x 214 (—1)%i-1 x 21~ 1; other-
wise, let J = (—1)% x 2. Thus, T;[z,r] =z Ly
is the desired path that connects z and r in T;.
Next, we suppose that H;(z) = {jo,J1,.- -, Jp—1} is
nonempty and jo < j; < -+ < jp—1. Consider the
following two cases:

Case 1: i ¢ H;(z). We assume that ji
NEXT(¢, x) is the next element in the cyclic order
of H;(x) with respect to i, where 0 < k < p — 1.
If j, > 2and 29 = 1, let J; = (—=1)%x x 27% +
(—1)%ik—1 x 20— L; otherwise, let J; = (—1)%k x 29k,
Thus, we have PARENT(T;,z) = x + J;. Let
Y = Yn_1Yn—2-'"-Yo = x + J; be such a vertex
and consider the following scenarios for H;(y). For
Je = 2and zg = 1, if jp_1 = jr — 1, then H;(y) =
H;(x) \ {jk,Jjr-1}; otherwise, H;(y) = (H;(z) \
{jx})U{jx —1}. On the other hand (i.e., ji € {0,1}
or g = 0), we have H;(y) = H;(z) \ {jx}. By
a similar argument, we let j, = NEXT(i,y) and
Z = Zp—1%n—2-+-20 = PARENT(T;,y) = y + Jo,
where Jo = (—1)%e x 27¢ 4 (—1)%e=1 x 29¢~1 for
je=2and yg = 1; or Jo = (—1)%e x 2¢ otherwise.
Again, we can determine H;(z) according to jg, yo
and the condition j,_1 = jy—1or j,_1 # je—1. By
this way, we find a sequence of vertices y, z, ..., w
in 7; such that H;(w) = 0, and thus w = N;(r).
Recall that we have constructed T;[w,r] = w Ly
for connecting N;(r) and r in T;. Therefore, we ob-
tain the following unique path that connects x and
rin T5:

J J J J J
Tilz,r) =2 Sy 222 “Sw 5

Case 2: i € H;(x). Suppose i = jj for some k €
{0,1,...,p—1}. In this case, we have NEXT(i,x) =
i by definition. If i > 2 and o = 1, let J = (—1)% x
20 4 (=1)%i-1 x 2=1: otherwise, let J = (—1)% x
2¢. Moreover, we let y = PARENT(T}, x) = x + J.
Clearly, ji ¢ H(y), and thus y is in the situation of
Case 1. Let P = T;[y,r] be the path connecting y

and 7 in T;. Therefore, we obtain the unique path

T;[x,r] by concatenating z N y and P. O

To show the independency of Ty, T, ..., T,_1, we
assume that p, ¢ € Z,, are any two distinct integers.
Let © = xp_1@n—2-- 29 € V(LTQ,) \ {r} be any
vertex and two paths P = Tp[z,r] and Q = T, [x, 7]
be constructed in Theorem 1. Without loss of
generality, we assume p > ¢. Let ¢ = N,(r) =
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Cn—1Cn—2---co and d = Ny(r) = dp_1dp_2---dp.
For notational convenience, the subpath of P be-
tween two vertices u,v € V(P) is denoted by
P(u,v). Moreover, we write y;|P(u,v) = b for
i € Zy, and b € {0,1} to mean that y; is as-
signed to b for every vertex y = ¢, _1Yn_2- -+ ¥yo in
the path P(u,v). Similarly, we can define Q(u,v)
and y;|Q(u,v) = b by the same way. In what fol-
lows, we always assume that y = yp—1Yn—2--- %o
is any vertex in P\ {x,r} and z = z,_12,_2 - 20
is any vertex in @ \ {z,r}. In particular, let § =
gnflgn72 t QO (respectively, Z2=2p 12n2""" 20)
be the vertex adjacent to z in P (respectively, in
Q). To show that P||Q, it suffices to prove that
P(g,¢) N Q(2,d) = 0. For P and Q, we also use
underscore to mark the different bits between the
two paths.

Note that we omit the proof if one of P(§,c) and
Q(2,d) is a null path (i.e., Hy(z) = 0 or Hy(x) =
). Moreover, due to the space limitation, we only
prove Lemmas 2, 3, 4 and 5, and omit the following
four cases: (i) co =dp =1 and xo = 0; (ii) ¢ =1
and dg = xo = 0; (iii) co = dp = 29 = 1; and (iv)
co =29 =1 and dy = 0.

Lemma 2. If ¢y = dy = 29 =0, then P||Q.

