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Abstract

The increasing concern over global warming has
led to the rapid development of the electric vehicle
industry. Electric vehicles (EVs) have the poten-
tial to reduce the greenhouse effect and facilitate
more efficient use of energy resources. In this pa-
per, we study several EV route planning problems
that take into consideration possible battery charg-
ing or swapping operations. Given a road network,
the objective is to determine the shortest (travel
time) route that a vehicle with a given battery ca-
pacity can take to travel between a pair of vertices
or to visit a set of vertices with several stops, if
necessary, at battery switch stations. We present
polynomial time algorithms for the EV shortest
travel time path problem and the fixed tour EV
touring problem, where the fixed tour problem re-
quires visiting a set of vertices in a given order.
Based on the result, we also propose constant fac-
tor approximation algorithms for the EV touring
problem, which is a generalization of the traveling
salesman problem.

Keywords. Approximation algorithm, electric
vehicle, shortest path, traveling salesman problem,
vehicle routing

1 Introduction

Transportation is one of the fastest-growing
sources of greenhouse gas emissions that con-
tribute to climate change. In the United States,
transportation accounts for approximately 25 per-
cent of total greenhouse gas emissions [34]. Con-
sequently, during the last decade, the automobile
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industry has developed an increasing number of
electric (battery) vehicles or hybrid electric vehi-
cles to deal with the rising cost of energy. Electric
vehicles (EVs), which release almost no air pol-
lutants, could make a significant contribution to
maintaining the quality of the environment. The
Electric Power Research Institute estimates that
EVs will account for 6% - 30% of the vehicles in
use by 2030 [11].

An efficient EV routing service would obviously
encourage the transition to electric vehicle use.
The U.S. Department of Energy has developed an
online service [33] that provides a route map in-
terface, as well as information about EV charging
facilities for EV owners. However, it is very diffi-
cult to design an optimal EV route planning ser-
vice because EVs have some serious limitations.
The first is the low energy capacity of batteries.
Currently, their range is only 150 to 200 kilome-
ters; hence, EVs are used primarily in urban areas.
The second problem is that EV batteries require
a long charging time. At the moment, they can
be fully recharged from empty in 2 to 6 hours, de-
pending on the level of charging available at the
station. These factors have delayed the growth of
the EV market; however, EVs can now be refueled
in a matter of minutes through a system called
battery-swaps. Recently, Tesla Motors [32] pro-
vided the solution via a network of battery switch
stations. The state-of-the-art technology leads to
a new model of EV route planning.

In this paper, we explore some interesting mod-
els that incorporate the battery capacity con-
straint when an electric vehicle is driven. First,
we begin with the EV shortest travel time path
problem. In this problem, we determine a route
from a source to a destination that an electric ve-
hicle with a given battery capacity U can travel
along so that the total time including traveling
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and battery-swaps is minimized. If necessary, the
vehicle can stop at several battery switch stations
on the route to maintain its movement. Note that
we measure our objective in terms of time. That
is, the weight of an edge represents the time re-
quired for the vehicle to travel through the edge,
and the capacity represents the length of time the
vehicle can travel with a full battery. Similarly,
the EV touring problem involves organizing a tour
of a set of cities so that the total time required
is minimized. The vehicle visits each city and
returns to the origin, stopping at battery switch
stations whenever necessary. We consider two sce-
narios: the on-site station and the off-site station
models in which each city has an on-site battery
switch station and an off-site battery switch sta-
tion within an acceptable distance, respectively.

Our contribution. The main results obtained in
this paper are summarized as follows:

1. We consider the EV shortest travel time path
problem and present a simple dynamic pro-
gramming algorithm that runs in O(kn2) time
where k is the upper bound of the number of
battery-swaps and n is the order of the graph.

2. We develop polynomial time algorithms for
the fixed tour EV touring problem, where the
fixed tour constraint requires visiting a set of
cities and returning to the origin in a given or-
der. This result extends the previous studies
of the fixed path gas station problem reported
in [18, 22, 23] by using graph-theoretic tech-
niques.

3. We propose two approximation algorithms
within a 9

4 -factor and a 9
2 -factor, respectively,

for the uniform and non-uniform cost on-site
station EV touring problem. Moreover, if
the battery capacity is sufficiently large, the
approximation ratio is the same as that of
the well-known Christofides algorithm for the
TSP, i.e., 3

2 .

4. We also study the off-site station EV
touring problem and propose a 3

2 (
3+2α
1−2α )-

approximation algorithm to solve the prob-
lem, where α is a given acceptable distance
between a city and its nearest battery switch
station.

2 Preliminaries

A great deal of research has been devoted to the
shortest route planning problem; and many vari-

ations and extensions of the problem have been
proposed. One related problem is the well-known
capacitated vehicle routing problem, which involves
finding a set of routes that begin at a depot, visit
multiple customers and deliver goods, and return
to the depot such that the number of vehicles, each
of which has a limited carrying capacity, is min-
imized or the total distance is minimized. Read-
ers may refer to Laporte’s survey [20] and Pillac
et al.’s review [25] for further details on the con-
straints and conditions.

Another related work is the orienteering prob-
lem where the objective is to find a path of a fixed
length from a single source that visits as many
locations as possible [3, 4, 5]. The EV touring
problem can be regarded as an extension of this
problem because the goal is to visit as many cities
as possible under a fixed (i.e., full) battery capac-
ity.

