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Abstract

In this paper, we consider the problem of
straightening k-monotone linear trees in two di-
mensions. First, we show that a 3-monotone lin-
ear tree can always be straightened in O(n) moves
and O(n) time, and a 4-monotone linear tree
can always be straightened in O(n) moves and
O(n log n) time, where n is the number of edges of
the tree. Moreover, we provide two linear locked
trees of monotonicity more than 4. First, by pre-
senting a locked 5-monotone linear tree T of 14
edges, we determine that the minimum monotonic-
ity of locked linear trees is 5. In addition, we ob-
serve that the backbone K of locked tree T con-
tains one zigzag. Therefore, we further present
a locked 6-monotone linear tree of 8 edges with
straight backbone.

1 Introduction

A (planar) linkage is a straight-line drawing of
a plane graph G in two dimensions with compat-
ible edge lengths. A linkage L is called linear if
all vertices and all edges of L lie on a line. For
linear linkages, we use the self-touching assump-
tion (refer to [1, 5] for the formal definition) as
the theoretical basis: the edges of a linkage are
allowed to touch or overlap, but not cross; that
is, if the interiors of the edges intersect, then they
must be parallel. A k-monotone linear tree is a
tree linkage T with all vertices and all edges of T
lying on a horizontal line such that every vertical
line intersects the vertices or edges of T at most k
times.

A motion for a linkage L is a continuous defor-
mation of L on the plane during which no edge
crossing is allowed and all edges of L should re-
main rigid, i.e. the interior of each edge is kept
straight and each edge length is also preserved.

Moreover, a motion is composed of single or si-
multaneous moves, each of which is a continuous
monotonic change of an angle between two edges
incident to some vertex. A configuration of a link-
age L is a state of L which can be reached via a
series of motions. A linear tree linkage T can be
straightened if there exists a series of motions to
reconfigure any initial configuration of T to the lin-
ear configuration with all root-to-leaf paths going
to the right (called the canonical configuration);
otherwise, T cannot be straightened and is thus
called locked. A fundamental problem we concern
is whether there exists a series of motions to recon-
figure linkage T between any two linear configura-
tions. If we can show that T can be straightened,
then it is clear that this problem has a feasible
solution.

We now present the related work for linear link-
ages in two dimensions in the following. First, Ab-
bott et al. [1] showed that a linear chain can always
be reconfigured between any two configurations.
Later, Ballinger et al. [3] presented a locked lin-
ear tree of monotonicity 7 and a locked equilateral
tree. Thus we can see that both linear trees and
equilateral trees can lock. However, Abel et al. [2]
showed that a linear equilateral tree can always be
straightened in polynomial moves and time.

Moreover, we survey the related work for mono-
tone linkages in two dimensions. First, Biedl et
al. [4] showed that a monotone polygon can al-
ways be convexified in O(n2) moves and time.
Then, Kusakari et al. [8] showed that a monotone
tree can always be straightened in O(n) moves
and O(n log n), and Kusakari [7] showed that ra-
dial monotone trees can lock. Moreover, Poon [9]
showed that a 2-monotone orthogonal tree can al-
ways be straightened in O(n2) moves and time,
and Ballinger et al. [3] showed that 3-monotone or-
thogonal trees can lock. Their results thus showed
that the minimum monotonicity of locked orthog-
onal trees is 3. In addition, Ballinger et al. [3]
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also provided a locked linear tree of monotonic-
ity 7. However, it remained open the questions
of the straightenability of k-monotone linear trees
and of determining the minimum monotonicity of
locked linear trees. These motivate our work in
this paper. In this paper, we not only show that a
k-monotone tree for k ≤ 4 can always be straight-
ened, but also determine that the minimum mono-
tonicity of locked tree linkages is 5. Hence, our
results completely settle such a question.

2 Preliminaries

In this section, we define technical terms re-
lating to the structure of k-monotone linear trees
and unfolding operations. Let T = (V,E) be a
k-monotone linear tree (see tree T in Figure 1),
where the clockwise cyclic ordering of the incident
edges around each vertex in T is given. In most fig-
ures of this paper, overlapping edges of linear trees
are drawn as slightly separated straight line seg-
ments or curved line segments, in order for show-
ing the combinatorial structure of the overlapping
edges.