Proof. Since p > ¢ and ¢y = dy = 0, it implies
ro = 0 and p > ¢ # 0. Moreover, since ¢y = dy = 0,
it follows that H,(z) = I,(z) and H,(z) = I,(x).
In addition, we have ¢, # d,, ¢; # dq and ¢; =
d; for i € Z, \ {p,q}. Let p NEXT(p, z) and
¢ = NEXT(q,z). We consider the following three
scenarios.

Case 1: x, # ¢, (i.e.,, p € Hy(x)). In this case,
p=1p and q > ¢’. Since ¢y = 0, by Line 7 of the
algorithm, we have § = x + (—1)* x 2P. Thus,
Jp = ¢p. Moreover, since T), takes (—1)% x 27
as the last link to connect the root, it implies
yp|P(4,¢) = ¢p. On the other hand, since z, # ¢,
and ¢, # d,, we have £, = d,. Thus, ) never
changes the bit z, in the path and z,|Q(2,d) =
d, # cp. As a result, P||Q. (For example, consider

3 2 3
P = T300,4] : 0000 *2 1000 X2 1100 =% 0100

+2! +22 —2!
and Q = T1[0,4] : 0000 — 0010 — 0110 —
0100 in LTQy.)

Case 2: x, # d, (ie., ¢ € Hy(x)). In this case,
p > p and ¢ = ¢’. Since z, # d, and ¢, # d,
we have x4, = ¢4. Thus, P never changes the bit
Yq in the path and y4|P(9,¢) = ¢4 On the other
hand, since xy = 0, by Line 7 of the algorithm,
we have 2 = x + (—1)% x 29. Thus, 2, = d,.
Moreover, since T, takes (—1)% x 27 as the last link
to connect the root, it implies 2z,|Q(2,d) = dg # ¢,.
As a result, P||Q. (For example, consider P =

_92 _93 +22
T5[12,4] : 1100 — 1000 — 0000 — 0100 and

Q = Ty[12,4] : 1100 *2 1110 =2 0110 =% 0100 in
LTQ4.)
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Case 3: z, = ¢, and z, = d; (ie., p ¢ Hy(z)
and g ¢ Hy(z)). In this case, p > p’ and ¢ > ¢
Clearly, x,» # ¢,y and x4 # dy. There are three
subcases as follows.

Case 3.1: p' = ¢q. Since zg = 0, by Line 7
of the algorithm, we have § = x + (—1)% x 27,
Thus, ¢,y = c¢,». Moreover, since it remains un-
changed the bit y, for every vertex y € P(g,c),
we have y,/|P(§,¢) = ¢p (Le., ylP(3,¢c) = cq).
On the other hand, since z, = dy and T takes
(—1)% x 29 as the last link to connect the root, it
implies z4|Q(2,d) = dy # ¢4. Thus, PHQ (For ex-

ample, consider P = T3[10,4] : 1010 =2 1110 —>
3 1
1100 =% 0100 and Q = T5[10,4] : 1010 =%

1000 ;23> 0000 +—22> 0100 in LTQy4.)

Case 3.2: ¢’ = p. Since z, = ¢, and T}, takes
(—=1)% x 2P as the last link to connect the root, it
implies y,|P(9,c) = ¢p. On the other hand, since
xg = 0, by Line 7 of the algorithm, we have Z =
x+(=1)% x24¢". Thus, Zq = dg. Moreover, since it
remains unchanged the bit z, for every vertex z €
Q(2,d), we have zy/|Q(2,d) = dy (i.e., 2|Q(2,d) =
d, # ¢p). Thus, PHQ (For example con51der P =

T3[10,4] : 1010 *2 1110 -2 1100 -2 0100 and
Q =T,[10,4] : 1010 —> 0010 —> 0110 —> 0100 in
LTQq.)

Case 3.3: p' # ¢ and ¢’ # p. Clearly, ¢,y = dp
and ¢y = dg. In this case, an argument similar to
Case 3.1 shows that y,/|P(9,c) = ¢pr. Also, an ar-
gument similar to Case 3.2 shows that y,|Q(9,c) =
cp- On the other hand, since z, = ¢, # dp,
Ty # ¢y = dyp and do = 0, we have p,p’ € Hy(x).
Let w(= wp—1wWp—o - wp) and w’ be vertices on @
such that w' = w + (—=1)¥» x 2P. Since Q(2,w)
has not dealt with the bit z, for every vertex
z € Q(%,w), we have 2z, |Q(%,w) = z, # ¢y . Also,
since Q(w’,d) has dealt with the bit z,, we have
zp|Qw',d) = dp # ¢p. Thus, P(y,¢) N (Q(2,w) U
Q(w',d)) = 0 and P||Q. (For example, consider