Compared with the widely studied routing
problems, there is a dearth of research on the op-
timal refueling problem [18, 22, 23, 30, 31] where
the objective is to minimize the total cost of the
fuel used. Lin et al. [22, 23] investigated the
shortest path problem with optimal refueling poli-
cies. They proposed a linear time algorithm for
the fixed route version and polynomial time algo-
rithms for other variations. Suzuki [30, 31] de-
veloped a more comprehensive model that incor-
porates many operating costs, and conducted nu-
merical studies. Recently, Khuller et al. [18] pro-
posed the gas station problem where the price of
gas may vary at every station, so the owner of
a petrol-powered vehicle must decide the amount
of gas he/she will purchase (i.e., a fraction of the
tank’s capacity) at a particular gas station in order
to minimize the total cost of gas required. They
also study the tour gas station problem, where the
objective is to find the cheapest tour that can visit
a set of vertices and return to the origin, so that
the total cost of the gas required is minimized.

Subsequently, Erdoğan and Miller-Hooks pre-
sented the green vehicle routing problem [13] and
Schneider et al. proposed the similar electric ve-
hicle routing problem [29]. They combined the ve-
hicle routing problem with the possibility of filling
alternative fuels or charging a vehicle’s battery at
stations along the routes. Both works provided
meta-heuristic algorithms and an analysis of nu-
merical experiments. The setting of the problems
is similar to that of the above optimal refueling
problem; the only difference is that the objective
is to minimize the total distance instead of the to-
tal fuel cost. In addition, a number of previous

17

The 32nd Workshop on Combinatorial Mathematics and Computation Theory



studies [2, 10, 19, 26, 28] discussed energy efficient
routing of electric vehicles.

3 Electric Vehicle Shortest Travel
Time Path

To define the EV shortest travel time path
problem, we need some notation. First, each ver-
tex vi ∈ V is associated with one variable ui,
which indicates the amount of power left in the
battery. We also define a binary variable yi to
indicate if the vehicle swaps a battery at station
vi. The distance cost for each edge (vi, vj) in E is
represented by Wij in terms of the time required
to traverse the edge; that is, Wij is the time re-
quired when the vehicle drives along the edge. In
addition, let parameter Bi be defined as the time
required for a vehicle to replace a battery at vi,
and let U be defined as a battery’s capacity, which
is measured in terms of the amount of time a ve-
hicle with a full battery can remain on the route.
The integer programming model of the EV short-
est (travel time) path problem (Problem EVSPP)
can be described as follows.

Minimize
∑

(vi,vj)∈E

Wijxij +

n∑
i=1

Biyi

∑
j: j �=i

xij −
∑

j: j �=i

xji =

⎧⎪⎨
⎪⎩

1, if i = s;

−1, if i = t; i = 1, 2, . . . , n

0, otherwise.

(((1− yi)ui + yiU)−Wij − uj)xij = 0, (vi, vj) ∈ E

0 ≤ ui ≤ U, i = 1, 2, . . . , n

yi ∈ {0, 1}, i = 1, 2, . . . , n

xij ∈ {0, 1}, (vi, vj) ∈ E

us = Us

Note that the second set of constraints ensures
battery power conservation. More precisely, the
vehicle will stop at some stations to swap its bat-
tery if the power left is insufficient to reach the
next stop; that is, the electric power left in the
battery might be wasted. The total power needed
to traverse the optimal path could be more than
the total distance cost in terms of the time ex-
pended.

Here we assume that the vehicle starts at vs
with an empty battery, i.e., Us = 0, where there
is a battery switch station; otherwise, if Us �= 0,
replace vs by a new source vertex vs′ with Ws′j =
Wsj +(U −Us), for each j �= s, Bs′ = 0 and Us′ =

0. Then, the reduction shows that the problem of
starting from vs with a non-empty Us is equivalent
to that of starting from vs′ with an empty battery
when there is a battery switch station at vs′ [18].

To gain more insights, we next discuss in detail
the uniform cost case where the battery-swap time
is identical at every battery switch station; that is,
for each v in F , b(v) = c, for a constant c.

3.1 The uniform cost model

We use the dynamic programming (DP) tech-
nique for solving the uniform cost model. The
reason we do so is that the EV shortest travel
time path problem (Problem EVSPP) cannot be
solved by straightforward greedy algorithms, even
when the uniform battery-swap time cost model is
considered. By contrast, the gas station problem
(Problem GSP) can be simply solved by greedy
approaches in the uniform cost model [18].

As mentioned earlier, we let k be the upper
bound of the number of battery-swaps. Given a
complete graph G = (V ∪ F,E), where V = {s, t}
and each e ∈ E represents the shortest (travel
time) distance between each pair of vertices, which
can be derived by Dijkstra’s algorithm, an optimal
EV shortest travel time path from s to t with ini-
tial Us units of power in G can be solved based on
the following DP formulation:

OPT [v, q] = The minimum time for the vehicle to
travel from a vertex v to the destination t with
exactly q battery-swaps, where the first battery-
swap of these q operations is performed at v.

Suppose the vehicle starts with an empty battery
Us = 0 and there is a battery switch station at
s. If there is no battery-switch station at s or
0 < Us ≤ U , the problem can be reduced by a
similar scheme above to the EV s′, t-shortest travel
time path problem in G = (V ′ ∪ F,E′) with V ′ =
V \ {s} ∪ {s′}, b(s′) = c, Us′ = 0, and E′ = E \
{(s, u) | ∀u ∈ F} ∪ {(s′, u) | ∀(s, u) ∈ E)}, where
w(s′, u) = w(s, u) + (U − Us).

