
A Simple Parallel Algorithm for Constructing

Independent Spanning Trees on Twisted Cubes∗

Ting-Jyun Yang1 Jinn-Shyong Yang2 Jou-Ming Chang1,† An-Hang Chen1

1 Institute of Information and Decision Sciences,

National Taipei College of Business, Taipei, Taiwan, ROC

2 Department of Information Management,

National Taipei College of Business, Taipei, Taiwan, ROC

Abstract

In 1989, Zehavi and Itai [46] proposed the follow-
ing conjecture: a k-connected graph G must pos-
sess k independent spanning trees (ISTs for short)
with an arbitrary node as the common root. An
n-dimensional twisted cube, denoted by TQn, is
a variation of hypercubes with connectivity n to
achieving some improvements of structure proper-
ties. Recently, Yang [42] proposed an algorithm for
constructing n edge-disjoint spanning trees in TQn

for any odd integer n > 3. Moreover, he showed
that half of them are ISTs. At a later stage, Wang
et al. [32] confirm the ISTs conjecture by provid-
ing an O(N logN) algorithm to construct n ISTs
rooted at an arbitrary node on TQn, where N = 2n

is the number of nodes in TQn. However, this algo-
rithm is executed in a recursive fashion and thus are
hard to be parallelized. In this paper, we present
a non-recursive and fully parallelized approach to
construct n ISTs rooted at an arbitrary node of
TQn in O(logN) time using N processors. In par-
ticular, the constructing rule of spanning trees is
simple and the proof of independency is easier than
ever before.

Keyword: independent spanning trees; intercon-
nection networks; twisted cubes;

1 Introduction

A set of spanning trees in a graph G is said to
be independent (ISTs for short) if all the trees are
rooted at the same node r such that, for any other
node v(6= r) in G, the paths from v to r in any
two trees are internally node-disjoint (i.e., there

∗This research was partially supported by National Sci-
ence Council under the Grants NSC102-2221-E-141-002 and
NSC102-2221-E-141-001-MY3.
†Corresponding author. Email: spade@mail.ntcb.edu.tw

exists no common node in the two paths except
the two end nodes v and r). Constructing multi-
ple spanning trees in networks have been studied
from not only the theoretical point of view but also
some practical applications such as fault-tolerant
broadcasting [2, 19] and secure message distribu-
tion [2, 29,35].

For a graph G, its vertex set and edge set are
denoted by V (G) and E(G), respectively. If F is
a subset of V (G), we denote G − F as the graph
obtained from G by removing F . A graph G is k-
connected if |V (G)| > k and G−F is connected for
every subset F ⊆ V (G) with |F | < k. Zehavi and
Itai [46] proposed the following conjecture: If r is
an arbitrary node of a k-connected graph G, then G
possess k ISTs rooted at r. Till now, this conjecture
has been shown to be true for k-connected graphs
with k 6 4 (see [19], [9, 46] and [10] for k = 2, 3, 4,
respectively), but it is still open for k > 5. In
particular, this conjecture has been confirmed for
several restricted classes of graphs, e.g., graphs re-
lated to planarity [17, 18, 26, 27], graphs defined by
Cartesian product [4,28,30,31,34,37,41], variations
of hypercubes [5–8, 25, 32, 33, 35], special Cayley
graphs [21,22,29,36,39,40], and others [20,38].

The family of twisted cubes was first introduced
by Hilbers et al. [15] as a variation of hypercubes.
Although Abraham and Padmanabhan [1] pointed
out asymmetry of twisted cubes, it has been shown
that twisted cubes possess some improvements of
structure properties in contrast to hypercubes. For
instance, Chang et al. [3] showed that the diam-
eter, wide diameter, and faulty diameter of n-
dimensional twisted cube, denoted by TQn, are
about half of those of the n-dimensional hypercube.
More research results on TQn can be found in the
literature, e.g., the studies of Hamiltonian proper-
ties [16, 45], path embedding [11, 13], cycle embed-
ding [12], mesh and torus embedding [23, 24], and

The 31st Workshop on Combinatorial Mathematics and Computation Theory

282

fault-tolerant embedding [13,14,43,44]. In particu-
lar, Yang [42] proposed an algorithm for construct-
ing n edge-disjoint spanning trees in TQn for any
odd integer n > 3 and showed that half of them are
ISTs. Since it is a fact stated in [3] that TQn has
the connectivity n, Wang et al. [32] proposed an al-
gorithm to construct n ISTs rooted at an arbitrary
node in O(N logN) time for TQn, where N = 2n

is the number of nodes in TQn. However, this algo-
rithm is executed in a recursive fashion and thus are
hard to be parallelized. In this paper, we present
a non-recursive and fully parallelized approach for
constructing n ISTs rooted at an arbitrary node in
TQn.

The rest of this paper is organized as follows.
Section 2 formally gives the definition of twisted
cubes and provides some useful terminologies and
notations. Section 3 presents our algorithm for con-
structing n ISTs in TQn. Section 4 proves the cor-
rectness of the algorithm. The final section contains
our concluding remarks.

2 Preliminary

Let Zn = {0, 1, . . . , n− 1}. For a binary string x =
xn−1xn−2 · · ·x0 and i ∈ Zn, we define

...
⊕(x, i) =

xi ⊕ xi−1 ⊕ · · · ⊕ x0, where ⊕ is the exclusive oper-
ation. The n-dimensional twisted cube, denoted by
TQn, is a variant of the n-dimensional hypercube
with 2n node in which each node is labeled by a
unique binary string of length n. Originally, it can
be recursively defined as follow.

