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Abstract

Hypercubes and star graphs are widespread topolo-
gies of interconnection networks. The class of
hyper-stars was introduced as a new type of in-
terconnection network to compete with both hy-
percubes and star graphs, and the class of folded
hyper-stars is a strengthened variation of hyper-
stars with additional links to connect nodes with
complemented 0/1-strings. Constructing indepen-
dent spanning trees (ISTs) has numerous appli-
cations in networks such as fault-tolerant broad-
casting and secure message distribution. Recently,
Yang and Chang [33] proposed an algorithm to con-
struct k+ 1 ISTs on folded hyper-star FHS(2k, k).
For k > 4, their construction includes k ISTs with
the height 2k−2 and the other one with the height
k + 1. In this paper, we refine their constructing
rules on FHS(2k, k) for k > 3 and provide a set of
construction including k ISTs with the height k+2
and the other one with the height k + 1. As a by-
product, we obtain an improvement on the upper
bound of the fault diameter (respectively, the wide
diameter) of FHS(2k, k).

Keyword: folded hyper-stars; independent span-
ning trees; interconnection networks; fault-tolerant
broadcasting; secure message distribution.

1 Introduction

Fault-tolerant broadcasting and secure message dis-
tribution are important issues for numerous appli-
cations in networks [1, 15, 26, 32]. It is a common
idea to design multiple spanning trees in the under-
lying graph of a network to serve as a broadcasting
scheme or a distribution protocol for receiving high
levels of fault-tolerance and security. For achieving
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such an aim, it relies on the construction of inde-
pendent spanning trees (ISTs). Two spanning trees
in a graph G are said to be independent if they are
rooted at the same node r and such that, for each
node v 6= r in G, the two different paths from v to r,
one path in each tree, are internally node-disjoint.
Moreover, a set of spanning trees of G is said to be
independent if they are pairwise independent.

For a graph (or network) G, the independent
spanning trees (IST) problem attempts to construct
a maximal set of ISTs rooted at any node r of G and
such that the cardinality of the set of ISTs matches
the connectivity of G. Although the problem is
hard for general graphs, several results are known
for some special classes of graphs (especially, the
graph classes related to interconnection networks),
such as k-connected graphs with k 6 4 (see [15],
[9, 39] and [10] for k = 2, 3, 4, respectively), recur-
sive circulant graphs [36, 37], deBruijn and Kautz
graphs [12,13], chordal ring [16,35], graphs defined
by Cartesian product [2,25,27,28,31,34,38], varia-
tions of hypercubes [3–6,23,24,29,30,32] and special
classes of Cayley graphs [18,19,26,33,36,37].

For n > 3 and 1 6 k 6 n − 1, the hyper-
star HS(n, k) is a graph such that every node is
associated with a distinct binary string of length
n that contains exactly k 1’s, and two nodes are
adjacent if and only if one can be obtained from
the other by exchanging the first symbol with a
different symbol (1 with 0, or 0 with 1) in an-
other position. Hyper-stars were introduced by Lee
et al. [22] and Kim et al. [20] as a competitive
model of interconnection network for both hyper-
cubes and star graphs. Lee et al. [22] showed that
HS(n, k) is isomorphic to HS(n, n − k), HS(n, k)
has the diameter n − 1, HS(2k, k) is maximally
fault-tolerant (i.e., the connectivity equals the reg-
ularity), and HS(2k, k) can be constructed from
HS(2k − 1, k − 1) and HS(2k − 1, k) by adding
appropriate edges. In addition, they proposed a
routing algorithm for HS(2k, k). Kim et al. [20]
particularly intensify properties of HS(2k, k) as
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follows: HS(2k, k) is node-symmetric, the wide-
diameter of HS(2k, k) is bounded by the shortest
path length plus 4, the fault-diameter of HS(2k, k)
is bounded by its diameter plus 2 (i.e., 2k + 1). In
addition, they proposed an efficient broadcasting
scheme for HS(2k, k) based on a spanning tree with
the minimum height. Furthermore, stronger struc-
tural properties (such as edge-symmetry, super-
connectivity and orientability) and some embed-
ding schemes for hyper-stars were provided in [7,8]
and [17], respectively.

Inspired by the idea of El-Amawy and Latifi [11]
that proposed the so-called folded hypercubes to
strengthen the structure of hypercubes, a varia-
tion of hyper-stars was introduced in [22] as fol-
lows. The folded hyper-star FHS(2k, k) is con-
structed from HS(2k, k) by adding edges to con-
nect nodes whose binary strings are complements.
A result in [22] also showed that hyper-stars and
folded hyper-stars have a lower network cost (mea-
sured by the product of degree and diameter) than
that of hypercubes, folded hypercubes, and other
variants with the same number of nodes. In par-
ticular, FHS(2k, k) has the diameter k. Recently,
Yang and Chang [33] showed that FHS(2k, k) is
node-symmetric and proposed the following results
of FHS(2k, k): for k > 4 (respective, k 6 3), there
exist k ISTs with the height 2k − 2 (respectively,
2k−1) and the other one with the height k+1. Con-
sequently, FHS(2k, k) has the connectivity k + 1.

In this paper, we revisit the problem of construct-
ing ISTs on FHS(2k, k). For k > 3, we refine the
constructing rules given in [33] to produce k + 1
ISTs, where k ISTs have the height k + 2 and the
other one has the height k + 1. The rest of this
paper is organized as follows. Section 2 introduces
the constructing rules of ISTs in [33], and then re-
fine them to become a set of new ones. Section 3
analyzes the heights of ISTs. Section 4 shows the
correctness of constructing rules. The final section
contains our concluding remarks.
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Figure 1: Folded hyper-star FHS(6, 3).

2 The rules of constructing
ISTs

In this paper, we use the following notation. Let
V (G) and E(G) be the node set and edge set, re-
spectively, of a graph G. Two paths P and Q join-
ing the same nodes x and y are internally node-
disjoint, denoted by P ||Q, if V (P )∩V (Q) = {x, y}
and E(P ) ∩ E(Q) = ∅. A spanning tree T in a
graph G is a subgraph containing all nodes of G
and without forming a cycle. For x, y ∈ V (T ), the
unique path from x to y in T is denoted by T [x, y].
Thus, two spanning trees T and T ′ with the same
root r are ISTs if and only if T [r, x] ||T ′[r, x] for
every node x ∈ V (T ) \ {r}.