For every v in F ∪ {s}, each entry of the form
OPT [v, q], 1 ≤ q ≤ k, can be computed by the
following recurrence:

OPT [v, q] =

minu∈F {OPT [u, q − 1] + c+ w(v, u) | w(v, u) ≤ U},
where the boundary condition of the recurrence is
given as follows:

OPT [v, 1] =

{
c+ w(v, t), if w(v, t) ≤ U ;

∞, otherwise.
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In the above DP recursion, let u be the first bat-
tery switch station after v when the vehicle travels
from v through u to t and swaps a battery at u.
We keep track of at most |F | different values for
all the stations to compute each entry of the ta-
ble. The optimal solution is derived in the form
of min1≤�≤k{OPT [s, �]}, which can be derived in
O(kn2) time in a naive way by filling the table
whose size is O(kn), where n is the order of G.

Lemma 3.1. The uniform cost model of the EV
shortest travel time path problem with at most k
battery-swaps can be optimally solved in O(kn2)
time.

Consider the properties behind the updates of
the recursion. Note that the major difficulty is
that each update of the above DP recursion does
not have good properties to find a more efficient
way for computing every entry of the table in
sublinear time (rather than the O(n)-time opera-
tion) based on such a recurrence form, even using
advanced data structures such as the Fibonacci
heap [9, 14].

3.2 The non-uniform cost model

Next, we consider the case where each station v
in F may have a different battery-swap time b(v).
This model of the EV shortest travel time path
problem can be solved in a similar manner by us-
ing b(v) instead of the constant c in Equations (1)
and (2). The reduction scheme for the assumption
that Us = 0 can be done in a similar way: letting
b(s′) = 0 for the new source vertex s′. Thus, the
time complexity analysis of the dynamic program-
ming recursion for the non-uniform cost model re-
mains the same, and the theorem is as follows:

Theorem 3.2. There is an O(kn2)-time algo-
rithm for the EV shortest travel time path problem
with at most k battery-swaps.

We remark that the EV shortest travel time
path problem (Problem EVSPP) is one case of
the Constrained Shortest Path problem with one
resource (Problem CSPPOR). The CSPPOR has
been proved to be NP-complete [15], and the lat-
est results show that the problem can be solved
by using similar dynamic programming techniques
that run in pseudo-polynomial time in terms of re-
source [12, 24, 27]. Readers can be referred to [17]
for more details about the CSPPOR.

In the following sections, we introduce our main
results and investigate the touring problem that
incorporates the battery capacity constraint for

an electric vehicle. Similar to the EV shortest
travel time path problem, it ensures that the ve-
hicle never runs out of power during the shortest
(travel time) tour that visits every city and returns
to the origin.

4 Fixed Tour EV Touring

Given a complete graph G = (V ∪ F,E) with a
set of cities V , a set of battery switch stations F
and the vehicle’s battery capacity U , where each
station v ∈ F is associated with a battery-swap
time b(v), b : F → R+, and each edge e ∈ E is as-
sociated with a distance weight w(e), w : E → R+,
the goal is to find a tour that enables the vehicle
to visit each city in V and return to the origin, and
stop at battery switch stations in F when needed,
such that the total time cost including traveling
and battery-swaps is minimized. We call this gen-
eralization of the TSP the EV touring problem.

Before discussing the EV touring problem, we
consider the fixed tour model, in which the vehi-
cle visits cities that have battery-switch stations
(i.e., V = F ) in a given order during the tour.
This problem is an extension of the fixed path gas
station problem proposed in [18, 22, 23].

We introduce some new notation: A path P
from u to v, or shortly, a u, v-path, is denoted by
P : u ∼ v, and the path can also be represented by
a sequence P : u = v1−v2−. . .−vm−vm+1 = v if it
is of lengthm. The u, v-path P is called a tour or a
cycle of length m if P : u = v1−v2− . . .−vm−v =
u. The distance weight of a path or a tour P is
defined as w(P ) =

∑
e∈P w(e).

4.1 Uniform cost

Suppose the battery-swap time is identical at
every station, i.e., b(vi) = c for each vi ∈ F .
First, consider a path in a given order P : v1 −
v2 − . . . − vn, which consists exclusively of bat-
tery switch stations. Without loss of generality,
assume the battery capacity U is larger than the
distance weight of each edge in P in terms of time
spent, i.e., U > w(vi, vi+1), 1 ≤ i ≤ n − 1. The
vehicle starts at v1 with an empty battery.

An intuitive strategy for the vehicle is to go
as far as possible unless the battery power left is
insufficient to reach the next vertex on the path.
The next lemma shows that the greedy concept
can be used to optimally select appropriate sta-
tions for battery-swaps for a given path in the
uniform cost model.
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Given a fixed path P : v1−v2− . . .−vn consist-
ing exclusively of battery switch stations, each of
which has an identical battery-swap time, the op-
timal strategy for a vehicle to select the minimum
number of stations to enable its movement and
visit all the vertices sequentially can be described
as the following lemma:

Lemma 4.1. The EV would not stop at a station
for a battery-swap unless the battery power left is
insufficient to reach the next vertex in P .