_93 +22 _ol
P = Ty[26,4] : 11010 =% 10010 2 10110 =2

4 1
10100 i> 00100 and Q = T2[26 4] : 11010 =%

11000 —> 01000 —> 00000 00100 in LTQs.)
O

Lemma 3. Ifco = xo =0 and dy = 1, then P||Q.
Proof. Since p > ¢q, cg = g = 0 and dy = 1,

it implies 19 = 0 and p > ¢ = ¢ = 0, where
¢ = NEXT(q,z). Moreover, since g # dg, it fol-
lows that 0 € Iyp(z)(= Ho(z)). Since zg = co,

P never changes the bit 39 in the path, and thus
Yo|P(y,¢) = ¢o = 0. On the other hand, by Line 7
of the algorithm, we have 2 = x + (—1)% x 20 =
x + 1. Thus, 2o = 1. Moreover, since it remains
unchanged the bit zg for every vertex z € Q(2,d),
we have z9|Q(2,d) = 1. Thus, P||Q. (For exam-
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ple, consider P = T3[10,4] : 1010 =% 1110 -2
1100 =2 0100 and Q= To[lo 4] : 1010 24

—23492

1011 —

O

0111 *> 0101 —> 0100 in LTQ4.)

Lemma 4. Ifcy =dy =0 and xg = 1, then P||Q.

Proof. Since p > ¢ and ¢y = dy = 0, it implies
ro = 0 and p > ¢q # 0. Moreover, since ¢y = dy = 0,
it follows that H,(z) = I,(z) and Hy(z) = I,(x).
In addition, we have ¢, # dp, ¢4 # dq and ¢; =
d; for i € Zy \ {p,q}. Let p’ = NEXT(p,z) and
¢’ = NEXT(q,z). We consider the following three
scenarios.

Case 1: z, # ¢, (i.e.,, p € Hy(x)). In this case,
p =p > 2. Since z9 = 1, by Line 5 of the algo-
rithm, we have §j = x-+(—1)% x2P4(—1)%r-1 x 2P~ 1,
Thus, g, = ¢,. Moreover, since T), takes (—1)° x 2P
as the last link to connect the root, it implies
yp|P(y,¢) = ¢p. On the other hand, since z, # ¢,
and ¢, # dp, we have ©, = d,. Thus, @ never
changes the bit z, in the path and z,|Q(2,d) =
dp # cp. As a result, P||Q. (For example consider

P =Ty[1,4] : 0001 "2+ 1101 -2 1100 -2 0100
and Q = Ty[1,4] : 0001 *% 0011 =2 o010 *%

0110 =2 0100 in LTQ4.)

Case 2: 1, = ¢, and z, # d; (ie., p ¢ Hp(z)
and ¢ € Hy(z)). In this case, p > p’ and ¢ = ¢'.
Moreover, we have x,, # c¢p. Since x4 # d, and
¢q # dg, it implies 24 = ¢4, and thus p’ # ¢ and
¢pr = dpr. There are two subcases as follows.

Case 2.1: p’ > ¢. In this case, we have p’ > 2.
Since xyp = 1, by Line 5 of the algorithm, we
have §j = x + (—1)% x 20" + (=1)%'-1 x 2¢' -1,
Thus, §,» = ¢pr. Moreover, since P never changes
the bit y,» in the succedent path again, it fol-
lows that y,/|P(9,c) Also, since T, takes
(—=1)» x 2P as the last link to connect the root, it
implies y,|P(7, ¢) = ¢p. On the other hand, let w(=
Wp—1Wy,—2 - -~ Wp) and w’ be vertices on @ such that
w' =w+ (=1)*» x 2P, Since Q(Z, w) has not dealt
with the bit z, for every vertex z € Q(2,w), we
have z,|Q(2,w) = xp # ¢pr. Also, since Q(w’, d)
has dealt with the bit z,, we have z,|Q(vw’,d) =
dy # ¢p. Thus, P(g,¢) N (Q(2,w) U Qw',d)) =0

= Cp/.

and P||Q. (For example, consider P = T3[9,4] :
+22421 —at —20 —23
1001 "— 1111 — 1101 — 1100 — 0100

+2! _90 _93
and Q = T1[9,4] : 1001 — 1011 — 1010 —

0010 =2 0110 =2 0100 in LTQ..)