For each node x ∈ FHS(2k, k) with binary string
x = x1x2 · · ·x2k, we define ρi(x) to be the operation
that exchanges x1 with xi provided that 2 6 i 6 2k
and xi = x̄1 (i.e., xi is the complement of x1). In
this case, (x, ρi(x)) is called a normal edge. Also, we
define ρ∗(x) to be the operation that takes the com-
plement of xi for all i = 1, 2, . . . , 2k. In this case,
(x, ρ∗(x)) is called a complement edge. For example,
Figure 1 shows the graph FHS(6, 3), where each
node is labeled by its binary representation and oc-
tal representation. Solid lines indicate normal edges
and dotted lines represent complement edges. For

notational convenience, we use the notation x
i−→ y

if ρi(x) = y (respectively, x
∗−→ y if ρ∗(x) = y) to

mean that x and y are connected by a normal edge
(respectively, complement edge). For example,

100110(46)
∗−→ 011001(31)

2−→ 101001(51)
4−→

001101(15)
3−→ 100101(45)

5−→ 000111(07) repre-
sents a path connecting nodes 100110 and 000111
in FHS(6, 3).

For constructing ISTs of FHS(2k, k), by node-

symmetry, we consider r =

k︷ ︸︸ ︷
0 · · · 0

k︷ ︸︸ ︷
1 · · · 1 (0k1k for

short) as the root of ISTs. Let I = {1, 2, . . . , 2k}.
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For each node x(6= r) ∈ FHS(2k, k) with binary
representation x = x1x2 · · ·x2k and b ∈ {0, 1}, we
define Hb

x = {i ∈ I : xi = b}. Also, we write
Hb

x(i, i′) = {j ∈ Hb
x : i < j 6 i′} to mean the

restricted set of Hb
x. It is clear that |H0

x(0, k)| =
|H1

x(k, 2k)| and |H1
x(0, k)| = |H0

x(k, 2k)|. Let F0 :
H0

x(k, 2k) → H1
x(0, k) and F1 : H1

x(k, 2k) ∪ {∗}
→ H0

x(0, k) ∪ {∗} be two increasing functions that

next0x(i) =



minH1
x(i, 2k) if i 6= ∗, xi = 1, |H1

x(k, 2k)| 6 k/2, and H1
x(i, 2k) 6= ∅; (1.1)

∗ if i 6= ∗, xi = 1, |H1
x(k, 2k)| 6 k/2, and H1

x(i, 2k) = ∅; (1.2)

i if i 6= ∗, xi = 1, and |H1
x(k, 2k)| > k/2; (1.3)

F0(minH0
x(i, 2k)) if i 6= ∗, xi = 0, and H0

x(i, 2k) 6= ∅; (1.4)

F0(minH0
x(k, 2k)) if i 6= ∗, xi = 0, and H0

x(i, 2k) = ∅; (1.5)

minH1
x(k, 2k) if i = ∗ and |H1

x(k, 2k)| 6 k/2; (1.6)

∗ if i = ∗ and |H1
x(k, 2k)| > k/2. (1.7)

For x1 = 1, a bijection between {k + 1, k + 2, . . . , 2k, ∗} and H0
x ∪ {∗} is given by

next1x(i) =



minH0
x(i, 2k) if i 6= ∗, xi = 0, |H0

x(k, 2k)| 6= k, and H0
x(i, 2k) 6= ∅; (2.1)

minH0
x(k, 2k) if i 6= ∗, xi = 0, |H0

x(k, 2k)| 6= k, and H0
x(i, 2k) = ∅; (2.2)

i if i 6= ∗, xi = 0, and |H0
x(k, 2k)| = k; (2.3)

F1(minH1
x(i, 2k)) if i 6= ∗, xi = 1, |H1

x(k, 2k)| 6 k/2, and H1
x(i, 2k) 6= ∅; (2.4)

F1(∗) if i 6= ∗, xi = 1, |H1
x(k, 2k)| 6 k/2, and H1

x(i, 2k) = ∅; (2.5)

F1(i) if i 6= ∗, xi = 1, and |H1
x(k, 2k)| > k/2; (2.6)

F1(minH1
x(k, 2k)) if i = ∗ and 0 6= |H1

x(k, 2k)| 6 k/2; (2.7)

F1(∗) if i = ∗ and (|H1
x(k, 2k)| > k/2 or |H1

x(k, 2k)| = 0). (2.8)

We now refine Eqs.(1.4) and (1.5) by the following rules:

next0x(i) =


F0(minH0

x(i, 2k)) if i 6= ∗, xi = 0, |H0
x(k, 2k)| 6 k/2 + 1, and H0

x(i, 2k) 6= ∅; (1.8)

F0(minH0
x(k, 2k)) if i 6= ∗, xi = 0, |H0

x(k, 2k)| 6 k/2 + 1, and H0
x(i, 2k) = ∅; (1.9)

F0(i) if i 6= ∗, xi = 0, and |H0
x(k, 2k)| > k/2 + 1. (1.10)

By contrast, we refine Eqs.(2.1), (2.2) and (2.3) by the following rules:

next1x(i) =


minH0

x(i, 2k) if i 6= ∗, xi = 0, |H0
x(k, 2k)| 6 k/2 + 1, and H0

x(i, 2k) 6= ∅; (2.9)

minH0
x(k, 2k) if i 6= ∗, xi = 0, |H0

x(k, 2k)| 6 k/2 + 1, and H0
x(i, 2k) = ∅; (2.10)

i if i 6= ∗, xi = 0, and |H0
x(k, 2k)| > k/2 + 1. (2.11)

The above functions mean that we consider
H0

x(k, 2k) and H1
x(k, 2k)∪{∗} as two cyclic ordered

set in increasing order and perform operation ac-
cording to the following rules:

R1: For x1 = 0 and i ∈ H1
x(k, 2k) ∪ {∗}, if the

number of ‘1’ in H1
x(k, 2k) is no more than k/2,

then it maps i to the next position of ‘1’ or
‘∗’ in the cyclic order; otherwise, it maps i to
itself. (cf. Eqs.(1.1), (1.2), (1.3), (1.6) and
(1.7))

R2: For x1 = 0 and i ∈ H0
x(k, 2k), if the number

of ‘0’ in H0
x(k, 2k) is no more than k/2+1, then

it maps i to F0(j) where j is the next position
of ‘0’ in the cyclic order; otherwise, it maps i
to F0(i). (cf. Eqs.(1.8), (1.9) and (1.10))

preserves the related order of elements between
their domain and codomain, where ‘∗’ is regarded
as the largest element in H1

x(k, 2k) ∪ {∗} (respec-
tively, in H0

x(0, k) ∪ {∗}). Obviously, F1(∗) = ∗.
In [33], according to the parity of x1, two crucial
functions are defined as follows. For x1 = 0, a bijec-
tion between {k+ 1, k+ 2, . . . , 2k, ∗} and H1

x ∪ {∗}
is given by

R3: For x1 = 1 and i ∈ H1
x(k, 2k) ∪ {∗}, if the

number of ‘1’ in H1
x(k, 2k) is no more than k/2,

then it maps i to F1(`) where ` is the next po-
sition of ‘1’ or ‘∗’ in the cyclic order; otherwise,
it maps i to F1(i). (cf. Eqs.(2.4), (2.5), (2.6),
(2.7) and (2.8))