Proof. Let O be the optimal solution of battery
switch stations whose total battery-swap time is
the minimum. Assume

∑
v∈O b(v) <

∑
v∈F∗ b(v),

where F ∗ is derived by the greedy strategy. It
implies that |O| < |F ∗| for the uniform cost model.

Let vj be the first vertex in O \ F ∗, i.e., with
the smallest index j, in P . Let the station vi be
selected immediately before vj , that is, vi ∈ O ∩
F ∗, where i < j. Suppose the station v�, � �= j, is
selected by the greedy strategy immediately after
vi. It implies that � > j; otherwise, the vehicle can
reach vj from vi without any battery-swaps and it
would drive through v�. However, this contradicts
the greedy choice of v�. Thus, we replace vj by
v�, � > j to obtain full battery power at v� and
O = O \ {vj} ∪ {v�}. Repeat this argument to
show that |F ∗| > |O| is a contradiction. �

Subsequently, we extend the straightforward
greedy concept to the fixed tour model. The
major difference is that we have to determine
the start vertex for the EV such that the num-
ber of battery-swaps is minimized in the fixed
tour model. We refer to the result reported by
Hsu and Tsai [16], who studied several optimiza-
tion problems in circular-arc graphs. Based on
Lemma 4.1, we present a linear time algorithm
using graph-theoretic approaches for optimally se-
lecting battery switch stations in a given tour in
the uniform cost model. An intersection graph
G is called a circular-arc graph if its vertices can
be put into a one-to-one correspondence with a
set of arcs on a circle, such that two vertices
are adjacent in G if and only if their correspond-
ing arcs have nonempty intersections. A circu-
lar ordering v1, v2, . . . , vn of G is represented by
b1 � b2 � . . . � bn � b1, where bi is the right
endpoint of the arc vi; and bi � bj means that bj
follows bi in a clockwise direction.

Given a fixed tour of length n, P : v1−v2−. . .−
vn − v1; similarly, vi ≺ vj means that vj follows
vi circularly in the ascending order of P . For any
vertex vi, 1 ≤ i ≤ n, we denote a vertex v� as
FAR(vi) if the vehicle can drive with a full battery

from vi to v� circularly such that w(vi ∼ v�) is
maximized, i.e., w(vi ∼ v�) ≤ U and w(vi ∼ v� −
v�+1) > U . Moreover, it can be proved that the
relationship between a vertex vi and FAR(vi) has
the following interleaving property.

Lemma 4.2. For any two vertices vi and vj in
a given tour P with vi ≺ vj, we have FAR(vi) �
FAR(vj).

Proof. Assume there exist two vertices vi and vj
with vi ≺ vj , such that FAR(vj) ≺ FAR(vi). Be-
cause the vehicle can drive with a full battery from
vi through FAR(vj) to FAR(vi), it contradicts the
fact that w(vj ∼ FAR(vj)) is maximized. �

Based on the interleaving property, the compu-
tation of FAR(vi) for each vertex vi can be solved
in linear time [23]; that is, if FAR(vi) = v�, then
we can compute FAR(vi+1) by starting at v�. Re-
peating this argument from v1 to vn−1 circularly
to derive every FAR(vi) in linear time.

We use a similar idea to that of Hsu and Tsai
[16] and construct a directed graph D = (V,ED),
where V = {v1, v2, . . . , vn} and a directed edge−−−−→
(vi, vj) ∈ ED if and only if vj = FAR(vi), vi ≺ vj .
First, we assume that every vertex vi ∈ V has
its FAR(vi); otherwise, the vehicle can begin with
a full battery and return to the origin. Conse-
quently, there is at least one directed cycle in D
because V is of finite cardinality. Besides, two di-
rected cycles cannot share a common vertex since
every vertex has out-degree exactly one in D.

Next, we define Fvi = {v(0)i , v
(1)
i , . . ., v

(m−1)
i },

where v
(j+1)
i = FAR(v

(j)
i ), v

(0)
i = vi, and vi �

FAR(v
(m−1)
i ). By Lemma 4.1, Fvi is a feasible

solution of stations containing vi. Moreover, for
any feasible solution F ′ containing vi, we have
|Fvi | ≤ |F ′|. Let O be the optimal solution of sta-
tions and a vertex vi be called valid if |Fvi | = |O|.
We have the following lemmas.

Lemma 4.3. There is at least one directed cycle
comprised exclusively of valid vertices in D.

Lemma 4.4. Every directed cycle in the directed
graph D consists exclusively of valid vertices.

Thus, for the uniform cost fixed tour model,
in which the vehicle visits all the cities that have
battery switch stations in a given order during
the tour, we can optimally select appropriate sta-
tions for battery-swaps in linear time based on the
above lemmas by incorporating the greedy concept
of Lemma 4.1 with a similar idea to that of Hsu
and Tsai [16] (see Algorithm 1).
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Algorithm 1 : Select battery switch stations for
the fixed tour uniform cost model
Input: a fixed tour P : v1−v2− . . .−vn−v1 con-

sisting of battery switch stations, the distance
of each edge in P and the battery capacity U ;

Output: a set F ∗ consisting of battery switch
stations selected;

1: Find FAR(vi) for each vi ∈ P ;
2: Let each vertex be marked ‘unvisited’ and let

v∗ = v1 be the first vertex;
3: while v∗ is ‘unvisited’ do
4: Mark v∗ as ‘visited’ and let v∗ =FAR(v∗);
5: end while
6: return F ∗ = Fv∗ ;

Theorem 4.5. For the uniform cost fixed tour
model, the minimum total battery-swap time as
well as the corresponding battery switch stations
can be optimally determined in linear time.