Case 2.2: ¢ > p/. Since g = ¢, and p > ¢ =
¢’ >/, the path P never changes the bit y,. Thus,
YqlP(9,¢) = x4. On the other hand, since xg
1, by Line 5 of the algorithm, we have z = = +
(—1)%a x 29 4 (—1)%a—t x 2971 Thus, 2, = d,.
Moreover, T, takes (—1)% x 29 as the last link to



connect the root, it follows that z,|Q(2,d) = d, #
x4. As aresult, P||Q. (For example, consider P =

T3[15,4] = 1111 =2 1101 =2 1100 =% 0100 and
Q = To[15,4] : 1111 2= 1001 =% 1000 ~%

H
0000 *2 0100 in LTQ,.)

Case 3: z, = ¢p and z, = d; (ie., p ¢ Hp(z)
and ¢ ¢ Hy(x)). Since ¢y # do, it follows that
p>q>q >0, and thus ¢’ # p. Moreover, we have
2y # ¢ and xy # dgy. There are two subcases as
follows.

Case 3.1: p’ = ¢q. By Line 5 or Line 7 of the algo-
rithm, P first changes the bit x,/. Thus, g,y = cpr.
Moreover, since P never changes the bit y,/ in the
succedent path again, it follows that y,/ |P(7,c) =
¢y = ¢q. On the other hand, since z, = d,; and
T, takes (—1)% x 29 as the last link to connect the
root, it follows that z,|Q(2,d) = dy # ¢4. As a
result, PHQ (For example consider P =1T5[9,4] :

1001 TEE 1111 =5 1101 =2 1100 =2 0100 and

Q = T5[9,4] : 1001 =2 1000 =2 0000 % 0100 in
LTQy.)

Case 3.2: p’ # q. In this case, the proof is
similar to Case 2.1. That is, we can show that
yp |P(§,¢) = ¢p and y,|P(§,c) = ¢p. On the other
hand, 2z, |Q(2,w) = xpy # ¢y and z,|Q(w', d)
d, # ¢p, where w(= wy_1Wy_2---wp) and w’
w + (—1)¥» x 2P are two adjacent vertices on Q.

For example, consider P = T3[11,4] : 1011 +2

( ple,

1101 __20) 1100 ﬁ 0100 and Q = TiiLy
1011 =2 1010 =2 0010 2 0110 =2 0100 in

LTQy..) O

Lemma 5. If ¢ =0 and dy = zg = 1, then P||Q.

Proof. Since p > g and ¢y = 0, we have rg = 0.
Also, since 1y # dp and dy = xg, it follows that
g = 0and ¢’ # q. Moreover, ¢y = 0 and ¢ = 0 imply
H,(z) = Iy(z) and Ho(z) = Iy(z). In addition, we
have ¢, # dp, ¢y # do and ¢; = d; for i € Zj \
{p,0}. Let p’ = NEXT(p,z) and ¢’ = NEXT(q,x).
We consider the following two scenarios.

Case 1: z, # ¢, (i.e.,, p € Hy(x)). In this case,
p = p'. Since ¢, # dp and x, # cp, it implies
xp = dp. Since x4 # dy , we have ¢’ # p. There
are two subcases as follows.

Case 1.1: p > ¢'. In this case, we have p = p’ >
q¢ > q=0. Since p > 2 and zp = 1, by Line 5
of the algorithm, we have § = x + (—1)%» x 2P +
(—1)®=1 x 2P=1 Thus, §, = ¢,. Moreover, since
T, takes (—1)°» x 2P as the last link to connect
the root, it follows that y,|P(y,¢) = ¢,. On the
other hand, since z,, = d, and @ never changes the
bit z, in the path, we have z,|Q(2,d) = dp # cp.
This shows that P||Q. (For example, consider P =

Ty[1,4] : 0001 242 1101 =2 1100 =2 0100 and
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+22 42!
—

Q = Tp[1, 4] : 0001 0111 =% 0101 =% 0100
in LTQ4)

Case 1.2: ¢’ > p. In this case, we have ¢/ > p =
p’ > ¢q=0. Clearly, P first changes the bit z, in «
and takes (—1)° x 2P as the last link to connect the
root of Tp,. Let w(= wyp_1w,—2---wp) and w’ be
vertices on P such that w’ = w4+ (—1)"* x 27 = w+
(—1)™e. Since P(§, w) has not dealt with the bit y4
for every vertex y € P(y,w), we have yy/|P(g, w) =
g # dgr. Also, since P(w’, ¢) has dealt with the
bit y,(= yo) we have yo|P(w',¢) = ¢g = 0. On
the other hand, since ¢’ > 2 and xg = 1, by Line 5
of the algorithm, we have 2 = 4 (—1)% x 24" +
(=1)%a'-1 x 2¢'~1, Thus, 2, = d,. Moreover, since
Q never changes the bit z, in the succedent path
again, it follows that z,|P(2,d) = dy. Also, since
rg =dp =1 and Q takes (—1)% x 29(= —1) as the
last link to connect the root of Ty, it follows that
20|Q(2,d) = dy = 1. Thus, (P(§,w)U P(w',c)) N
Q(2,d) = 0 and P||Q (For example consider P =
To[15,4] : 1111 ~25% 1001 =% 1000 —> 0000 —>
0100 and Q = Tp[15,4] : 1111

50
0101 =2 0100 in LTQy.)

