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Abstract

The one-to-many routing is to construct internally
disjoint paths from one node to other nodes. It
can ensure fault-tolerant broadcasting and secure
message distribution in a network. Constructing
multiple independent spanning trees rooted at one
node can guarantee the one-to-many routing of the
network.

A generalized Petersen network GP(n,k) is
formed by connecting n nodes of a regular poly-
gon to the corresponding n nodes of a star polygon,
where k is the skip distance of the star polygon. In
this paper, we take into consideration only a class
of GP(n,k) where n and k are coprime.

The proposed algorithm in this paper can con-
struct three independent spanning trees based on
the individual decision of every node in a gener-
alized Petersen network. That is, the algorithm
makes the one-to-many routing parallelized.

Keyword: generalized Petersen network, one-to-
many parallel routing, internally disjoint paths, in-
dependent spanning trees.

1 . Introduction

In network classification, the generalized Petersen
networks (GP networks for short) are a family of cu-
bic networks [9]. A GP network, denoted by P(n,k),
consists of an n-node outer circulant (n-cycle), an
n-node inner circulant (with skip distance k), and n
edges connecting corresponding nodes in the outer
and inner circulants. As for the definition of cir-
culant networks, see [2, 8]. Thus, P(n,k) has 2n
nodes and 3n edges. This network family was in-
troduced in 1950 by Coxeter [5] and named in 1969

∗This research is supported by the National Science
Council of Taiwan under the Grants MOST103–2410–H–
606–004.

by Watkins [23]. Note that we are concerned with
the GP networks of co-prime n and k, where n � 3
and 1 � k � �(n − 1)/2�. As a result, the inner
circulant is connected.

In P(n,k), the n nodes of the outer circulant,
called outer nodes, are labeled from 0 to n − 1,
while the n nodes of the inner circulant, called inner
nodes, are labeled from n to 2n − 1. For 0 � v �
n− 1, nodes v and v+n are connected by an edge.
For example, P(9,4) and P(8,3) are shown in Figure
1(a) and 1(b), respectively.

The skip number of an inner node v, denoted
by s(v), is the sequence number of the consecutive
skips, and is enclosed by square brackets in Fig-
ure 1. This additional label is used for the parallel
routing of one node.

The GP networks have been widely studied, es-
pecially in the Hamiltonian cycle problem [1,3], the
domination problem [4,19,24], and the isomorphism
of GP [14,18]. In [18], the authors gave the inverse
property about the parameter d in a GP. Since
P(n,k) is isomorphic to P(n,n − k), we only take
into consideration for 1 � k � �(n−1)/2�. Further-
more, they also proposed the exchange property of
the inner and outer circulants when n and k are
coprime. That is, P(n,k) is isomorphic to P(n,h) if
and only if kh ≡ ±1 (mod n). For example, P(9,4)
is isomorphic to P(9,2) by exchanging the inner and
outer circulants.

Two paths connecting two nodes in a network is
said to be internally disjoint if they have no com-
mon node except two end nodes. The one-to-many
routing is to construct internally disjoint paths in
a network from a given node to each of the nodes
in a given set that may contain all other nodes.
One node can send copies of a message along inter-
nally disjoint paths to all other nodes in a network
to achieve fault-tolerant broadcasting [10,15]. One
node can also partition the message into multiple
parts and send them separately to the destination
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Figure 1: Two GP networks, (a) P(9,4) and (b)
P(8,3).

nodes along internally disjoint paths to achieve se-
cure message distribution [16].