Proof. Based on the above lemmas, when a vertex
v∗ is visited twice, there exists a directed cycle
from v∗ to v∗. Thus, v∗ is valid and Fv∗ is the
optimal solution of stations.

Regarding the time complexity analysis,
FAR(vi), for each vi, can be totally derived in linear
time in the initial step. The number of iterations
in the while loop is at most O(n); hence, the run-
ning time is linear in the order of G. �

4.2 Non-uniform cost

Next, we investigate the non-uniform cost
model in which each vertex vi ∈ F has a differ-
ent battery-swap time b(vi). Similarly, we con-
sider this case in a fixed path, and then extend it
to the fixed tour model. The assumptions of the
previous subsection still hold; we define FAR(vi)
for each vertex vi in a similar way and have the
interleaving property as well.

For the fixed path gas station problem, Lin
et al. [23] proposed a linear time algorithm that
solves the problem in a greedy manner. More pre-
cisely, when arriving at a vertex vi, the petrol-
powered vehicle refills its gas tank at vi if there are
no stations with cheaper gas price lying between
vi and FAR(vi); otherwise, the vehicle would par-
tially refuel to be able to just reach the first station
whose gas price is lower than that of vi. Repeating
the argument can derive the optimal solution in a
given fixed path. However, this greedy manner
cannot work in the fixed path EV touring prob-
lem which incorporates battery-swap operations,
as discussed earlier. Thus, we refer to the result

reported by Chang [6] who explored weighted opti-
mization problems in circular-arc graphs, and use
the dynamic programming technique to solve the
non-uniform cost model as follows.

Given a fixed path P : v1−v2− . . .−vn consist-
ing of battery switch stations, each of which has
a different battery-swap time, an optimal solution
of stations required for traversing this path in a
given order can be determined based on the DP
formulation below:

MBS(vj) = The minimum time of total battery-
swaps for the vehicle to travel from v1 to FAR(vj),
and the last battery-swap is performed at vj .

Suppose the vehicle starts at v1 with an empty
battery. For every vi ∈ F , FAR(vi) can be ob-
tained in linear time as mentioned earlier; simi-
larly, vi ≺ vj means that vj follows vi in the as-
cending order of P . Then, each entry of the form
MBS(vj), 1 ≤ j ≤ n, can be computed by the fol-
lowing recurrence:

MBS(vj) =

⎧⎪⎨
⎪⎩
b(v1), if j = 1;

b(vj)+

min{MBS(vi) | vi ≺ vj � FAR(vi)}, if 2 ≤ j ≤ n.

In the above DP recursion, note that the vehicle
performs a battery-swap at vi immediately before
vj when traveling from v1 to FAR(vj); therefore,
station vj lies between vi and FAR(vi). The opti-
mal solution is derived in the form of min{MBS(vi) |
vi ≺ vn � FAR(vi)}.

When computing each entry MBS(vj+1), 1 ≤ j ≤
n− 1, we have to keep track of all the possibilities
for every station vi satisfying vi ≺ vj+1 � FAR(vi).
More precisely, at each recursion step j + 1, we
need to insert MBS(vj) into the current pool of
possible solutions, and delete every station vk
whose FAR(vk) precedes vj+1; besides, the mini-
mum value in the pool has to be determined. By
using the Fibonacci heap [14], which allows each
of the insert and return-minimum operations to
take Θ(1) time and the delete operation to take
O(log n) amortized time, the recurrence can be
solved in O(n log n) time.

Furthermore, for any vi and vj with vi ≺ vj ,
if MBS(vi) ≥ MBS(vj), then MBS(vi) can be directly
removed from the solution pool based on the inter-
leaving property; that is, it is impossible to select
MBS(vi) to comprise the optimal solution because
FAR(vi) � FAR(vj). Therefore, when computing
each entry of the recurrence, the pool of possible
solutions can be maintained in a sorted list in in-
creasing order. In other words, based on the inter-
leaving property, each of the above insert, delete
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and return-minimum operations takes only Θ(1)
time at every recursion step. The optimal solution
min{MBS(vi) | vi ≺ vn � FAR(vi)} can thus be de-
rived in linear time. We remark that the optimal
solution of stations required can be obtained by
backtracking the computation of the recurrence.

Lemma 4.6. The non-uniform cost model of the
fixed path EV touring problem can be optimally
solved in linear time.

We extend the DP technique to the fixed tour
model where a tour P : v1− v2− . . .− vn− v1 in a
circular order is given. Recall that when comput-
ing each entry of the DP recursion for the fixed
path model, a pool of possible solutions needs to
be considered. For each vj , 1 ≤ j ≤ n, let the pool
be defined by Sj = {vi | vi ≺ vj � FAR(vi)}. Based
on the interleaving property, every vertex set Sj

can be obtained in linear time. Note that each
Sj is nonempty because of the natural assumption
that the battery capacity U is larger than the dis-
tance weight of each edge in P . One observes that
in any feasible solution, there is at least one vertex
in each Sj . Thus, let Smin be the one of the min-
imum cardinality, denoted by δ, and an optimal
solution of stations contains at least one vertex in
Smin. We use the DP technique in the fixed path
model δ times; each starts at a different vertex in
Smin. After performing the DP procedure for the
δ fixed paths, the one with the minimum time of
total battery-swaps is the optimal solution for the
non-uniform cost fixed tour model. Since the opti-
mal DP procedure for each fixed path can be done
in linear time by Lemma 4.6, the optimal solution
for a fixed tour in a given order can be derived in
O(δn) time, where for every station vj , δ is the
minimum number of stations at which the vehicle
can start with a full battery and reach vj . It could
be assumed that δ is sufficiently smaller than n in
practice. The next theorem follows.