R4: For x1 = 1 and i ∈ H0
x(k, 2k), if the number

of ‘0’ in H0
x(k, 2k) is no more than k/2 + 1,

then it maps i to the next position of ‘0’ in the
cyclic order; otherwise, it maps i to itself. (cf.
Eqs.(2.9), (2.10) and (2.11))

For instance, if x = 0101010011, then
|H0

x(5, 10)| = |{7, 8}| = 2 6 5/2 + 1 and
|H1

x(5, 10)| = |{6, 9, 10}| = 3 > 5/2. In this
case, we have next0

x(i) = i for i ∈ {6, 9, 10} (cf.
Eq.(1.3)), next0

x(7) = F0(8) = 4 (cf. Eq.(1.8)),
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next0
x(8) = F0(7) = 2 (cf. Eq.(1.9)), and

next0
x(∗) = ∗ (cf. Eq.(1.7)). Also, if x =

1011010010, then |H0
x(5, 10)| = |{7, 8, 10}| = 3 6

5/2+1 and |H1
x(5, 10)| = |{6, 9}| = 2 6 5/2. In this

case, we have next1
x(6) = F1(9) = 5 (cf. Eq.(2.4)),

next1
x(7) = 8 and next1

x(8) = 10 (cf. Eq.(2.9)),
next1

x(9) = ∗ (cf. Eq.(2.5)), next1
x(10) = 7

(cf. Eq.(2.10)), and next1
x(∗) = F1(6) = 2 (cf.

Eq.(2.7)).

For i ∈ {k + 1, k + 2, . . . , 2k, ∗}, let Ti denote
the spanning tree such that the root and its unique
child are connected by an edge with label i. The
construction can be carried out by describing the
parent of each node x(6= 0k1k) ∈ FHS(2k, k) in
each spanning tree.

Algorithm Constructing-ISTs
1: for each i ∈ {k + 1, k + 2, . . . , 2k, ∗} do
2: for each node x = x1x2 · · ·x2k(6= 0k1k) in

FHS(2k, k) do
3: let j = nextb

x(i), where b = x1 ∈ {0, 1};
4: parent(Ti, x) = ρj(x);

Figure 2: Algorithm for constructing k+1 spanning
trees in FHS(2k, k).

Note that the set of k+1 ISTs can be constructed
simultaneously in parallel. In fact, according to the
algorithm, we provide a fully parallelized approach
for the construction of each spanning tree. For k =
3, 4, the sets of spanning trees we constructed are
the same as those in [33], and thus the reader can
refer therein to view the case of k = 3.

3 Analysis of the heights of
ISTs

For notational convenience, we write Hb
x instead of

Hb
x(k, 2k) for b ∈ {0, 1} in this section. Note that
|H0

x|+ |H1
x| = k. Firstly, we prove the reachability

between every node x(6= r) and the root r = 0k1k in
Ti, thereby proving the existence of a unique path
from x to the root in the tree.

Lemma 1. For each i ∈ {k + 1, k + 2, . . . , 2k, ∗},
Ti is a spanning tree rooted at r = 0k1k in
FHS(2k, k).

Proof. Let x(6= r) ∈ FHS(k, 2k) be any node
with binary string x = x1x2 · · ·x2k. By the rule of
our algorithm, x is adjacent to ρj(x) in Ti, where
j = nextb

x(i) and b = x1. Suppose that H0
x =

{j1, j2, . . . , js} with j1 < j2 < · · · < js and H1
x =

{`1, `2, . . . , `t} with `1 < `2 < · · · < `t, where s +
t = k. We assume that the index arithmetic of jp
(respectively, `q) is taken modulo s (respectively,
t). Consider the following four cases:

Case 1: i ∈ H0
x and |H0

x| 6 k/2 + 1. There are
two subcases as follows.

Case 1.1: x1 = 1. By R4, we suppose that
there exists jp ∈ H0

x such that next1
x(i) = jp

(i.e., i = jp−1) and let y = ρjp(x) = y1y2 · · · y2k.
Clearly, y1 = xjp = 0, yjp = x1 = 1, and H0

y =
{j1, j2, . . . , jp−1, jp+1, . . . , js}. Since y1 = 0, i ∈ H0

y

and |H0
y | 6 k/2 + 1, by R2, we let j = F0(jp+1) =

next0
y(i) and y′ = ρj(y) = y′1y

′
2 · · · y′2k. Clearly,

y′1 = yj = 1, y′j = y1 = 0, and H0
y′ = H0

y . Again,

since y′1 = 1, i ∈ H0
y′ and |H0

y′ | 6 k/2 + 1, by R4,

we have jp+1 = next1
y′(i) and let z = ρjp+1

(y′) =
z1z2 · · · z2k. Clearly, z1 = y′jp+1

= 0, zjp+1
= y′1 =

1, and H0
z = {j1, j2, . . . , jp−1, jp+2, . . . , js}. By this

way, we can find the unique path P connecting x
and r in Ti as follows:

P : x
jp

−−−→ y
F0(jp+1)

−−−→ y′
jp+1

−−−→ z
F0(jp+2)

−−−→ · · ·
F0(jp−1)

−−−→

(10k−11i−k−1012k−i)
i=jp−1

−−−→ r(= 0k1k).

Case 1.2: x1 = 0. By R2, we let j = F0(jp) =
next0

x(i) for some 1 6 p 6 s and let y = ρj(x) =
y1y2 · · · y2k. Clearly, y1 = xj = 1, yj = x1 = 0, and
H0

y = H0
x. Since y1 = 1, i ∈ H0

y and |H0
y | 6 k/2+1,

this shows that y is in the situation of Case 1.1. Let
P be the path connecting y and r in such a case.
Therefore, we can find the unique path Ti[x, r] by

concatenating x
j−→ y and P .

Case 2: i ∈ H1
x ∪{∗} and |H1

x| 6 k/2. There are
two subcases as follows.

Case 2.1: x1 = 0. This case implies H1
x 6= ∅. By

R1, either next0
x(i) = ∗ or there exists `q ∈ H1

x

such that next0
x(i) = `q. Let y = ρ`q (x) =

y1y2 · · · y2k. If next0
x(i) = ∗, then y1 = x̄1 = 1.