Two spanning trees of a graph are independent
if they are rooted at the same node r, and for ev-
ery other node v �= r, the two paths from r to v,
one path in each tree, are internally disjoint. A
set of spanning trees of a graph is said to be inde-
pendent if they are pairwise independent. In 1989,
Zehavi and Itai conjecture that, for any node r in
a k-connected graph G, there exist k independent
spanning trees of G rooted at r [28]. Although the
conjecture has been proved for k-connected graphs
with k � 4 ( [10] for k = 2, [6,28] for k = 3, and [7]
for k = 4), it is still open for k > 4. Notice that
constructing multiple independent spanning trees
(IST for short) rooted at one node guarantees the
one-to-many routing. As a result, lots of research
results are presented for solving the IST problem in

special graph classes, especially in interconnection
networks [11, 13,17,20–22,25–27].

In this paper, we propose an algorithm for one-to-
many routing at an arbitrary node of a GP network.
Particularly, the proposed algorithm is based on the
label of the node and can make the one-to-many
routing parallelized. Although the IST problem
of general 3-connected graphs was solved in linear
time by Cheriyan and Maheshwari [6], the proposed
algorithm still has its contribution on parallelized
implementation.

The remaining part of this paper is organized as
follows. Section 2 gives essential ideas of the algo-
rithm. Section 3 presents the algorithm. Section 4
proves the correctness of the algorithm. The last
section contains our concluding remarks.

2 . Basic Ideas

To explicitly represent the adjacency of nodes in
a GP network P(n,k), we say that node v takes a
skip to reach one of three neighbors. If v is an outer
node, the three skips are (1±) and (n+), standing
for neighbors v±1 (mod n) and v+n, respectively.
If v is an inner node, the three skips are (k±) and
(n−), standing for neighbors n + (v ± k (mod n))
and v − n, respectively. The neighbors of v can
be represented as a skip set {(1−), (1+), (n+)}(v
is an outer node) or {(k−), (k+), (n−)}(v is an in-
ner node). The skip set representation is helpful to
express the routing algorithm.

Since GP networks are node-symmetric for nodes
of the same circulant, without loss of generality,
Nodes 0 and n should be considered separately as
the root of IST. Due to the exchange property of
the inner and outer circulants [18], to determine
IST rooted at node n in P(n,k) is equivalent to
determine IST rooted at node 0 in P(n,h), where
kh ≡ ±1 (mod n). For example, to construct IST
rooted at node 9 in P(9,4), we firstly construct IST
rooted at node 0 in P(9,2), and then exchange the
node labels of inner and outer circulants. There-
fore, we only considered the root 0 case.

Because of the internally disjoint requirement, it
is obvious that the root has only one child in every
tree of three IST. If j is the skip taken by the only
child for reaching the root, the tree can be denoted
by Tj . In Figure 2(a) and 2(b), for example, each
tree of the IST of P(9,4) or P(8,3) is named after
the unique skip used to reach node 0.

For the IST on a GP network, the skips for reach-
ing the root in IST must be distinct. For a single
non-root node, the skips to reach its parents in IST
are also distinct. Since the parent-reaching skip set
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and the root-reaching skip set have equal cardinal-
ity, the parallel routing algorithm is simply to de-
termine a bijection between the two skip sets. For
example, in Figure 2(a), node 14 reaches its parents
by taking skips (4−), (4+) and (9−) in the IST
which are labeled by skips (1−), (9−) and (1+),
respectively.

The basic ideas of routing the paths form one
node to the root are as follows.
(1) For an outer node, its path in T(1−) is routed
counterclockwise, or taking skip (1-) to get its par-
ent. Symmetrically, its path in T(1+) is routed
clockwise, or taking skip (1+). Inevitably, its path
in T(n−) has to take skip (n+).
(2) For an inner node w, its path in T(n−) is routed
according to its skip number s(w). If s(w) � �n/2�,
w takes skip (k−) to get its parent, else it takes
skip (k+). For w � �n/2�+n, w takes skip (n−) in
T(1−), and takes the remained skip in T(1+). Sym-
metrically, for w > �n/2�+n, w takes skip (n−) in
T(1+), and takes the remained skip in T(1−).