Theorem 4.7. For the non-uniform cost fixed
tour model, the minimum total battery-swap time
as well as the corresponding battery-switch sta-
tions under a given fixed tour P : v1 − v2 − . . . −
vn−v1 can be optimally determined in O(δn) time,
where for every station vj, δ is the minimum num-
ber of stations at which the vehicle can start with
a full battery and reach vj.

5 Electric Vehicle Touring

In this section, we divide the EV touring prob-
lem into two models. In the first model, called

the on-site station model, every city has an on-site
battery switch station, i.e., V = F . The on-site
EV touring problem (Problem OEVTP) involves
determining a tour that visits all the vertices in
V = F = {v1, v2, ..., vn}. The objective is to min-
imize the total time expended on the tour. Sim-
ilarly, suppose the vehicle starts with an empty
battery.

The second model presents a more interesting
scenario in that V � F , but there is at least one
battery switch station within an acceptable dis-
tance of every city. This is called the off-site sta-
tion model. According to the natural assumption
in [18, 21], we let α = maxv∈V minu∈F {w(v, u)}/U
and let the acceptable distance be at most αU ,
0 ≤ α < 1/2. In practice, a vehicle cannot visit a
city if the nearest station is more than the distance
U/2 from the city. Note that the vehicle is allowed
to visit a city multiple times, if necessary, in the
off-site station model, because the city might have
an on-site battery switch station. We also assume
the distance weights satisfy the triangle inequal-
ity [18].

Khuller et al. [18] proposed the tour gas station
problem, which involves finding the cheapest tour
that visits all the cities in V and possibly some
gas stations in F . They proved that the uniform
cost on-site station model of this problem can be
reduced to the original TSP, where the gas price
is identical at each station. In contrast, the uni-
form cost on-site station model of the EV touring
problem cannot be transformed into the TSP di-
rectly because of the 0-1 recharging operations,
i.e., battery-swaps.

Table 1 summarizes the results of the EV tour-
ing problem, where bmin = minv∈F {b(v)} and
bmax = maxv∈F {b(v)}. Note that comparisons
between the results of the EV touring problem
and those of the tour gas station problem [18]
are presented in the last two columns. For
the latter problem, although it was claimed that
cmax

cmin
was around 1.2 in practice, where cmin =

minv∈F {c(v)} and cmax = maxv∈F {c(v)}, the ra-
tios derived in this study can be regarded as con-
stants directly under such reasonable conditions in
the on-site station model.

5.1 On-site station EV touring

The approximation algorithm is implemented
in two phases. First, we exploit Christofides algo-
rithm [7] to derive a route plan, i.e., a permutation
of all the vertices in V . Christofides algorithm is
a combination of the minimum spanning tree of a
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Model Cost Ratio Condition Under condition [18]

On-site

Uniform 3U+6c
2U+2c

U ≥ c ≥ 0 9/4 3
2

U � c ≥ 0 3/2

Non-uniform 3U+6bmax

2U+2bmin

U ≥ bmax, bmin ≥ 0 9/2 3cmax

2cminU � bmax, bmin ≥ 0 3/2

Off-site

Uniform 3(U+2αU+2c)
2(1−2α)(U+c)

U ≥ c ≥ 0 3
4 (

3+2α
1−2α ) 3

2 (
1+2α
1−2α )

U � c ≥ 0 3
2 (

1+2α
1−2α )

Non-uniform 3(U+2αU+2bmax)
2(1−2α)(U+bmin)

U ≥ bmax, bmin ≥ 0 3
2 (

3+2α
1−2α ) 3cmax

2cmin
( 1+2α
1−2α )

U � bmax, bmin ≥ 0 3
2 (

1+2α
1−2α )

Table 1: Comparison of the results of the EV touring problem with those reported in [18]

complete graph G with the minimum weight per-
fect matching on the vertices with odd degree in
the tree. The result of this algorithm is a Hamil-
tonian tour with a 1.5-approximation ratio if the
distance function satisfies the triangle inequality
property. Then we use the algorithms derived in
the previous section to optimally identify appro-
priate battery switch stations in both the uniform
and non-uniform cost cases and ensure that a ve-
hicle’s movement can be maintained. The steps
of the approach for solving the on-site EV touring
problem are detailed in Algorithm 2.