Backbone and Main Subtrees. The backbone K
of tree T is the chain between a vertex with the
smallest x-coordinate in T (called the left-end of
K or the root of T ) and a vertex with the largest
x-coordinate in T (called the right-end of K). See
backbone K = C[s, t] in Figure 1, where C[s, t]
denotes the chain between vertices s and t. If we
remove all edges of K from T , then we call the re-
maining components that are not isolated vertices
the main subtrees of T . See subtree Ti rooted at
vertex u in Figure 1 for illustration.

Now, the components in a main subtree Ti in T
are defined as follows. The root of Ti (see vertex
u in Figure 1) is the common vertex of Ti and
backbone K. Let C be the chain between the left-
end and the right-end of Ti (see chain C[p, q] in
Figure 1). The (main) stem of Ti (see chain C[u, v]
in Figure 1) is the shortest chain connecting root
u and C. The branching vertex v of Ti (see vertex
v in Figure 1) is the common vertex of the stem
of Ti and C. Moreover, the left (main) branch
of Ti (see chain C[v, p] in Figure 1) is the chain
between v and the left-end of Ti, and the right
(main) branch of Ti (see chain C[v, q] in Figure 1)
is the chain between v and the right-end of Ti.

Covering Relations. Next, we define the cover-
ing relations for straight chains in tree T . Let C
be a straight chain in T above K, and let R(C)
be the set of all rays starting from a point on C

shooting in the upward direction. Straight chain
C is covered if some rays in R(C) topologically in-
tersect some non-vertical edges of T ; otherwise, C
is uncovered. Notice that we use the term “topo-
logically” to mean that although two objects oc-
cupy the same geometrical position, under the self-
touching assumption, their positions can still be
differentiated. Moreover, if all rays in R(C) topo-
logically intersect some non-vertical edges of T ,
then C is called fully covered. If some rays inR(C)
topologically intersect some non-vertical edges of
T , but some do not, then C is called partly covered.

Let C1, . . . , Cq for q ≥ 3 be a set of edge-disjoint
straight chains in T . For every i, 1 ≤ i ≤ q − 1, if
Ci is covered by Ci+1, then C1 is indirectly covered
by Cq. Note that C1 can be covered and indirectly
covered by Cq at the same time. For the covering
relations over straight chains in T below K, we
define them in a symmetric fashion as above.

Zigzags. A regular zigzag in tree T (see chain
xijk in Figure 1) is a Z-shape chain, and a reverse
zigzag in tree T (see chain jk�q in Figure 1) is a
mirrored Z-shape chain. The three edge-disjoint
straight chains of Z are called the upper, mid-
dle, and lower chains of Z in top-to-bottom order.
Here we define a zigzag in a more strict fashion,
with considering two more properties, i.e., the up-
per and lower chains are maximal straight chains
in tree T , and they should be at least as long as
the middle chain. The left and right corners of Z
are the left- and right-ends of the middle chain of
Z, respectively. The left and right chains of Z are
the upper and lower chains of Z that connect to
the right and left corners of Z, respectively.

Binding, Verticalizing, Horizontalizing, and
Straightening Operations. To bind overlapping
edges lying on a line is to glue them together
to form a combined edge. To upward- and
downward-verticalize a straight chain C = C[u, v],
where vertex v is a leaf, around vertex u to lie
in the upward or downward direction is to rotate
C around leaf u while keeping C rigid, until C
points to the upward or downward direction, re-
spectively. Clearly, the operations of upward- and
downward-horizontaling a straight chain C can
also be defined in a similar fashion. In addition,
to straighten a subtree Ti is to reconfigure Ti such
that all root-to-leaf chains in Ti become straight
chains that run along a specific direction.
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Figure 1: A 4-monotone linear tree T with zigzagged backbone K (bold edges).

3 3-monotone linear trees

In this section, we present the algorithm Un-
fold3MonoTree consisting of four steps for
straightening a 3-monotone linear tree T with
backbone K. In Steps 1 to 3, we straighten all
main subtrees above K to lie in the upward direc-
tion. Then in Step 4, we first straighten all main
subtrees below K to lie in the downward direction
in a similar fashion as in Steps 1 to 3. Then we
pull straight all zigzags of K and we rightward-
horizontalize all main subtrees in T in sequence.
This completes the overview of this algorithm. We
now briefly describe the first three steps as fol-
lows. More detailed steps are omitted due to lack
of space.