For an inner node w, we can compute s(w) by
wh (mod n), where kh ≡ 1 (mod n). To solve
the linear Diophantine equation of two variables,
kh− ny = 1, a well-known O(log n) algorithm was
proposed by Knuth [12].

3 . Parallel Construction of In-
dependent Spanning Trees

The following algorithm is used to construct IST
rooted at node 0 in P(n,k). It determines the
parent-reaching skips in different trees for every
non-root node v.

Algorithm Parent Determine(v)
begin
Step 1. For 1 � v � n− 1 (outer nodes),

take skip (1−) to get parent in tree T(1−),
take skip (n+) to get parent in tree T(n−), and
take skip (1+) to get parent in tree T(1+).

Step 2. For v = n (inner node, top),
take skip (k+) to get parent in tree T(1−),
take skip (n−) to get parent in tree T(n−), and
take skip (k−) to get parent in tree T(1+).

Step 3. For n+ 1 � v � n+ �n/2�
(inner nodes, right side),

Substep 3.1 take skip (n−) to get parent
in tree T(1−),

Substep 3.2
If s(v) � �n/2� then

take skip (k−) to get parent in tree T(n−), and
take skip (k+) to get parent in tree T(1+).

else
take skip (k+) to get parent in tree T(n−), and

take skip (k−) to get parent in tree T(1+).
end if
Step 4. For n+ �n/2�+ 1 � v � 2n− 1

(inner nodes, left side),
Substep 4.1 take skip (n−) to get parent

in tree T(1+),
Substep 4.2
If s(v) � �n/2� then

take skip (k−) to get parent in tree T(n−), and
take skip (k+) to get parent in tree T(1−).

else
take skip (k+) to get parent in tree T(n−), and
take skip (k−) to get parent in tree T(1−).

end if
end Parent Determine

We use P(9,4) as an example. Table 1 shows the
parent-reaching skips of nodes by using Algorithm
Parent Determine.

Table 1: The parent-reaching skips of node v in
three IST on P(9,4)

v s(v) T(1−) T(n−) T(1+)

1 (1−) (n+) (1+)
2 (1−) (n+) (1+)
3 (1−) (n+) (1+)
4 (1−) (n+) (1+)
5 (1−) (n+) (1+)
6 (1−) (n+) (1+)
7 (1−) (n+) (1+)
8 (1−) (n+) (1+)
9 0 (k+) (n−) (k−)
10 7 (n−) (k+) (k−)
11 5 (n−) (k+) (k−)
12 3 (n−) (k−) (k+)
13 1 (n−) (k−) (k+)
14 8 (k−) (k+) (n−)
15 6 (k−) (k+) (n−)
16 4 (k+) (k−) (n−)
17 2 (k+) (k−) (n−)

For constructing the IST shown in Figure 2(a),
we have to transform the skips in Table 1 to the
labels of parent nodes.

4 . Correctness Proof

To show the correctness of Algorithm Par-
ent Determine, we have to prove that the out-
put of the algorithm are spanning trees of the in-
put GP network. Then, we should prove that for
every non-root node v, three paths from v to 0 in
different spanning trees must be internally disjoint.

When a skip j consecutively occurs t times (t >
1), we use jt to denote the skip sequence. The
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following lemma depicts that the output of the al-
gorithm are spanning trees.

Lemma 4.1. Algorithm Parent Determine can
generate three spanning trees rooted at node 0 in
P(n,k).