Definition 1. [15] The 1-dimensional twisted cube
TQ1 is defined to be the complete graph with two
nodes labeled by 0 and 1. For an odd integer n > 3,
TQn consists of four subcubes TQ00

n−2, TQ01
n−2,

TQ10
n−2, and TQ11

n−2, where TQab
n−2 for a, b ∈ Z2

is isomorphic to TQn−2 such that V (TQab
n−2) =

{abx : x ∈ V (TQn−2)} (i.e., adding two preceding
bits a and b in the front of a node labeled by x) and
E(TQab

n−2) = {(abx, aby) : (x, y) ∈ E(TQn−2)}.
That is, V (TQn) = ∪ab∈Z2

V (TQab
n−2). Define

E(TQn) = ∪ab∈Z2
E(TQab

n−2) ∪ E′, where an edge
(u, v) ∈ E′ if and only if the two nodes u =
un−1un−2 · · ·u0 and v = vn−1vn−2 · · · v0 satisfy one
of the following conditions:

(1) u = v̄n−1vn−2 · · · v0;
(2) u = v̄n−1v̄n−2vn−3 · · · v0 for

...
⊕(u, n− 3) = 0;

(3) u = vn−1v̄n−2vn−3 · · · v0 for
...
⊕(u, n− 3) = 1.

Note that Definition 1 can only be applied for
odd integer n. Figure 1 depicts twisted cubes TQ3

and TQ5, respectively. Recently, Wang et al. [32]
showed that Definition 1 can be further extended
to any integer n > 1 by considering two types of
TQn for even integer n as follows:

01000

01001

00001

11000

11001

10001

01100 11100

01110

01011

01010

01111

11010

11111

11110

11011

01101 11101

00100 10100

00110

00011

00010

00111

10010

10111

10110

10011

00101 10101

d

e

f

a

b

c

a

b

c

d

e

f

1000000000

TQ5

000 100

110 010

011 111

001 101

TQ3

Figure 1: Twisted cubes TQ3 and TQ5.

Definition 2. [32] For an even integer n > 2,
the n-dimensional twisted cube TQn is divided into
two types: 0-type TQn and 1-type TQn, where
the former is denoted by TQ0

n and the latter is de-
noted by TQ1

n. For any integer b ∈ Z2, V (TQb
n) =

{ibx : i ∈ Z2 and x ∈ V (TQn−1)} and E(TQb
n) =

∪i∈Z2
{(ibx, iby) : (x, y) ∈ E(TQn−1)} ∪ E′, where

an edge (u, v) ∈ E′ if and only if the two nodes
u = un−1un−2 · · ·u0 and v = vn−1vn−2 · · · v0 sat-
isfy u = v̄n−1vn−2 · · · v0.

Figure 2 illustrates the two types of twisted cubes
TQ0

4 and TQ1
4, respectively. In the rest of this pa-

per, we say TQn to mean either 0-type TQn or
1-type TQn if n is even and there is no ambigu-
ity. Also, for notational convenience, a node x ∈
V (TQn) is denoted by x = (xn)xn−1xn−2 · · ·x0,
where the first bit xn enclosed by a pair of round
brackets indicates that we can omit it if n is odd.
According to Definitions 1 and 2, twisted cubes
can be equivalently defined by the following non-
recursive fashion:

The 31st Workshop on Combinatorial Mathematics and Computation Theory

283

01000

01001

11000

11001

01100 11100

01110

01011

01010

01111

11010

11111

11110

11011

01101 11101

00001 10001

00100 10100

00110

00011

00010

00111

10010

10111

10110

10011

00101 10101

1000000000

TQ0
4

TQ1
4

Figure 2: Two types of twisted cubes TQ0
4 and

TQ1
4.

Definition 3. Let n > 1 be any integer. For i ∈ Zn

and a node x ∈ V (TQn), define Ni(x) as the ith
dimensional adjacent vertex (or the i-neighbor) of
x in TQn as follows:

(1) For even i,
Ni(x) = (xn)xn−1xn−2 · · ·xi+1x̄ixi−1 · · ·x0.

(2) For odd i,

(a) if n is even and i = n− 1, then
Ni(x) = x̄nxn−1xn−2 · · ·x0;

(b) if n is odd or n(6= i + 1) is even, then

(i) if
...
⊕(x, i− 1) = 0 then Ni(x) =

(xn)xn−1 · · ·xi+2x̄i+1x̄ixi−1 · · ·x0;

(ii) if
...
⊕(x, i− 1) = 1 then Ni(x) =

(xn)xn−1 · · ·xi+1x̄ixi−1 · · ·x0.

For example, if we consider the node x = 01100 in
TQ1

4 (respectively, in TQ5), then N0(x) = 01101,
N1(x) = 01010, N2(x) = 01000, N3(x) = 11100
(respectively, N3(x) = 00100 and N4(x) = 11100).

Throughout this paper, we also use the following
notation. Two paths P and Q joining two distinct
nodes x and y are internally node-disjoint, denoted
by P ||Q, if V (P) ∩ V (Q) = {x, y}. Let T be a
spanning tree rooted at node r of TQn. The parent
of a node x(6= r) in T is denoted by parent(T, x).
For x, y ∈ V (T), the unique path from x to y is
denoted by T [x, y]. Hence, two spanning trees T
and T ′ with the same root r are ISTs if and only if
T [x, r] ||T ′[x, r] for every node x ∈ V (T) \ {r}.