Case 2: z, = ¢, (i.e.,, p ¢ Hy(x)). In this case,
p # p'. Clearly, z,» # c¢,. There are three subcases

—> 0011 —>

as follows.
Case 2.1: p’ = ¢. In this case, we have
p > p = q = 0. By Line 7 of the algorithm,

we have § = z + (=1)%" x 2¢ = z — 1. Thus,
yo = 0. Moreover, since P never changes the
bit yo in the succedent path again, it follows that
Yo|P(g,¢) = 0. On the other hand, since zp = 1
and T, takes (—1)% x 2¢(= —1) as the last link
to connect the root, it follows that zo|Q(2,d) = 1.
This shows that P||Q. (For example, consider P =

_90 _o3 ol
1111 — 1110 —> 0110 —> 0100 and

T1[15,4] :
0
Q = Ty[15,4] : 1111 2= o011 222 o101 =5
0100 in LTQ4.)
Case 2.2: ¢’ = p. In this case, we have
¢ =p>q=0. Since z, = ¢, and T, takes

(—1)° x2P as the last link to connect the root, it fol-
lows that y,|P(§,¢) = ¢,. On the other hand, since
@ first changes the bit z, (= z,) in = and never
changes the bit z, in the succedent path again,
it follows that z,|Q(2,d) = d, # c,. This shows
that P||Q. (For example con81der P =1T;5[11,4] :

1011 222 1101 =2 1100 —) 0100 and Q =

2’ 1
To[11,4] : 1011 ~2%5% o111 =% o101 =% 0100
in LTQ4)

Case 2.3: p’ # q and ¢’ # p. In this case, we
have ¢ > p > p’ > ¢ = 0. Since P first changes
the bit z,/ in x, we have g,y = c,». Moreover, since
P never changes the bit 3, in the succedent path
again, it follows that y,/|P(9,c) = ¢,r. Also, since
xp = ¢p and P takes (—1)% x 2P as the last link
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to connect the root of T,,, we have y,|P(g,c) = c,.
On the other hand, let w(= wyp_1wp—2 - wp) and
w’ be vertices on @ such that w' = w + (=1)*r x
2P, Since Q(Z, w) has not dealt with the bit 2, for
every vertex z € Q(2,w), we have 2z, |Q(2,w)
Xy # cp. Also, since Q(w',d) has dealt with the
bit z,, we have z,|Q(w’,d) = d, # c,. This shows
that P||Q. (For example, consider P = T5[11,4] :

_ol _90 _93 +22
1011 —= 1001 — 1000 — 0000 — 0100 and

3 2 1 (0]
Q = Ty[11,4] : 1011 ~25* o111 =% o101 ==
0100 in LTQy.) 0

From the above lemmas, we conclude that ISTs
constructed in this paper are independent. Accord-
ing to Theorem 1 and the result of independency,
we obtain the following main theorem.

Theorem 6. Let N 2", For LTQ, and
an arbitrary vertex r € V(LTQ,), Algorithm
CONSTRUCTING-ISTS can correctly construct n
ISTs rooted at v in O(NlogN) time. In partic-
ular, the algorithm can be parallelized on LTQ,, by
using N processors to run in O(log N) time.

4 Concluding remarks

This paper provides a parallel construction of ISTs
rooted at an arbitrary vertex of locally twisted
cubes. Indeed, all ISTs constructed in here are
isomorphic to those in [13,24], which have height
n + 1. As we have mentioned earlier, many algo-
rithms have been proposed for constructing ISTs on
some interconnection networks. However, some of
these networks are not vertex-transitive, and thus
the desired ISTs are in need of an arbitrary ver-
tex as the root [4-7,24,34,35]. Although most of
these algorithms can simultaneously construct ISTs
in parallel, the construction of each spanning tree
relies on a recursive expansion and is hard to be
fully parallelized. To the best of our knowledge,
for class of networks without vertex-transitivity, the
present paper is the first to propose the fully par-
allelized approach for constructing ISTs.
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