Algorithm 2: Find an approximation to the on-
site EV touring problem

Input: G = (V,E) of order n; a distance function
w : E → R+, a battery-swap function b : V →
R+ and the vehicle’s battery capacity U ;

Output: A tour P that visits all the vertices in
V with a set of stations F ∗ ⊆ V for battery-
swaps;

1: Use Christofides algorithm to determine the
visiting order of all cities in V , denoted by
P : v1 − v2 − . . .− vn − v1;

2: Select a set of stations F ∗ for battery-swaps
by Algorithm 1 in the uniform cost fixed tour
model or by the DP recursion in the non-
uniform cost fixed tour model;

Assume the vehicle in the on-site station model
starts with an empty battery. Without loss of gen-
erality, the distance weight of every edge is not
larger than the given battery capacity U . Note
that once the permutation over all the vertices in a
tour is determined, Algorithm 1 can optimally se-
lect stations for battery-swaps in linear time in the
uniform cost on-site model. Similarly, the DP re-
cursion can also be applied to the non-uniform cost

on-site model and optimally solve the problem in
O(δn) time as mentioned earlier. Thus, the solu-
tion derived by Algorithm 2 is feasible, which rep-
resents the total time cost, denoted as SOL. Then,
we analyze its approximation ratio. Note that
the total time cost includes traveling and battery-
swaps; therefore, let SOL = SOLtravel+SOLswap

represent the respective time required. Let OPT
be the minimum time needed to complete the EV
tour, as shown by

OPT = OPTtravel +OPTswap. (1)

Consider the traveling time SOLtravel, i.e.,
w(P ). Let OPTTSP be the minimum time re-
quired for the original TSP. It is trivial that
OPTTSP ≤ OPTtravel. Because the vehicle is al-
lowed to visit a city multiple times, Phase 1 com-
bines the minimum spanning tree of G with the
minimum weight perfect matching on the vertices
with odd degrees in the tree to obtain an Euler
tour instead of a Hamiltonian tour. Based on a
similar analysis in [7], the 3

2 -approximation ratio
can be derived, and the equation follows immedi-
ately.

SOLtravel ≤ 3

2
OPTTSP ≤ 3

2
OPTtravel (2)

Let bmin and bmax represent the smallest and
largest battery-swap time respectively, i.e., bmin =
minv∈F {b(v)} and bmax = maxv∈F {b(v)}. The ve-
hicle starts with an empty battery and needs to
stop at a minimum of �OPTtravel

U � stations. Hence,
the relationship between OPTtravel and OPTswap

can be formulated as follows:
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bmin(

⌈
OPTtravel

U

⌉
) ≤ OPTswap

⇒ OPTtravel ≤ U

bmin
OPTswap. (3)

Note that bmin can be replaced by a constant c in
the uniform cost case.

Given the fixed tour P obtained in Phase 1
in Algorithm 2, let F ∗ = {vs1 ,vs2 , . . . , vsk} be
derived in Phase 2 in Algorithm 2, where k is
the number of stations required. A path pi :
vsi ∼ vsi+1 represents the subpath from vsi to
vsi+1 along the tour P . The next lemma follows:
(We omit the proof due to space limit.)

Lemma 5.1. For both uniform and non-uniform
cost models, we have w(pi) + w(pi+1) > U , 1 ≤
i ≤ k, where we let pk : vsk ∼ vs1 and pk+1 = p1.

Then, by summing the equations for every i
from Lemma 5.1, we have the following inequality:

2SOLtravel =
k∑

i=1

(w(pi) + w(pi+1)) > kU

⇒ k <
2SOLtravel

U

⇒ SOLswap <
2SOLtravel

U
bmax. (4)

The last inequality holds because SOLswap ≤
kbmax. Based on the above properties, the next
theorem follows according to Equations (1)-(4).

Theorem 5.2. The on-site EV touring problem
can be approximated within a 3U+6bmax

2U+2bmin
-ratio for

the non-uniform cost case.

It is reasonable to assume that the battery ca-
pacity U is larger than bmax in terms of time ex-
pended, which leads to a constant approximation
ratio 9

2 . For the uniform cost case, the ratio is

within 3U+6c
2U+2c , for a constant c; and it is 9

4 based
on the assumption that U ≥ c. In addition, if U is
significantly larger than bmax and c, the approx-
imation factor is 3

2 , which is the same as that of
Christofides algorithm for the TSP, as compared
with the ratio 3cmax

2cmin
derived in [18].

5.2 Off-site station EV touring

Consider the off-site station model in which the
distance between every city in V and its near-
est battery switch station is at most αU , 0 ≤
α < 1

2 ; when α = 0, it is the on-site station

model. A function near : V → F is defined
as the nearest station to each city v ∈ V ; thus,
α = maxvi∈V {w(vi, near(vi))}/U . To ensure a
vehicle’s movement, assume the distance between
any two vertices in V ∪ F is less than U/2. The
assumption can be considered as route planning
in urban areas. In practice, U/2 ≈ 100 kilometers
is sufficient for the diameter of a metropolitan re-
gion.

For the off-site EV touring problem, suppose
the vehicle begins with a full battery because the
vehicle might start from a vertex without any bat-
tery switch station. The rationale behind the ap-
proach for this problem is similar to the greedy
concept of Lemma 4.1; however, this straightfor-
ward approach cannot produce an optimal solu-
tion, even for the uniform cost case in the off-
site station model. Because the distance between
a vertex v and near(v) is not identical, the set
of stations F ∗ selected by the greedy concept
is only a feasible solution. Given a fixed tour
P : v1−v2− . . .−vn−v1 derived in Phase 1 of Al-
gorithm 2, the vehicle will start from v1 and stop
at the nearest battery switch station of a vertex vi,
i.e., near(vi), unless it can reach near(vi+1) of the
vertex vi+1. The steps of the approach for solv-
ing the off-site EV touring problem are detailed in
the GreedyHeuristic procedure. In addition,
the following analysis based on F ∗ is similar to
that of the on-site station model.