Since H1
x 6= ∅, it follows that i ∈ H1

x. In this case,
since y1 = 1, i ∈ H0

y and |H0
y | = |H1

x| 6 k/2, this
shows that y is in the situation of Case 1.1. Let
P be the path connecting y and r in such a case.
Therefore, we can find the unique path Ti[x, r] by

concatenating x
∗−→ y and P . On the other hand

(i.e., i = `q−1), we have y1 = x`q = 1, y`q = x1 = 0,
and H1

y = {`1, `2, . . . , `q−1, `q+1, . . . , `t}. Since
y1 = 1, i ∈ H1

y and |H1
y | 6 k/2, by R3, we

let j = F1(`q+1) = next1
y(i) and y′ = ρj(y) =

y′1y
′
2 · · · y′2k. Clearly, y′1 = yj = 0, y′j = y1 = 1,

and H1
y′ = H1

y . Again, since y′1 = 0, i ∈ H1
y′ and

|H1
y′ | 6 k/2, by R1, we have `q+1 = next0

y′(i)
and let z = ρ`q+1

(y′) = z1z2 · · · z2k. Clearly,
z1 = y′`q+1

= 1, z`q+1
= y′1 = 0, and H1

z =

{`1, `2, . . . , `q−1, `q+2, . . . , `t}. We can repeat a sim-
ilar process until the path passes through an edge
with label ∗ that connects nodes w̄ and w, where
w = ρ∗(w̄) = w1w2 · · ·w2k. Let Q be the path
described as above:
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Q : x
`q

−−−→ y
F1(`q+1)

−−−→ y′
`q+1

−−−→ z
F1(`q+2)

−−−→ · · ·
F1(`t)
−−−→

v′
`t

−−−→ w̄
∗

−−−→ w.

Clearly, we have w1 = 0, i ∈ H0
w =

{`1, `2, . . . , `q−1} and |H0
w| 6 k/2. Thus, w is in

the situation of Case 1.2. Let P be the path con-
necting w and r in such a case. Therefore, we can
find the unique path Ti[x, r] by concatenating Q
and P .

Case 2.2: x1 = 1. By R3, we let j = F1(`q) =
next1

x(i) for some `q ∈ H1
x ∪ {∗} and let y =

ρj(x) = y1y2 · · · y2k. If j = ∗, then y1 = x̄1 = 0. In
this case, either i = ∗ (i.e., H1

x = ∅) or i = `t ∈ H1
x.

If i = ∗, then x(= 1k0k)
∗−→ r is the desired path.

Otherwise, i ∈ H1
x implies i ∈ H0

y . Since y1 = 0,
i ∈ H0

y and |H0
y | = |H1

x| 6 k/2, this shows that y
is in the situation of Case 1.2. Let Q be the path
connecting y and r in such a case. Therefore, we
can find the unique path Ti[x, r] by concatenating

x
∗−→ y and Q. On the other hand (i.e., j 6= ∗),

we have y1 = xj = 0 and yj = x1 = 1. Since
y1 = 0, i ∈ H1

y ∪ {∗} and |H1
y | = |H1

x| 6 k/2, this
shows that y is in the situation of Case 2.1. Let
Q be the path connecting y and r in such a case.
Therefore, we can find the unique path Ti[x, r] by

concatenating x
j−→ y and Q.

Case 3: i ∈ H0
x and |H0

x| > k/2 + 1. There are
two subcases as follows.

Case 3.1: x1 = 1. By R4, we have next1
x(i) = i.

Let y = ρi(x) = y1y2 · · · y2k. Clearly, y1 = xi = 0
and yi = x1 = 1. Since y1 = 0, i ∈ H1

y and |H1
y | =

k − (|H0
x| − 1) < k/2, this shows that y is in the

situation of Case 2.1. Let Q be the path connecting
y and r in such a case. Therefore, we can find the

unique path Ti[x, r] by concatenating x
i−→ y and

Q.

Case 3.2: x1 = 0. By R2, we let j = F0(i) =
next0

x(i) and y = ρj(x) = y1y2 · · · y2k. Clearly,
y1 = xj = 1, yj = x1 = 0, and H0

y = H0
x. Since

y1 = 1, i ∈ H0
y and |H0

y | > k/2 + 1, this shows that
y is in the situation of Case 3.1. Let P be the path
connecting y and r in such a case. Therefore, we
can find the unique path Ti[x, r] by concatenating

x
j−→ y and P .

Case 4: i ∈ H1
x ∪{∗} and |H1

x| > k/2. There are
two subcases as follows.

Case 4.1: x1 = 0. By R1, we have next0
x(i) =

i. Let y = ρi(x) = y1y2 · · · y2k. If i = ∗, then
y1 = x̄1 = 1. In this case, since y1 = 1, i = ∗
and |H1

y | = k − |H1
x| < k/2, this shows that y is

in the situation of Case 2.2. Let P be the path
connecting y and r in such a case. Therefore, we
can find the unique path Ti[x, r] by concatenating

x
∗−→ y and P . On the other hand (i.e., i 6= ∗),

we have y1 = xi = 1 and yi = x1 = 0. Since
y1 = 1, i ∈ H0

y and |H0
y | = |H0

x|+ 1 < k/2 + 1, this
shows that y is in the situation of Case 1.1. Let
P be the path connecting y and r in such a case.
Therefore, we can find the unique path Ti[x, r] by

concatenating x
i−→ y and P .

Case 4.2: x1 = 1. By R3, we let j = F1(i) =
next1

x(i) and y = ρj(x) = y1y2 · · · y2k. If i = ∗,
then j = ∗, and thus y1 = x̄1 = 0. Since y1 = 0,
i = ∗ and |H1

y | = k − |H1
x| < k/2, this shows that

y is in the situation of Case 2.1. Let Q be the path
connecting y and r in such a case. Therefore, we
can find the unique path Ti[x, r] by concatenating

x
∗−→ y and Q. On the other hand (i.e., i 6= ∗), we

have y1 = xj = 0 and yj = x1 = 1. Since y1 = 0,
i ∈ H1

y and |H1
y | = |H1

x| > k/2, this shows that y
is in the situation of Case 4.1. Let Q be the path
connecting y and r in such a case. Therefore, we
can find the unique path Ti[x, r] by concatenating

x
j−→ y and Q. �

According to Lemma 1, we can determine the
length of the unique path from a node x =
x1x2 · · ·x2k−1x2k to r in each spanning tree. We
summarize the length of Ti[x, r] in Table 1. From
this table, we can compute the longest paths in each
tree. For Ti with i 6= ∗, the length of a longest
path is k + 2, which occurs in Case 1.2 (i.e., when
xi = x1 = 0 and |H0

x| = k/2+1). For T∗, the length
of a longest path is k+ 1, which occurs in Case 2.2
(i.e., when x1 = 1 and |H1

x| = k/2). Let height(T )
denote the height of a tree T . Therefore, we have
the following lemma.