3 Parallel construction of
ISTs on twisted cubes

Due to the fact that TQn is n-connected, we would
like to construct n ISTs, which implies that the
root in each spanning tree must have a unique
child. We choose a node r ∈ V (TQn) as the
root arbitrarily. For i ∈ Zn, we denote Ti as a
tree such that r takes its i-neighbor as the unique
child. Let Ni(r) = (cn)cn−1cn−2 · · · c0. For each
node x = (xn)xn−1xn−2 · · ·x0 ∈ V (TQn) \ {r} and
i ∈ Zn, we define Ii(x) = {j ∈ Zn : xj 6= cj}. We
say that x is replaceable in Ti if the following con-
ditions are fulfilled:

i(6= 0) is even, xi−1 6= ci−1 and
...
⊕(r, i− 2) = 0.

Otherwise, x is irreplaceable. Moreover, if x is re-
placeable, we let Hi(x) = Ii(x) ⊕ {i}; otherwise,
let Hi(x) = Ii(x). Also, we define the following
function:

next(i, x)

=

i if Hi(x) = ∅;
minHi(x) if Hi(x) 6= ∅ and i > maxHi(x);

min{j ∈ Hi(x) : j > i} otherwise.

That is, we regard Hi(x) as a cyclic ordered set
in increasing order. If Hi(x) = ∅ or i ∈ Hi(x), the
function outputs i; otherwise, the function outputs
the next element in the cyclic order of Hi(x) with
respect to i.

It is clear that, for each node x ∈ V (TQn) \
{r}, finding Ii(x), Hi(x), next(i, x) and deter-
mining whether x is placeable or not can be done
in O(n) time provided i is given. In Figure 3,
we present a fully parallelized algorithm for con-
structing n spanning trees with an arbitrary node
r = (rn)rn−1rn−2 · · · r0 as their common root in
TQn. For each node x = (xn)xn−1xn−2 · · ·x0 ∈
V (TQn) \ {r}, the construction can be carried out
by describing the parent of x in each spanning tree
Ti.

Example 1. We describe how the algorithm con-
structs Ti in TQ5 for i = 2. Suppose that we
choose r = 101102 = 22 as the common root in
the spanning trees. Clearly, the 2-neighbor of r is
N2(22) = 100102 = 18 and

...
⊕(r, 2 − 2) = 0. We

first consider a node x = 110002 = 24. Clearly,
I2(x) = {1, 3}. Since x1 6= c1, x is replaceable, and
thus H2(x) = {1, 2, 3} and j = next(2, x) = 2. It
follows that parent(T2, x) = N2(x) = 111002 =
28. Let y = 28. Clearly, I2(y) = {1, 2, 3}.
Since y1 6= c1, y is replaceable, and thus H2(y) =
{1, 3} and j = next(2, y) = 3. It follows that
parent(T2, y) = N3(y) = 101002 = 20. Let

The 31st Workshop on Combinatorial Mathematics and Computation Theory

284

Algorithm Constructing-ISTs
Input: All nodes of TQn and the common root r = (rn)rn−1rn−2 · · · r0.
Output: n ISTs T0, T1, . . . , Tn−1 root at r.

1: for i = 0 to n− 1 do in parallel /* construct Ti simultaneously */
2: for each node x in TQn do in parallel

/* generate parent of each node x simultaneously */
3: j = next(i, x);
4: if n is even and j = n− 1, then
5: parent(Ti, x) = x + (−1)xn × 2n;
6: else if j is odd and

...
⊕(r, j − 1) = 0, then

7: parent(Ti, x) = x + (−1)xj+1 × 2j+1 + (−1)xj × 2j ;
8: else
9: parent(Ti, x) = x + (−1)xj × 2j ;

Figure 3: Algorithm for constructing n spanning trees in TQn.

z = 20. Clearly, I2(z) = {1, 2}. Since z1 6= c1,
z is replaceable, and thus H2(z) = {1} and j =
next(2, z) = 1. It follows that parent(T2, y) =
N1(z) = 100102 = 18. Let c = 18. Recall that
c is the 2-neighbor of r. In this case, we have
I2(c) = H2(c) = ∅ and j = next(2, c) = 2. Thus,
parent(T2, c) = N2(c) = 101102 = r.

29

3119

18

22

16

1720

21

23

30

25

27

24

26

5

7

6

1

3

0

2 13

15

14

9

11

8

10

428

12

0

0

0

0

0 0

0

0 0

0 0

0

0

0 0

0

1 1

1

1

1

11 2

21

2 2 3

43

T0

1

2

4

08

14

22

10

1218

20

16

6

28

24

26

30

21

17

19

29

25

31

27 5

1

3

13

9

15

11

232

7

1

1

1

1

1 1

1

1 1

1 1

1

1

1 1

2 2

2

2

22 3

32

3 3 4

04

T1

2

3

24

815

7

22

23

316

30

14

16

25

9

17

1

26

10

2

27

11

3

19 28

12

4

29

13

5

21

180

20

3

3

3

3

3 3

3

3 3

3 3

3

3

3 3

3

4 4

4

4

4

44 0

04

0 0 1

21

T3

3

20

16

22

17

123

7

6

18

5

4

21

20

31

30

14

25

24

9

8 27

26

10

29

28

13

12

1519

11

4

4

4

4

4 4

4

4 4

4 4

4

4

4 4

4

0 0

0

0

0

00 1

10

1 1 2

32

T4

11

192

6

22

1030

26

18

23

27

3

31

7

28

20

16

12

4

8

0 13

21

17

29

5

25

1

2415

9

2

2

2

2

2 2

2

2 2

2 2

2

2

2 2

3 3

3

3

33 4

43

4 4 0

10

T2

14

Figure 4: Five ISTs of TQ5.