1: procedure GreedyHeuristic(G,P )
2: Let v1 be the start vertex and let F ∗ = ∅;
3: for i = 1 to n do
4: if the vehicle cannot reach vi+1

and near(vi+1) with remaining
power at vi, where vn+1 = v1 then

5: leave vi for near(vi), and do a
battery-swap there;

6: F ∗ = F ∗ ∪ {near(vi)};
7: end if
8: end for
9: return a subset of battery switch stations

F ∗ and a tour P ∗ that incorporates
extra routes into P for battery-swaps;

10: end procedure

Lemma 5.3. Given a fixed tour that traverses
each vertex in V for the off-site EV touring prob-
lem, the GreedyHeuristic procedure can derive
a feasible solution of stations F ∗ that satisfies the
greedy concept of Lemma 4.1, and incorporate ad-
ditional routes for battery-swaps in linear time.
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(We omit the proof due to space limit.)

In Algorithm 2, we replace Phase 2 by the
GreedyHeuristic procedure. Consider the uni-
form cost case; that is, b(v) = c for every vertex v,
where c is a constant. Note that the Greedy-
Heuristic procedure not only selects stations,
but also devises a tour P ∗ that incorporates routes
between vertices and their nearest stations, if nec-
essary. Similarly, let SOL = SOLtravel+SOLswap

and OPT = OPTtravel + OPTswap by Equa-
tion (1). Given a fixed tour P : v1−v2−. . .−vn−v1
derived in Phase 1 of Algorithm 2, the following
also holds for the off-site station model.

w(P ) ≤ 3

2
OPTTSP ≤ 3

2
OPTtravel (5)

Assume F ∗ = {near(vs1), near(vs2), . . . , near(vsk)}
and the tour derived by the Greedy-
Heuristic procedure can be represented by
P ∗ : v1 ∼ vs1 − near(vs1) ∼ vs2 − near(vs2) ∼
. . . ∼ vsk − near(vsk) ∼ v1, where k is the
number of stations required. In addition,
let �i : vsi − near(vsi) − vsi+1 represent
the subpath from vsi to vsi+1 along the
tour P ∗. We have w(near(vsi), vsi+1) <
w(vsi , near(vsi)) + w(vsi , vsi+1) because of the
triangle inequality. Thus, for 1 ≤ i ≤ k,

w(�i) < 2w(vsi , near(vsi)) + w(vsi , vsi+1)

≤ 2αU + w(vsi , vsi+1).

Then, sum the equations for every i and the next
inequality follows.

k∑
i=1

w(�i) = SOLtravel − w(P ) +

k∑
i=1

w(vsi , vsi+1)

< 2kαU +
k∑

i=1

w(vsi , vsi+1)

⇒SOLtravel < w(P ) + 2kαU ≤ 3

2
OPTtravel + 2kαU

Moreover, for 1 ≤ i ≤ k − 2, let pi : vsi+1 ∼
vsi+1 − vsi+1+1 ∼ vsi+2 be the subpath from
vsi+1 to vsi+2 on the tour P ; and let p0 : v1 ∼
vs1 − vs1+1 ∼ vs2 and pk−1 : vsk−1+1 ∼ vsk −
vsk+1 ∼ v1. We have the following lemma.

Lemma 5.4. For every 1 ≤ i ≤ k − 1, w(pi) +
w(vsi , vsi+1) > (l − 2α)U ; in addition, w(p0) >
(l − α)U .

Similarly, we sum the equations for every i, 0 ≤

i ≤ k − 1, and derive the following formulation

2w(P ) > w(p0) + Σk−1
i=1 (w(vsi − vsi+1) + w(pi))

> k(1− 2α)U

⇒ k <
3OPTtravel

(1− 2α)U

⇒ SOLswap <
3cOPTtravel

(1− 2α)U

The next theorem follows from the above dis-
cussion.

Theorem 5.5. The uniform cost model of the
off-site EV touring problem can be approximated

within a 3(U+2αU+2c)
2(1−2α)(U+c) -ratio, where 0 ≤ α < 1

2 .

(We omit the proof due to space limit.)

The scenario where U is larger than c leads to
the approximation ratio 3

4 (
3+2α
1−2α ). In addition, if

U is significantly larger than c, the approximation
ratio is 3

2 (
1+2α
1−2α ), the same as that of the tour gas

station problem [18]. When α = 0, the ratio is
exactly equal to the result of the on-site station
model. For the non-uniform cost case, we refer
to [18] and replace c with bmax/bmin in the approx-
imation ratio based on a similar reduction scheme
in the uniform cost case. The approximation ratio
is 3

2 (
3+2α
1−2α ) when U is larger than bmax.

6 Concluding Remarks

In this study, we have considered several EV
route planning problems that incorporate 0-1 bat-
tery recharging operations. We have presented a
simple dynamic programming algorithm that op-
timally solves the EV shortest travel time path
problem in polynomial time. We have further
studied the fixed tour EV touring problem and
used graph-theoretic techniques to develop opti-
mal algorithms, which extend the prior work of
the fixed path gas station problem. We have also
investigated the on-site station and off-site station
EV touring problem, and proposed approximation
algorithms with constant factors and a 3

2 (
3+2α
1−2α )-

factor, respectively.
We remark that the latest result in the litera-

ture reported by An et al. [1] improved the approx-
imation ratio of Christofides algorithm for the s, t-
path TSP. Our approach can be combined directly
with s, t-Hamiltonian path derived by An et al.
(or any better approximation algorithms that may
be proposed in the future) to obtain an improved
performance ratio for variations of the EV touring
problem.
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