Table 1: The length of the unique path from a node
x to r = 0k1k in Ti.

Conditions cf. Lemma 1 Length of Ti[x, r]

i ∈ H0
x and x1 = 1 Case 1.1 2|H0

x| − 1

|H0
x| 6 k/2 + 1 x1 = 0 Case 1.2 2|H0

x|

i ∈ H1
x ∪ {∗} and x1 = 0 Case 2.1 2|H1

x|

|H1
x| 6 k/2 x1 = 1 Case 2.2 2|H1

x|+ 1

i ∈ H0
x and x1 = 1 Case 3.1 2|H1

x|+ 3

|H0
x| > k/2 + 1 x1 = 0 Case 3.2 2|H1

x|+ 4

i ∈ H1
x ∪ {∗} and x1 = 0 Case 4.1 2|H0

x|+ 2

|H1
x| > k/2 x1 = 1 Case 4.2 2|H0

x|+ 3

Lemma 2. For k > 3, the heights of the con-
structed spanning trees are as follows:

height(Ti)=

{
k + 2 if i ∈ {k + 1, k + 2, . . . , 2k};
k + 1 if i = ∗
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Comparing with the heights of ISTs given in [33],
we can see that the results are the same for k = 3, 4.
However, for k > 5, if i 6= ∗, then height(Ti) =
k + 2 < 2k − 2. Thus, the heights of ISTs are
significantly improved.

4 Proof of independency

In this section, we show the independency of ISTs.
Before this, we need the following notation. Let
r = 0k1k and x(6= r) ∈ FHS(2k, k) be any node
with binary string x = x1x2 . . . x2k−1x2k. Suppose
that P = Ti[x, r] and Q = Tj [x, r]. If x1 = 1,
we let i′ = next1

x(i) and j′ = next1
x(j); other-

wise, we let i′ = next0
x(i) and j′ = next0

x(j).
In what follows, we always assume that y =
y1y2 · · · y2k−1y2k is any node in P \ {x, r} and
z = z1z2 · · · z2k−1z2k is any node in Q \ {x, r}. In
particular, let y̌ = y̌1y̌2 · · · y̌2k−1y̌2k (respectively,
ž = ž1ž2 · · · ž2k−1ž2k) be the node adjacent to x in
P (respectively, in Q) and let ŷ = ŷ1ŷ2 · · · ŷ2k−1ŷ2k
(respectively, ẑ = ẑ1ẑ2 · · · ẑ2k−1ẑ2k) be the node ad-
jacent to r in P (respectively, in Q). Also, we use
P (u, v) to denote the subpath of P between two
nodes u, v ∈ V (P ). Moreover, for b ∈ {0, 1} and
1 6 ` 6 2k, we write y`|P (u, v) = b to mean that
the bit y` is assigned to b for every node y ∈ P (u, v).
Similarly, we can define Q(u, v) and z`|Q(u, v) = b
by the same way.

Lemma 3. If i, j ∈ H0
x with i 6= j, then P ||Q.

Proof. We consider the following two cases:

Case 1: |H0
x| 6 k/2 + 1. Since |H0

x| > 2, by R2
or R4, we have i′ 6= i, j′ 6= j and i′ 6= j′. Note
that it is possible i′ = j or j′ = i. There are two
subcases as follows.

Case 1.1: x1 = 1. We observe paths P and Q
constructed in Case 1.1 of Lemma 1. Since x1 = 1
and P takes the first link with label i′ to connect x,
we have y̌i′ = 1. Moreover, since P never changes
the bit yi′ in the succedent path again, it follows
that yi′ |P (y̌, ŷ) = 1. In addition, since it never
changes the bit yi in P until the last link connecting
to r, we have yi|P (y̌, ŷ) = 0. On the other hand, let
v, v′ ∈ V (Q) be nodes such that v′ = ρi(v). Since
it has not dealt with the bit zi′ for every node in
Q(ž, v), we have zi′ |Q(ž, v) = 0. Also, sinceQ(v′, ẑ)
has dealt with the bit zi, we have zi|Q(v′, ẑ) = 1.
This shows that P (y̌, ŷ) ∩ (Q(ž, v) ∪ Q(v′, ẑ)) = ∅.
Thus, P ||Q.

Case 1.2: x1 = 0. We observe paths P and
Q constructed in Case 1.2 of Lemma 1. Clearly,
y̌ = ρF0(i′)(x) and ž = ρF0(j′)(x). Since F0(i′) 6=
F0(j′), it implies y̌ 6= ž. Also, since y̌F0(j′) = 1
and zF0(j′)|Q(ž, ẑ) = 0, it follows y̌ /∈ Q(ž, ẑ). Sim-
ilarly, since žF0(i′) = 1 and yF0(i′)|P (y̌, ŷ) = 0, it

follows ž /∈ P (y̌, ŷ). The remaining proof is similar
to Case 1.1.

Case 2: |H0
x| > k/2 + 1. By R2 or R4, we have

i′ = i and j′ = j. There are two subcases as follows.

Case 2.1: x1 = 1. We observe paths P and Q
constructed in Case 3.1 of Lemma 1. Let u, u′ ∈
V (P ) be nodes such that u′ = ρ∗(u) and let v, v′ ∈
V (Q) be nodes such that v′ = ρ∗(v). Since x1 = 1
and P takes the first link with label i to connect x,
we have yi|P (y̌, u) = 1 and it follows yi|P (u′, ŷ) =
0. On the other hand, since it has not dealt with the
bit zi for every node inQ(ž, v), we have zi|Q(ž, v) =
0 and it follows zi|Q(v′, ẑ) = 1. Also, since k > 3
and |H0

x| > k/2 + 1, there is a position m ∈ H0
x \

{i, j} such that xm = 0. Clearly, ym|P (y̌, u) =
zm|Q(ž, v) = 0 and ym|P (u′, ŷ) = zm|Q(v′, ẑ) =
1. This shows that (P (y̌, u) ∪ P (u, ŷ)) ∩ (Q(ž, v) ∪
Q(v′, ẑ)) = ∅. Thus, P ||Q.

Case 2.2: x1 = 0. We observe paths P and Q
constructed in Case 3.2 of Lemma 1. Clearly, y̌ =
ρF0(i)(x) and ž = ρF0(j)(x). Since F0(i) 6= F0(j),
it implies y̌ 6= ž. Similar to Case 2.1, there is a
position m ∈ H0

x \{i, j} such that y̌m = žm = 0 and
ym|P (u′, ŷ) = zm|Q(v′, ẑ) = 1. Also, since y̌F0(j) =
žF0(i) = 1 and yF0(i)|P (y̌, u) = zF0(j)|Q(ž, v) = 0, it
follows y̌ /∈ Q(ž, ẑ) and ž /∈ P (y̌, ŷ). The remaining
proof is similar to Case 2.1. �

Lemma 4. If i ∈ H0
x and j ∈ H1

x, then P ||Q.