For TQ5, we provide all constructing results in
Figure 4 and only summarize details of the con-
struction of T2 in Table 1. For convenience, we

adopt the notation x
i−→ y to mean that y = Ni(x)

in TQn. For instance, we have T2[24, 22] : 24
2−→

28
3−→ 20

1−→ 18
2−→ 22 in Figure 4.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

285

Table 1: The parent of nodes x ∈ V (TQ5) \ {22} in T2 with root r = 101102 = 22.

i = 2, N2(22) = 100102 = 18

x
binary

I2(x) replaceable H2(x)
j =
next(2, x)

...
⊕(x, j − 1)

parent(T2, x)string when j is odd

0 00000 {1, 4} yes {1, 2, 4} 2 - = 0 + 22 = 4

1 00001 {0, 1, 4} yes {0, 1, 2, 4} 2 - = 1 + 22 = 5

2 00010 {4} no {4} 4 - = 2 + 24 = 18

3 00011 {0, 4} no {0, 4} 4 - = 3 + 24 = 19

4 00100 {1, 2, 4} yes {1, 4} 4 - = 4 + 24 = 20

5 00101 {0, 1, 2, 4} yes {0, 1, 4} 4 - = 5 + 24 = 21

6 00110 {2, 4} no {2, 4} 2 - = 6− 22 = 2

7 00111 {0, 2, 4} no {0, 2, 4} 2 - = 7− 22 = 3

8 01000 {1, 3, 4} yes {1, 2, 3, 4} 2 - = 8 + 22 = 12

9 01001 {0, 1, 3, 4} yes {0, 1, 2, 3, 4} 2 - = 9 + 22 = 13

10 01010 {3, 4} no {3, 4} 3 1 = 10− 23 = 2

11 01011 {0, 3, 4} no {0, 3, 4} 3 0 = 11 + 24 − 23 = 19

12 01100 {1, 2, 3, 4} yes {1, 3, 4} 3 1 = 12− 23 = 4

13 01101 {0, 1, 2, 3, 4} yes {0, 1, 3, 4} 3 0 = 13 + 24 − 23 = 21

14 01110 {2, 3, 4} no {2, 3, 4} 2 - = 14− 22 = 10

15 01111 {0, 2, 3, 4} no {0, 2, 3, 4} 2 - = 15− 22 = 11

16 10000 {1} yes {1, 2} 2 - = 16 + 22 = 20

17 10001 {0, 1} yes {0, 1, 2} 2 - = 17 + 22 = 21

18 10010 ∅ no ∅ 2 - = 18 + 22 = 22

19 10011 {0} no {0} 0 - = 19− 20 = 18

20 10100 {1, 2} yes {1} 1 0 = 20− 22 + 21 = 18

21 10101 {0, 1, 2} yes {0, 1} 0 - = 21− 20 = 20
22 10110 - - - - - (root)

23 10111 {0, 2} no {0, 2} 2 - = 23− 22 = 19

24 11000 {1, 3} yes {1, 2, 3} 2 - = 24 + 22 = 28

25 11001 {0, 1, 3} yes {0, 1, 2, 3} 2 - = 25 + 22 = 29

26 11010 {3} no {3} 3 1 = 26− 23 = 18

27 11011 {0, 3} no {0, 3} 3 0 = 27− 24 − 23 = 3

28 11100 {1, 2, 3} yes {1, 3} 3 1 = 28− 23 = 20

29 11101 {0, 1, 2, 3} yes {0, 1, 3} 3 0 = 29− 24 − 23 = 5

30 11110 {2, 3} no {2, 3} 2 - = 30− 22 = 26

31 11111 {0, 2, 3} no {0, 2, 3} 2 - = 31− 22 = 27

Example 2. To demonstrate that our algorithm
can also be applied on TQn for even integer n,
we provide partial results of TQ4. Table 2 shows
the construction of T3 in TQ0

4 and Table 3 shows
the construction of T2 in TQ1

4. For TQ0
4, we let

r = 100112 = 19 be the root and the 3-neighbor of
r is N3(19) = 000112 = 3. In this case, since i = 3
is odd, x is irreplaceable, and thus Hi(x) = Ii(x)
for every node x ∈ V (TQ0

4). For TQ1
4, we let

r = 011102 = 14 be the root and the 2-neighbor
of r is N2(14) = 010102 = 10. In this case, since
i(6= 0) is even and

...
⊕(r, 2− 2) = 0, if x1 6= c1 for a

node x ∈ V (TQ1
4) then Hi(x) = Ii(x)⊕ {i}; other-

wise, Hi(x) = Ii(x). As a result, according to the
function next(i, x), we can determine the parent
of x for every node x ∈ V (TQ4).

4 Correctness

In this section, we will show the validity of the al-
gorithm. Firstly, we prove the reachability between
every node x(6= r) and the root r in Ti, thereby
proving the existence of a unique path from x to
the root in the tree.