A hair is a straight chain rooted onK, a branch,
or a stem, extending to a leaf, and without addi-
tional edges incident to its internal vertices. Note
that when we say to verticalize or horizontalize a
hair, we use the convention that we perform the
corresponding operation around its non-leaf end-
point. In Step 1, we manipulate all hairs rooted
on each main branch B above K. That is, we
first upward-verticalize all hairs rooted on the up-
per side of each branch B, and then we bind all
hairs rooted on the lower side of each branch B
to B. In Step 2, we first upward-verticalize all
the main branches above K that are not fully
covered by any other main branch, and then we
upward-verticalize all the remaining fully-covered
main branches above K. As a result, all main
branches above K are upward-verticalized. Be-
sides, we can see that the remaining parts that are
not upward-verticalized are all main stems above
K and all the bound inner hairs rooted on the
main branches above K. Thus in Step 3, we
first upward-verticalize all main stems above K,
and then we release and upward-verticalize all the
bound inner hairs rooted on the main branches
above K. As a result, all main subtrees above K
are straightened to lie in the upward direction.

We note that in the whole process, no edge
crossing can occur. Since we obtain the vertical-
izing ordering according the tree structure, this
algorithm runs in linear time. Lastly, we obtain

the following theorem.

Theorem 1 A 3-monotone linear tree can be
straightened in O(n) moves and O(n) time.

4 4-monotone linear trees

In this section, we consider the straightening of
4-monotone linear trees. In Section 4.1, we solve a
specific case in which the backbones are straight.
In Section 4.2, we extend the result to solve the
general case.

4.1 4-monotone linear trees with
straight backbone

Now, we consider the straightening of a 4-
monotone linear tree T with straight backbone
K. A secondary subtree in a main subtree Ti is
called inner if it lies wholly between backbone K
and the union of both branches of Ti (see sub-
tree S2 in Figure 1); otherwise, it is called outer
(see subtree S1 in Figure 1). Clearly, applying
Unfold3MonoTree to tree T is not enough to
solve this problem since inner secondary subtrees
can entangle with main subtrees, which makes this
problem nontrivial. With a careful design of ba-
sic operations, we come up with a sophisticated
algorithm Unfold4MonoTreeSB consisting of
six steps to straighten the given tree T . The key
idea of this algorithm is to find and verticalize un-
covered neat backward-hair brushes (defined below;
see Figure 2(a)) in an iterative fashion until all
main subtrees are verticalized. We can realize this
idea due to the fact that the verticalization order-
ing for the sticks of these brushes (defined below)
we select follows the verticalization orders (i) and
(ii), mentioned in the following Step 4. After all
main subtrees are verticalized, it is not hard to see
that we can proceed to straighten all verticalized
main subtrees.

Definition 2 A neat backward-hair brush R is
a straight chain, called the stick K(R) of R (see
C[u, v] in Figure 2(a)), attached with hairs H(R)
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(see hairs f1, f2, f3 in Figure 2(a)), in a main
subtree of tree T such that the following three prop-
erties are satisfied:

• (One-end-free Stick) Stick K(R) is one-
end-free if by treating as being invisible all
hairs in H(R), all verticalized subtrees rooted
on K(R), and all the edges rooted on the up-
per side of K(R) that cover K(R), then K(R)
is a hair with its leaf v, called the free-end of
K(R). Moreover, the pivot of K(R) is its
other endpoint.

• (Backward Hairs) All hairs in H(R) lie be-
tween stick K(R) and backbone K and point
backwards with respect to the direction of
K(R). Thus hairs H(R) are called the back-
ward hairs of R.

• (Fully-covered Hairs) All hairs in H(R)
are fully covered by stick K(R).

Moreover, a brush R is uncovered if its stick
K(R) is uncovered. Note that when we say to
verticalize or horizontalize a brush R, we use the
convention that we perform the corresponding op-
eration around the pivot of its stick K(R).

The six steps of Unfold4MonoTreeSB is de-
scribed as follows. In Step 1, we first compute a
trapezoidal map M(T ) of tree T (see [6] for the
definition) for obtaining covering relations, which
will be used in the following steps. Then we mod-
ify all main subtrees in T via five kinds of binding
operations (the corresponding properties we aim
to obtain are omitted due to lack of space) in or-
der to obtain a simpler linear tree structure T ′.
See Figure 3(b) for illustration.