Proof. We consider the following three cases:

Case 1: |H0
x| < k/2 (i.e., |H1

x| > k/2). By R2 or
R4, if |H0

x| = 1 then i′ = i; otherwise, i′ 6= i. By
R1 or R3, we have j′ = j. There are two subcases
as follows.

Case 1.1: x1 = 1. We observe the path
P constructed in Case 1.1 of Lemma 1. Simi-
lar to Case 1.1 of Lemma 3, we can show that
yi′ |P (y̌, ŷ) = 1. In addition, since it never changes
the bit yj in the path P (y̌, ŷ), we have yj |P (y̌, ŷ) =
1. On the other hand, we observe the path Q con-
structed in Case 4.2 of Lemma 1. Clearly, ž =
ρF1(j)(x) and ži′ = xi′ = 0. Let z̃ = ρj(ž) be the
node adjacent to ž on Q. Since Q takes the last link
with label j to connect r, we have zj |Q(z̃, ẑ) = 0.
This shows that P (y̌, ŷ)∩({ž}∪Q(z̃, ẑ)) = ∅. Thus,
P ||Q.

Case 1.2: x1 = 0. We observe the path P
constructed in Case 1.2 of Lemma 1. Clearly,
y̌ = ρF0(i′)(x) and y̌j = xj = 1. Since it never
changes the bit yj in the path P (y̌, ŷ), we have
yj |P (y̌, ŷ) = 1. On the other hand, we observe the
path Q constructed in Case 4.1 of Lemma 1. Since
Q takes both the first link and the last link with
label j to connect x and r, we have zj |Q(ž, ẑ) = 0.
This shows that P (y̌, ŷ)∩Q(ž, ẑ) = ∅. Thus, P ||Q.

Case 2: k/2 6 |H0
x| 6 k/2+1 (i.e., k/2 > |H1

x| >
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k/2 − 1). Since |H0
x| > 2, by R2 or R4, we have

i′ 6= i. There are two subcases as follows.

Case 2.1: x1 = 1. We observe the path
P constructed in Case 1.1 of Lemma 1. Simi-
lar to Case 1.1 of Lemma 3, we can show that
yi′ |P (y̌, ŷ) = 1 and yi|P (y̌, ŷ) = 0. On the
other hand, we observe the path Q constructed
in Case 2.2 of Lemma 1. Clearly, ž = ρF1(j′)(x).
Let v, v′ ∈ V (Q) be nodes such that v′ = ρ∗(v).
Since it never changes the bits zi′ and zi in the
path Q(ž, v), we have zi′ |Q(ž, v) = zi|Q(ž, v) = 0.
It follows that zi|Q(v′, ẑ) = 1. This shows that
P (y̌, ŷ) ∩ (Q(ž, v) ∪Q(v′, ẑ)) = ∅. Thus, P ||Q.

Case 2.2: x1 = 0. We observe the path P
constructed in Case 1.2 of Lemma 1. Clearly,
y̌ = ρF0(i′)(x). Thus, y̌F0(i′) = x1 = 0 and
y̌i′ = xi′ = 0. On the other hand, we observe
the path Q constructed in Case 2.1 of Lemma 1.
Let v, v′ ∈ V (Q) be nodes such that v′ = ρ∗(v).
Since it never changes the bits zF0(i′) and zi′ in
the path Q(ž, v), we have zF0(i′)|Q(ž, v) = 1 and
zi′ |Q(ž, v) = 0. It further implies zi′ |Q(v′, ẑ) = 1.
Thus, y̌ /∈ Q(ž, v) ∪ Q(v′, ẑ). The remaining proof
is similar to Case 2.1.

Case 3: |H0
x| > k/2+1 (i.e., |H1

x| < k/2−1). By
R2 or R4, we have i′ = i. There are two subcases
as follows.

Case 3.1: x1 = 1. We observe paths P and Q
constructed in Case 3.1 and Case 2.2 of Lemma 1,
respectively. Let u, u′ ∈ V (P ) be nodes such that
u′ = ρ∗(u) and let v, v′ ∈ V (Q) be nodes such that
v′ = ρ∗(v). A proof similar to Case 2.1 of Lemma 3
shows that there is a position m ∈ H0

x \ {i, j}
such that yi|P (y̌, u) = ym|P (u′, ŷ) = zi|Q(v′, ẑ) =
zm|Q(v′, ẑ) = 1 and ym|P (y̌, u) = yi|P (u′, ŷ) =
zi|Q(ž, v) = zm|Q(ž, v) = 0. It follows that
(P (y̌, u)∪P (u, ŷ))∩ (Q(ž, v)∪Q(v′, ẑ)) = ∅. Thus,
P ||Q.

Case 3.2: x1 = 0. We observe the path P con-
structed in Case 3.2 of Lemma 1. Clearly, y̌ =
ρF0(i)(x). Thus, y̌i = xi = 0 and y̌j′ = xj′ = 1. On
the other hand, we observe the path Q constructed
in Case 2.1 of Lemma 1. Let v, v′ ∈ V (Q) be nodes
such that v′ = ρ∗(v). Since x1 = 0 and Q takes
the first link with label j′ to connect x, we have
zj′ |Q(ž, v) = 0. Also, since it never changes the bit
zi in the path Q(ž, v), we have zi|Q(ž, v) = 0 and it
follows zi|Q(v′, ẑ) = 1. Thus, y̌ /∈ Q(ž, v)∪Q(v′, ẑ).
The remaining proof is similar to Case 3.1. �

Lemma 5. If i ∈ H1
x and j ∈ H0

x, then P ||Q.

Proof. By symmetry, the proof is similar to that
in Lemma 4. �

Lemma 6. If i, j ∈ H1
x with i 6= j, then P ||Q.

Proof. We consider the following two cases:

Case 1: |H1
x| 6 k/2. Since |H1

x| > 2, by R1 or
R3, we have i′ 6= i, j′ 6= j and i′ 6= j′. Note that it
is possible i′ = j or j′ = ∗. There are two subcases
as follows.