Lemma 1. Let r ∈ V (TQn) be an arbitrary node.
The constructions of Ti for all i ∈ Zn are spanning
trees rooted at r.

Proof. From Constructing-ISTs, since every
node v ∈ V (TQn) must be contained in Ti, it fol-
lows that Ti is a spanning subgraph of TQn. Sup-
pose that r = (rn)rn−1rn−2 · · · r0 and Ni(r) =
(cn)cn−1cn−2 · · · c0. Let x = (xn)xn−1xn−2 · · ·x0

be any node of TQn. In the following, we show
that Ti[x, r] is the unique path connecting x and
r in Ti. We first consider Ii(x) = ∅. In this case,
xj = cj for j ∈ Zn. Thus, x = c = Ni(r). In
particular, if i 6= 0 then xi−1 = ci−1. Thus, x is
irreplaceable. It follows that Hi(x) = Ii(x) = ∅
and next(i, x) = i. If n is even and i = n − 1, by
Line 5 of the algorithm, we have parent(Ti, x) =
x+(−1)xn×2n = Nn−1(x) = r. On the other hand
(i.e., n is odd or i 6= n − 1), by Line 7 and Line 9
of the algorithm, we have either parent(Ti, x) =
x + (−1)xi+1 × 2i+1 + (−1)xi × 2i = Ni(x) = r or
parent(Ti, x) = x+(−1)xi×2i = Ni(x) = r. This

shows that Ti[x, r] : x
i−→ r is the desired path

connecting x and r in Ti.

Next, we suppose that Ii(x) = {j0, j1, . . . , jp−1}
is nonempty and is treated as an ordered set such
that j0 < j1 < · · · < jp−1. Clearly, 1 6 p 6 n. By

The 31st Workshop on Combinatorial Mathematics and Computation Theory

286

Table 2: The parent of nodes x ∈ V (TQ0
4) \ {19} in T3 with root r = 100112 = 19.

i = 3, N3(19) = 000112 = 3

x
binary

I3(x) replaceable H3(x)
j =
next(3, x)

...
⊕(x, j − 1)

parent(T3, x)string when j is odd

0 00000 {0, 1} no {0, 1} 0 - = 0 + 20 = 1

1 00001 {1} no {1} 1 1 = 1 + 21 = 3

2 00010 {0} no {0} 0 - = 2 + 20 = 3

3 00011 ∅ no ∅ 3 - = 3 + 24 = 19

4 00100 {0, 1, 2} no {0, 1, 2} 0 - = 4 + 20 = 5

5 00101 {1, 2} no {1, 2} 1 1 = 5 + 21 = 7

6 00110 {0, 2} no {0, 2} 0 - = 6 + 20 = 7

7 00111 {2} no {2} 2 - = 7− 22 = 3

16 10000 {0, 1, 4} no {0, 1, 4} 4 - = 16− 24 = 0

17 10001 {1, 4} no {1, 4} 4 - = 17− 24 = 1

18 10010 {0, 4} no {0, 4} 4 - = 18− 24 = 2
19 10011 - - - - - (root)

20 10100 {0, 1, 2, 4} no {0, 1, 2, 4} 4 - = 20− 24 = 4

21 10101 {1, 2, 4} no {1, 2, 4} 4 - = 21− 24 = 5

22 10110 {0, 2, 4} no {0, 2, 4} 4 - = 22− 24 = 6

23 10111 {2, 4} no {2, 4} 4 - = 23− 24 = 7

Table 3: The parent of nodes x ∈ V (TQ1
4) \ {14} in T2 with root r = 011102 = 14.

i = 2, N2(14) = 010102 = 10

x
binary

I2(x) replaceable H2(x)
j =
next(2, x)

...
⊕(x, j − 1)

parent(T2, x)string when j is odd

8 01000 {1} yes {1, 2} 2 - = 8 + 22 = 12

9 01001 {0, 1} yes {0, 1, 2} 2 - = 9 + 22 = 13

10 01010 ∅ no ∅ 2 - = 10 + 22 = 14

11 01011 {0} no {0} 0 - = 11− 20 = 10

12 01100 {1, 2} yes {1} 1 0 = 12− 22 + 21 = 10

13 01101 {0, 1, 2} yes {0, 1} 0 - = 13− 20 = 12
14 01110 - - - - - (root)

15 01111 {0, 2} no {0, 2} 2 - = 15− 22 = 11

24 11000 {1, 4} yes {1, 2, 4} 2 - = 24 + 22 = 28

25 11001 {0, 1, 4} yes {0, 1, 2, 4} 2 - = 25 + 22 = 29

26 11010 {4} no {4} 4 - = 26− 24 = 10

27 11011 {0, 4} no {0, 4} 4 - = 27− 24 = 11

28 11100 {1, 2, 4} yes {1, 4} 4 - = 28− 24 = 12

29 11101 {0, 1, 2, 4} yes {0, 1, 4} 4 - = 29− 24 = 13

30 11110 {2, 4} no {2, 4} 2 - = 30− 22 = 26

31 11111 {0, 2, 4} no {0, 2, 4} 2 - = 31− 22 = 27

definition, xj 6= cj for j ∈ Ii(x) and xj = cj for
j ∈ Zn \ Ii(x). There are two scenarios as follows:

Case 1: i ∈ Ii(x) and x is replaceable (see, e.g.
node x = 12 in Table 1) or i /∈ Ii(x) and x is
irreplaceable (see, e.g. node x = 11 in Table 1).
Clearly, Hi(x) = Ii(x) \ {i} for the former, and
Hi(x) = Ii(x) for the latter. Let jk = next(i, x)
where 0 6 k 6 p− 1. Clearly, jk 6= i. Assume that
y(6= r) = (yn)yn−1yn−2 · · · y0 is the parent of x in
Ti. That is, y = parent(Ti, x) = Njk(x). Consider
the following two subcases:

Case 1.1: jk is odd and
...
⊕(r, jk − 1) = 0. By

Line 7 of the algorithm, we have y = x+(−1)xjk+1×
2jk+1 +(−1)xjk ×2jk (i.e., yjk+1 = x̄jk+1 and yjk =
x̄jk = cjk). In this case, if yjk+1 = cjk+1, then
Ii(y) = Ii(x) \ {jk, jk + 1} (see, e.g. node x = 11
and y = 19 in Table 1); otherwise, Ii(y) = (Ii(x) ∪
{jk + 1}) \ {jk} (see, e.g. node x = 27 and y = 3 in
Table 1).

Case 1.2: jk is even or
...
⊕(r, jk − 1) = 1. By

Line 9 of the algorithm, we have y = x+ (−1)xjk ×
2jk (i.e., yjk = x̄jk = cjk). In this case, we have
Ii(y) = Ii(x) \ {jk} (see, e.g. node x = 12 and
y = 4 in Table 1).

From above, we can determine Ii(y). In particu-
lar, we show that jk /∈ Ii(y). Since jk 6= i and only
the elements of Ii(y) and i can be included in Hi(y),
it implies that jk /∈ Hi(y). By a similar argument,
if Ii(y) 6= ∅, let z = parent(Ti, y) = Nj`(y) be the
parent of y in Ti, where j` = next(i, y). Again, we
can determine Ii(z) and show that jk, j` /∈ Hi(z).
By this way, we find a sequence of nodes y, z, . . . , c
in Ti such that Ii(c) = ∅, and thus c = Ni(r).
Recall that we have already constructed Ti[c, r] =

c
i−→ r for connecting Ni(r) and r in Ti. Therefore,

we obtain the following unique path that connects
x and r in Ti:

The 31st Workshop on Combinatorial Mathematics and Computation Theory

287

Ti[x, r] : x
jk−→ y

j`−→ z
jm−→ · · · jq−→ c

i−→ r.

Case 2: i ∈ Ii(x) and x is irreplaceable (see,
e.g. node x = 7 in Table 1) or i /∈ Ii(x) and
x is replaceable (see, e.g. node x = 8 in Ta-
ble 1). In this case, we have next(i, x) = i.
Let y = parent(Ti, x) = Ni(x). If i is odd and...
⊕(r, i − 1) = 0, by Line 7 of the algorithm, we
have y = x + (−1)xi+1 × 2i+1 + (−1)xi × 2i (i.e.,
yi+1 = x̄i+1 and yi = x̄i = ci). Moreover, if
yi+1 = ci+1, then Ii(y) = Ii(x) \ {i, i + 1}; oth-
erwise, Ii(y) = (Ii(x)∪ {i+ 1}) \ {i}. On the other
hand (i.e., i is even or

...
⊕(r, i − 1) = 1), by Line 9

of the algorithm, we have y = x + (−1)xi × 2i (i.e.,
yi = x̄i = ci). Thus, Ii(y) = Ii(x)\{i}. This shows
that the current status of y is in the situation of
Case 1. Let P = Ti[y, r] be the path connecting y
and r in Ti. Therefore, we obtain the unique path

Ti[x, r] by concatenating x
i−→ y and P . �

According to the proof of Lemma 1, we have the
following properties.

Corollary 2. For i ∈ Zn, let Ti[x, r] : v0(= x)
j1−→

v1
j2−→ · · · jk−→ vk

i−→ r be a path constructed from
Lemma 1. Then, the following statements hold:

(2) For 1 6 ` < m 6 k, j` /∈ Hi(vm) (i.e., j` 6=
jm).

(3) For 2 6 ` 6 k, j` 6= i. In particular, it is
possible j1 = i.

For instance, if we consider the path T2[25, 22] :

25
2−→ 29

3−→ 5
4−→ 21

0−→ 20
1−→ 18

2−→ 22
in Figure 4, we can verify from Table 1 as fol-
lows: H2(25) = {0, 1, 2, 3}, H2(29) = {0, 1, 3},
H2(5) = {0, 1, 4}, H2(21) = {0, 1}, H2(20) = {1}
and H2(18) = ∅. Let height(T) denote the height
of a tree T . Since |Ii(x)| 6 n for every node
x ∈ V (MQn), the following result can be obtained
from Corollary 2 directly.

Corollary 3. For i ∈ Zn, height(Ti) 6 n + 1.

Lemma 4. The spanning trees constructed from
Constructing-ISTs are independent.

Proof. We prove the lemma by contradiction.
Suppose that the lemma is false. That is, there ex-
ist two integers i, j ∈ Zn and a node x ∈ V (TQn) \
{r} such that the following two paths constructed
in Lemma 1 satisfy {x, r} (P ∩Q:

P = Ti[x, r] :

u0(= x)
j0−→ u1

j1−→ u2
j2−→ · · · jk−1−→ uk

i−→ r

and

Q = Tj [x, r] :

v0(= x)
`0−→ v1

`1−→ v2
`2−→ · · · `m−1−→ vm

j−→ r.