Proof. We consider the following four cases:
Case 1: v is an outer node.
In T(1−), v takes (k+), (1−)v to reach the root.
In T(1+), v takes (1+)n−v to reach the root.
Case 1.1: s(v + n) � �n/2�.
In T(n−), v takes (n+), (k−)s(v+n), and (n−) to
reach the root.
Case 1.2: s(v + n) > �n/2�.
In T(n−), v takes (n+), (k+)n−s(v+n), and (n−) to
reach the root.
Case 2: v = n.
In T(1−), v takes (k+), (n−), and (1−)k to reach
the root.
In T(1+), v takes (k−), (n−), and (1+)k to reach
the root.
In T(n−), v takes (n−) to reach the root.
Case 3: n+ 1 � v � n+ �n/2�.
In T(1−), v takes (n−) and (1−)v−n to reach the
root.
Case 3.1: s(v) � �n/2�.
In T(1+), v takes (k+)c, (n−), and (1+)2n−(v+k) to
reach the root, where c = �(3n/2− v)/k�.
In T(n−), v takes (k−)s(v) and (n−) to reach the
root.
Case 3.2: s(v) > �n/2�.
In T(1+), v takes (k−)c, (n−), and (1+)n−v+k to
reach the root, where c = �(v − n)/k�.
In T(n−), v takes (k+)s(v) and (n−) to reach the
root.
Case 4: n+ �n/2�+ 1 � v � 2n− 1.
In T(1+), v takes (n−) and (1+)2n−v to reach the
root.
Case 4.1: s(v) � �n/2�.
In T(1−), v takes (k+)c, (n−), and (1+)2n−(v+k) to
reach the root, where c = �(2n− v)/k�.
In T(n−), v takes (k−)s(v) and (n−) to reach the
root.
Case 4.2: s(v) > �n/2�.
In T(1−), v takes (k−)c, (n−), and (1−)v−k−n to
reach the root, where c = �(v − 3n/2)/k�.
In T(n−), v takes (k+)n−s(v) and (n−) to reach the
root.

In any case, the skip sequence forms a unique
path from v to 0. �

The following lemma shows the independency of
the output spanning trees.

Lemma 4.2. Three paths from a non-root node v
to the root in the output spanning trees on P(n,k)
are internally disjoint.

Proof. Let u be a ancestor of node v in one of
the spanning trees. We consider the following four
cases:
Case 1: v is an outer node.
In T(1−), u < v.
In T(1+), v < u < n.
In T(n−), n � u < 2n− 1.
Case 2: v = n.
In T(1−), u = n+ k or u � k.
In T(1+), u = 2n− k or n− k � u < n.
In T(n−), u = 0.
Case 3: n+ 1 � v � n+ �n/2�.
In T(1−), u is an outer node, and u � v − n.
In T(1+), If u is an outer node, u > v − n. If u
is an inner node and s(v) � �n/2�, s(u) > s(v),
otherwise s(u) < s(v).
In T(n−), u = 0, n, or u is an inner node. If u
is an inner node and s(v) � �n/2�, s(u) < s(v),
otherwise s(u) > s(v).
Case 4: n+ �n/2�+ 1 � v � 2n− 1.
In T(1+), u is an outer node, and v − n � u < n.
In T(1−), If u is an outer node, u < v − n. If u
is an inner node and s(v) � �n/2�, s(u) > s(v),
otherwise s(u) < s(v).
In T(n−), u = 0, n, or u is an inner node. If u
is an inner node and s(v) � �n/2�, s(u) < s(v),
otherwise s(u) > s(v).

In any case, it turns out that every node can rout-
ing three internally disjoint paths in the network.
�

According to Lemmas 4.1 and 4.2, we give the
following theorem.

Theorem 1. For a single node, Algorithm Par-
ent Determine can be used to determine its par-
ents in three IST on a GP network in O(1) time.

5 . Concluding Remarks

A one-to-many parallel routing algorithm is pro-
posed to construct three IST on a GP network.
Based on the algorithm, each non-root node can
determine its parents in the IST in constant time.
The height of the IST is n− 1, where n is the num-
ber of outer or inner nodes. Our future work is to
design a parallel routing algorithm that can reduce
the hight of the IST. Another deserving work is to
design an advanced one-to-many routing algorithm
for P(n,k) by releasing the restriction of coprime n
and k.
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Figure 2: Three IST rooted at node 0, (a) on P(9,4),
and (b) on P(8,3). 33
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