Case 1.1: x1 = 0. We observe paths P and Q
constructed in Case 2.1 of Lemma 1. Since P deals
with links with labels i′, j, j′, ∗, i in sequence, for
` ∈ {j, j′∗} we let u`, u

′
` ∈ V (P ) be nodes such that

u′` = ρ`(u`). Clearly, we have the following setting
for bits:

yi|P (y̌, uj) = 1, yi|P (u′j , uj′) = 1,
yi′ |P (y̌, uj) = 0, yi′ |P (u′j , uj′) = 0,
yj |P (y̌, uj) = 1, yj |P (u′j , uj′) = 0,
yj′ |P (y̌, uj) = 1, yj′ |P (u′j , uj′) = 1,

yi|P (u′j′ , u∗) = 1, yi|P (u′∗, ŷ) = 0,

yi′ |P (u′j′ , u∗) = 0, yi′ |P (u′∗, ŷ) = 1,

yj |P (u′j′ , u∗) = 0, yj |P (u′∗, ŷ) = 1,

yj′ |P (u′j′ , u∗) = 0, yj′ |P (u′∗, ŷ) = 1.

Similarly, since Q deals with links with labels
j′, ∗, i, i′, j in sequence, for ` ∈ {∗, i, i′} we let
v`, v

′
` ∈ V (Q) be nodes such that v′` = ρ`(v`).

Clearly, we have the following setting for bits:

zi|Q(ž, v∗) = 1, zi|Q(v′∗, vi) = 0,
zi′ |Q(ž, v∗) = 1, zi′ |Q(v′∗, vi) = 0,
zj |Q(ž, v∗) = 1, zj |Q(v′∗, vi) = 0,
zj′ |Q(ž, v∗) = 0, zj′ |Q(v′∗, vi) = 1,

zi|Q(v′i, vi′) = 1, zi|Q(v′i′ , ẑ) = 1,
zi′ |Q(v′i, vi′) = 0, zi′ |Q(v′i′ , ẑ) = 1,
zj |Q(v′i, vi′) = 0, zj |Q(v′i′ , ẑ) = 0,
zj′ |Q(v′i, vi′) = 1, zj′ |Q(v′i′ , ẑ) = 1.

Obviously, only P (u′j , uj′) and Q(v′i, vi′) have the

same setting. Since x 6= 0k1k, there is a position
m ∈ H0

x such that xm = 0. Since P deals with
links j and j′ before ∗, we have ym|P (u′j , uj′) =
0. By contrast, since Q deals with links i and i′

after ∗, we have zm|Q(v′i, vi′) = 1. This shows that
P (y̌, ŷ) ∩Q(ž, ẑ) = ∅. Thus, P ||Q.

Case 1.2: x1 = 1. We observe paths P and Q
constructed in Case 2.2 of Lemma 1. Clearly, y̌ =
ρF1(i′)(x) and ž = ρF1(j′)(x). Since F1(i′) 6= F1(j′),
it implies y̌ 6= ž. Let u, u′ ∈ V (P ) be nodes such
that u′ = ρ∗(u) and let v, v′ ∈ V (Q) be nodes such
that v′ = ρ∗(v). Since y̌j = 1 and y̌F1(j′) = 0 while
zF1(j′)|Q(ž, v) = 1 and zj |Q(v′, ẑ) = 0, it follows
y̌ /∈ Q(ž, ẑ). Similarly, since ži = 1 and žF1(i′) =
0 while yF1(i′)|P (y̌, u) = 1 and yi|P (u′, ŷ) = 0, it
follows ž /∈ P (y̌, ŷ). The remaining proof is similar
to Case 1.1.

Case 2: |H1
x| > k/2. By R1 or R3, we have i′ = i

and j′ = j. There are two subcases as follows.

Case 2.1: x1 = 0. We observe paths P and Q
constructed in Case 4.1 of Lemma 1. Since P takes
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both the first link and the last link with label i to
connect x and r, we have yi|P (y̌, ŷ) = 0. On the
other hand, since it never changes the bit zi in the
path Q(ž, ẑ), we have zi|Q(ž, ẑ) = 1. This shows
that P (y̌, ŷ) ∩Q(ž, ẑ) = ∅. Thus, P ||Q.

Case 2.2: x1 = 1. We observe paths P and
Q constructed in Case 4.2 of Lemma 1. Clearly,
y̌ = ρF1(i)(x) and ž = ρF1(j)(x). Since F1(i) 6=
F1(j), it implies y̌ 6= ž. Clearly, y̌j = ži = 1. Let
ỹ = ρi(y̌) be the node adjacent to y̌ on P and let
z̃ = ρj(ž) be the node adjacent to ž on Q. Since
ỹi = y̌1 = xF1(i) = 0 and P takes the last link
with label i to connect r, we have yi|Q(ỹ, ŷ) = 0.
Thus, ži = 1 implies ž /∈ P (ỹ, ŷ). Similarly, since
z̃j = ž1 = xF1(j) = 0 and Q takes the last link with
label j to connect r, we have zj |Q(z̃, ẑ) = 0. Thus,
y̌j = 1 implies y̌ /∈ Q(z̃, ẑ). The remaining proof is
similar to Case 2.1. �

Lemma 7. If i ∈ H0
x and j = ∗, then P ||Q.

Proof. We consider the following three cases:

Case 1: |H0
x| < k/2 (i.e., |H1

x| > k/2). By R2 or
R4, if |H0

x| = 1 then i′ = i; otherwise, i′ 6= i. By R1
or R3, since |H1

x| > k/2, we have j′ = ∗ and there
is a position m ∈ H1

x such that xm = 1. We observe
the path P constructed in Case 1.1 or Case 1.2 of
Lemma 1. Since it never changes the bits ym in
P , we have ym|P (y̌, ŷ) = 1. On the other hand,
we observe the path Q constructed in Case 4.1 or
Case 4.2 of Lemma 1. Since Q takes the first link
with label ∗ to connect x, we have žm = x̄m = 0.
Moreover, since it never changes the bit zm in the
succedent path of Q until the last link with label ∗
to connect r, we have zm|Q(ž, ẑ) = 0. This shows
that P (y̌, ŷ) ∩Q(ž, ẑ) = ∅. Thus, P ||Q.

Case 2: k/2 6 |H0
x| 6 k/2+1 (i.e., k/2 > |H1

x| >
k/2 − 1). Since |H0

x| > 2, by R2 or R4, we have
i′ 6= i. Also, since |H1

x| > 1, by R1 or R3, we have
j′ ∈ H1

x. There are two subcases as follows.

Case 2.1: x1 = 0. We observe the path P con-
structed in Case 1.2 of Lemma 1. Since it never
changes the bit yj′ in P , we have yj′ |P (y̌, ŷ) = 1.
On the other hand, we observe the path Q con-
structed in Case 2.1 of Lemma 1. Since Q takes
the first link with label j′ to connect x, we have
žj′ = x̄j′ = 0. Moreover, since it never changes the
bit zj′ in the succedent path of Q until the last link
with label ∗ to connect r, we have zj′ |Q(ž, ẑ) = 0.
This shows that P (y̌, ŷ)∩Q(ž, ẑ) = ∅. Thus, P ||Q.