Suppose that up = vq for 1 6 p < k and 1 6
q < m. Let A = {jp, jp+1, . . . , jk−1, i} and B =
{`q, `q+1, . . . , `m−1, j}. Since i 6= j, by Corollary 2
we have A 6= B. Let d = max((A ∪ B) \ (A ∩ B)).
This implies that the dth bit of up is different from
that of vq, which leads to a contradiction. �

According to Lemmas 1 and 4, we have the fol-
lowing theorem.

Theorem 5. Let N = 2n and r ∈ V (TQn)
be an arbitrary node. Algorithm Constructing-
ISTs can correctly construct n ISTs rooted at r in
O(N logN) time. In particular, the algorithm can
be parallelized on TQn by using N processors to run
in O(logN) time.

5 Concluding remarks

In this paper, we provide a non-recursive and
fully parallelized approach for constructing n ISTs
rooted at an arbitrary node of TQn in O(logN)
time, where N = 2n is the number of nodes. In-
deed, all ISTs constructed in here are isomorphic
to those in [32] and have height n + 1. There are
also other variants of hypercubes without node-
symmetry, e.g., Möbius cubes, crossed cubes and
locally twisted cube. Although some algorithms
in [5, 6, 25] can simultaneously construct multiple
ISTs for these variants, none of them can be fully
parallelized for the construction of each spanning
tree. To the best of our knowledge, for class of net-
works without node-symmetry, the present paper is
the first to employ the fully parallelized approach
for constructing ISTs.

References

[1] S. Abraham and K. Padmanabhan, The
twisted cube topology for multiprocessors: a
study in network asymmetry, J. Parallel Dis-
trib. Comput., 13 (1991) 104–110.

[2] F. Bao, Y. Funyu, Y. Hamada and Y. Igarashi,
Reliable broadcasting and secure distributing
in channel networks, in: Proc. of 3rd Inter-
national Symposium on Parallel Architectures,
Algorithms and Networks, ISPAN’97, Taipei,
December 1997, pp. 472–478.

[3] C.-P. Chang, J.-N. Wang, L.-H. Hsu, Topolog-
ical properties of twisted cubes, Inform. Sci.,
113 (1999) 147–167.

[4] X.-B. Chen, Parallel construction of optimal
independent spanning trees on Cartesian prod-
uct of complete graphs, Inform. Process. Lett.,
111 (2011) 235–238.

[5] B. Cheng, J. Fan, X. Jia, and J. Jia, Paral-
lel construction of independent spanning trees

The 31st Workshop on Combinatorial Mathematics and Computation Theory

288

and an application in diagnosis on Möbius
cubes, J. Supercomput., 65 (2013) 1279–1301.

[6] B. Cheng, J. Fan, X. Jia, and J. Wang,
Dimension-adjacent trees and parallel con-
struction of independent spanning trees on
crossed cubes, J. Parallel Distrib. Comput., 73
(2013) 641–652.

[7] B. Cheng, J. Fan, X. Jia, and S. Zhang, Inde-
pendent spanning trees in crossed cubes, In-
form. Sci., 233 (2013) 276–289.

[8] B. Cheng, J. Fan, X. Jia, S. Zhang, and B.
Chen, Constructive algorithm of independent
spanning trees on Möbius cubes, Comput. J.,
56 (2013) 1347–1362.

[9] J. Cheriyan and S.N. Maheshwari, Finding
nonseparating induced cycles and independent
spanning trees in 3-connected graphs, Journal
of Algorithms, 9 (1988) 507–537.

[10] S. Curran, O. Lee and X. Yu, Finding four in-
dependent trees, SIAM Journal on Computing,
35 (2006) 1023–1058.

[11] J. Fan, X. Jia, X. Lin, Optimal embeddings
of paths with various lengths in twisted cubes,
IEEE Trans. Parallel Distrib. Syst., 18 (2007)
511–521.

[12] J. Fan, X. Jia, X. Lin, Embedding of cycles
in twisted cubes with edge-pancyclic, Algorith-
mica, 51(2008) 264–282.

[13] J. Fan, X. Lin, Y. Pan, X. Jia, Optimal fault-
tolerant embedding of paths in twisted cubes,
IEEE Trans. Parallel Distrib. Syst., 67 (2007)
205–214.

[14] J.-S. Fu, Fault-free Hamiltonian cycles in
twisted cubes with conditional link faults, The-
oret. Comput. Sci., 407 (2008) 318–329.

[15] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van
de Snepscheut, The twisted cube, in: PARLE:
Parallel Architectures and Languages Europe,
Vol. 1: Parallel Architectures, Lecture Notes in
Computer Science, Vol. 258, 1987, pp. 152-159

[16] W.-T. Huang, J.-M. Tan, C.-N. Hung, L.-H.
Hsu, Fault-tolerant Hamiltonicity of twisted
cubes, J. Parallel Distrib. Comput., 62 (2002)
591–604.

[17] A. Huck, Independent trees in graphs, Graphs
Combin., 10 (1994) 29–45.

[18] A. Huck, Independent trees in planar graphs,
Graphs Combin., 15 (1999) 29–77.

[19] A. Itai and M. Rodeh, The multi-tree approach
to reliability in distributed networks, Inform.
Comput., 79 (1988) 43–59.