Case 2.2: x1 = 1. We observe the path P con-
structed in Case 1.1 of Lemma 1. Since P takes
the first link with label i′ to connect x, we have
y̌i′ = x1 = 1. Moreover, since it never changes
the bit yi′ in the succedent path of P , it follows
yi′ |P (y̌, ŷ) = 1. On the other hand, we observe
the path Q constructed in Case 2.2 of Lemma 1.

Clearly, ž = ρF1(j′)(x) and ži′ = xi′ = 0. Thus,
ž /∈ P (y̌, ŷ). The remaining proof is similar to
Case 2.1.

Case 3: |H0
x| > k/2 + 1 (i.e., |H1

x| < k/2 − 1).
By R2 or R4, we have i′ = i. Also, by R1 or
R3, we have j′ = j = ∗. Let u, u′ ∈ V (P )
be nodes such that u′ = ρ∗(u). If x1 = 1 (re-
spectively, x1 = 0), a proof similar to Case 2.1
(respectively, Case 2.2) of Lemma 3 shows that
(P (y̌, u) ∪ P (u′, ŷ)) ∩ (Q(ž, ẑ)) = ∅. Thus, P ||Q.
�

Lemma 8. If i ∈ H1
x and j = ∗, then P ||Q.

Proof. We consider the following two cases:

Case 1: |H1
x| > k/2. By R1 or R3, we have i′ = i

and j′ = ∗. Since |H1
x| > k/2, there is a position

m ∈ H1
x \ {i} such that xm = 1. We observe paths

P and Q constructed in Case 4.1 or Case 4.2 of
Lemma 1. It is clear that the proof is similar to
Case 1 of Lemma 7.

Case 2: |H1
x| 6 k/2. By R1 or R3, we have

i′ 6= i, j′ 6= j and i′ 6= j′. Note that it is possible
j′ = i, and if H1

x(i, 2k) = ∅ then i′ = ∗. In the
following, if i′ = ∗, we omit the setting of yi′ in P
and zi′ in Q. There are two subcases as follows.

Case 2.1: x1 = 0. We observe paths P and Q
constructed in Case 2.1 of Lemma 1. Let u, u′ ∈
V (P ) be nodes such that u′ = ρ∗(u). Since P
takes the first link with label i′ to connect x, we
have y̌i′ = x1 = 0 and y̌i = 1. Moreover, since P
takes the last link with label i to connect r, it is
easy to check that yi|P (y̌, u) = yi′ |P (u′, ŷ) = 1 and
yi′ |P (y̌, u) = yi|P (u′, ŷ) = 0. On the other hand,
Q starts from the link with label j′ and ends to the
link with label ∗. Let v, v′, w, w′ ∈ V (Q) be nodes
such that v′ = ρi(v) and w′ = ρi′(w). Clearly,
ži = ži′ = 1, and thus zi|Q(ž, v) = zi′ |Q(ž, v) = 1.
This implies zi|Q(v′, w) = 0, zi′ |Q(v′w) = 1, and
zi|Q(w′, ẑ) = zi′ |Q(w′, ẑ) = 0. Obviously, the
setting of bits yi and yi′ in P (u′, ŷ) and the set-
ting of bits zi and zi′ in Q(v′, w) are the same.
We now distinguish nodes between P (u′, ŷ) and
Q(v′, w). Since |H1

x| 6 k/2, there is a position
m ∈ H0

x such that xm = 0. Clearly, ym|P (u′, ŷ) = 1
and zm|Q(v′, w) = 0. This shows that (P (y̌, u) ∪
P (u′, ŷ))∩(Q(ž, v)∪Q(v′, w)∪Q(w′, ẑ)) = ∅. Thus,
P ||Q.

Case 2.2: x1 = 1. We observe paths P and Q
constructed in Case 2.2 of Lemma 1. Let u, u′ ∈
V (P ) be nodes such that u′ = ρ∗(u). Since |H1

x| 6
k/2, there is a position m ∈ H0

x such that xm = 0.
Clearly, y̌ = ρF1(i′)(x) and ž = ρF1(j′)(x). Since
F1(i′) 6= F1(j′), it implies y̌ 6= ž. Clearly, y̌j′ =
ži′ = 1 and y̌m = žm = 0. Let ỹ = ρi′(y̌) be
the node adjacent to y̌ on P and let z̃ = ρj′(ž) be
the node adjacent to ž on Q. Since z̃j′ = ž1 =
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xF1(j′) = 0 and Q takes the last link with label
∗ to connect r, we have zj′ |Q(z̃, ẑ) = 0. Thus,
y̌j′ = 1 implies y̌ /∈ Q(z̃, ẑ). In addition, since
ỹi′ = y̌1 = xF1(i′) = 0 and y̌m = 0, it implies
yi′ |P (ỹ, u) = ym|P (ỹ, u) = 0 and ym|P (u′, ŷ) = 1.
Thus, ži′ = 1 implies ž /∈ P (ỹ, u) and žm = 0
implies ž /∈ P (u′, ŷ). The remaining proof is similar
to Case 2.1. �

From Lemma 3 to Lemma 8, we conclude that
ISTs constructed in this paper are independent.
According to Lemmas 1, 2 and the result of inde-
pendency, we obtain the following main theorem.

Theorem 9. Let N =
(
2k
k

)
. For FHS(2k, k), Al-

gorithm Constructing-ISTs can correctly con-
struct k + 1 ISTs with the heights at most k + 2
in O(kN) time. In particular, the algorithm can be
parallelized on FHS(2k, k) by using N processors
to run in O(k) time.

5 Concluding remarks

The fault diameter [21] and the wide diameter [14]
are important measurement for reliability and ef-
ficiency of interconnection networks. Note that,
for a network G, the fault diameter and the wide
diameter of G are bounded below by its diameter
plus one, and are bounded above by the maximum
height of a set of κ(G) ISTs with an arbitrary root,
where κ(G) is the connectivity of G. Kim et al. [22]
showed that FHS(2k, k) has the diameter k, and
Yang and Chang [33] showed that FHS(2k, k) has
the connectivity k + 1. In this paper, we provide
a set of k + 1 ISTs with the heights at most k + 2
in FHS(2k, k). As a result, we conclude that the
fault diameter (respectively, the wide diameter) of
FHS(2k, k) is either k+ 1 or k+ 2. An interesting
question is to clarify the accurateness for these two
parameters of FHS(2k, k).
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