[20] Y. Iwasaki, Y. Kajiwara, K. Obokata, and
Y. Igarashi, Independent spanning trees of
chordal rings, Inform. Process. Lett., 69 (1999)
155–160.

[21] J.-S. Kim, H.-O. Lee, E. Cheng, and L. Lipták,
Optimal independent spanning trees on odd
graphs, J. Supercomputing, 56 (2011) 212–225.

[22] J.-S. Kim, H.-O. Lee, E. Cheng, and L. Lipták,
Independent spanning trees on even networks,
Inform. Sci., 181 (2011) 2892–2905.

[23] C.-J. Lai, C.-H. Tsai, Embedding a family of
meshes into twisted cubes, Inform. Process.
Lett., 108 (2008) 326–330.

[24] P.-L. Lai, C.-H. Tsai, Embedding of tori and
grids into twisted cubes, Theoret. Comput.
Sci., 411 (2010) 3763–3773.

[25] Y-J. Liu, J.K. Lan, W.Y. Chou, and C. Chen,
Constructing independent spanning trees for
locally twisted cubes, Theoret. Comput. Sci.,
412 (2011) 2237–2252.

[26] K. Miura, S. Nakano, T. Nishizeki, and D.
Takahashi, A linear-time algorithm to find four
independent spanning trees in four connected
planar graphs, Internat. J. Found. Comput.
Sci., 10 (1999) 195–210.

[27] S. Nagai and S. Nakano, A linear-time algo-
rithm to find independent spanning trees in
maximal planar graphs, IEICE Trans. Fund.
Electron. Comm. Comput. Sci., E84-A (2001)
1102–1109.

[28] K. Obokata, Y. Iwasaki, F. Bao, and Y.
Igarashi, Independent spanning trees of prod-
uct graphs and their construction, IEICE
Trans. Fund. Electron. Comm. Comput. Sci.,
E79-A (1996) 1894–1903.

[29] A.A. Rescigno, Vertex-disjoint spanning trees
of the star network with applications to fault-
tolerance and security, Inform. Sci., 137 (2001)
259–276.

[30] S.-M. Tang, Y.-L. Wang, and Y.-H. Leu, Op-
timal independent spanning trees on hyper-
cubes, J. Inform. Sci. Eng., 20 (2004) 143–155.

[31] S.-M. Tang, J.-S. Yang, Y.-L. Wang, and J.-M.
Chang, Independent spanning trees on mul-
tidimensional torus networks, IEEE Trans.
Comput., 59 (2010) 93–102.

[32] Y. Wang, J. Fan, G. Zhou, and X. Jia, Inde-
pendent spanning trees on twisted cubes, J.
Parallel Distrib. Comput., 72 (2012) 58–69.

[33] Y. Wang, J. Fan, X. Jia, and H. Huang, An
algorithm to construct independent spanning
trees on parity cubes, Theoret. Comput. Sci.,
465 (2012) 61–72.

[34] J. Werapun, S. Intakosum, and V. Boonjing,
An efficient parallel construction of optimal in-
dependent spanning trees on hypercubes, J.
Parallel Distrib. Comput., 72 (2012) 1713–
1724.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

289

[35] J.-S. Yang, H.-C. Chan, and J.-M. Chang,
Broadcasting secure messages via optimal in-
dependent spanning trees in folded hyper-
cubes, Discrete Appl. Math., 159 (2011) 1254–
1263.

[36] J.-S. Yang and J.-M. Chang, Independent
spanning trees on folded hyper-stars, Net-
works, 56 (2010) 272–281.

[37] J.-S. Yang and J.-M. Chang, Optimal indepen-
dent spanning trees on Cartesian product of
hybrid graphs, Comput. J., 57 (2014) 93–99.

[38] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-
L. Wang, Reducing the height of independent
spanning trees in chordal rings, IEEE Trans.
Parallel Distrib. Syst., 18 (2007) 644–657.

[39] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-
L. Wang, On the independent spanning trees
of recursive circulant graphs G(cdm, d) with
d > 2, Theoret. Comput. Sci., 410 (2009)
2001–2010.

[40] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-
L. Wang, Constructing multiple independent
spanning trees on recursive circulant graphs
G(2m, 2), Int. J. Found. Comput. Sci., 21
(2010) 73–90.

[41] J.-S. Yang, S.-M. Tang, J.-M. Chang, and Y.-
L. Wang, Parallel construction of optimal in-
dependent spanning trees on hypercubes, Par-
allel Comput., 33 (2007) 73–79.

[42] M.-C. Yang, Constructing edge-disjoint span-
ning trees in twisted cubes Inform. Sci., 180
(2010) 4075–4083.

[43] M.-C. Yang, T.-K. Li, J.-M. Tan, L.-H. Hsu,
On embedding cycles into faulty twisted cubes,
Inform. Sci., 67 (2007) 205–214.

[44] M.-C. Yang, Edge-fault-tolerant node-
pancyclicity of twisted cubes, Inform. Process.
Lett., 109 (2009) 1206–1210.

[45] X. Yang, Q. Dong, E. Yang, J. Cao, Hamilto-
nian properties of twisted hypercube-like net-
works with more faulty elements, Theoret.
Comput. Sci., 412 (2011) 2409–2417.

[46] A. Zehavi and A. Itai, Three tree-paths, J.
Graph Theory, 13 (1989) 175–188.

The 31st Workshop on Combinatorial Mathematics and Computation Theory

290