In Step 2, we first compute the core tree T ∗

by removing from T ′ all right inner secondary
branches corresponding to all left main branches
in T ′, and all left inner secondary branches cor-
responding to all right main branches in T ′. See
Figure 3(c). Note that the removed branches will
serve as backward hairs. In an onion-peeling or-
der, we perform the brush stick selection on each
main subtree Ti of T

∗ to select a set of candidate
sticks C from Ti. See Figure 3(d). More precisely,
we recursively extract from the current subtree T ′

i

of Ti a maximal straight chain C with one end-
point being the vertex with minimum distance to
root dr(·) such that C does not cover any edge
in T ′

i , until T
′
i becomes empty. The distance to

root dr(C) of a chain C[u, v] in Ti as the minimum
value of dr(u) and dr(v). Then we claim the fol-
lowing lemma, in order for showing the key lemma
of this algorithm, namely Lemma 4.

Lemma 3 (Covering of selected sticks) Let
C,C ′ be two sticks in C intersecting a root-to-
leaf chain in a main subtree Ti of tree T ∗. If
dr(C) < dr(C

′), then C ′ covers or indirectly
covers C.

In Step 3, for each brush R whose stick is in C,
we compute its backward hairs H(R) and inter-
fering hairs I(R) ⊂ C (see hairs g1, g2, g3 in Fig-
ure 2(a)), whose hairs are covered by K(R) and
cover or indirectly cover some backward hairs in
H(R). Thus C can be divided into two categories,
say Cs (sticks that do not serve as interfering hairs;
called final sticks) and Ch (sticks that serve as in-
terfering hairs). Then we obtain final brushes R,
consisting of all brushes whose sticks are in Cs,
which can be proven to be all neat backward-hair
ones, whose proof is omitted due to lack of space.

Lemma 4 (Neat backward-hair brush lemma)
All brushes R ∈ R are neat backward-hair ones
in T ′, and all sticks in I(R) are fully covered by
K(R).

Moreover, for every brush R ∈ R, we assign
each hair in H(R) and I(R) to point to the non-
leaf endpoint of its corresponding hair in I(R)
and H(R), respectively. See dotted arrows in Fig-
ure 2(b).

In Step 4, we first compute a linear verticaliza-
tion ordering Ω for all brushes R ∈ R, which are
all neat backward-hair ones, such that the follow-
ing two verticalization orders hold:

• Verticalization order (i), based on cov-
ering relations over Cs. If stick C ∈ Cs is
covered or indirectly covered by another stick
C ′ ∈ Cs, then C ′ should be verticalized earlier
than C.

• Verticalization order (ii), based on tree-
structure relations over Cs. For two sticks
C,C ′ ∈ Cs intersecting a root-to-leaf chain of
a main subtree Ti, if dr(C) < dr(C

′), then C ′

should be verticalized earlier than C.

According to Lemma 4 and this ordering, we can
upward-verticalize on all brushes R ∈ R and all
hairs inH(R)∪I(R), as shown in Figure 2, without
any edge crossing.

Next, in Step 5, we first release all the bound
structures of T and then perform an intuitive but
complicated procedure, called the stretching and
straightening process consisting of ten substeps, to
straighten all verticalized main subtrees above K.
Lastly, we straighten all main subtrees below K
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Figure 2: Upward-verticalizating an uncovered neat backward-hair brush R (bold edges) whose stick
is chain C = C[u, v] with the backward hairs H(R) = {f1, f2, f3} and the interfering hairs I(R) =
{g1, g2, g3}. (a) Initial configuration of brush R. (b) The configuration when R is upward-verticalized.
During the motion from (a) to (b), all hairs in H(R) ∪ I(R) are kept pointing to their target points
(dotted arrows). (c) Circled numbers represent the sequential peeling operations.
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Figure 3: Steps 1 and 2 of Unfold4MonoTreeSB. (a) Initial tree T . (b) Applying the five kinds of
binding operations (shaded regions) to tree T to obtain T ′. (c) Removing some inner secondary branches
(dashed edges) from tree T ′ to obtain core tree T ∗. (d) Selecting candidate sticks (bold chains) from all
main subtrees of core tree T ∗.

in a similar fashion as above. This completes the
algorithm. More detailed steps and correctness
proofs are omitted due to lack of space. Since
computing trapezoidal mapM(T ) takesO(n log n)
time, we thus obtain the following lemma.

Lemma 5 A 4-monotone linear tree with straight
backbone can be straightened in O(n) moves and
O(n log n) time.

4.2 4-monotone linear trees with
zigzagged backbone

In this subsection, we present algorithm Un-
fold4MonoTree consisting of four steps to
straighten a general 4-monotone linear tree T with
backbone K. Without loss of generality, we as-
sume that K contains zigzags. As tree T has
monotonicity 4, edges can pass through the open-
ings of backbone zigzags, so that when we are go-

ing to move a such edge, we need to open the cor-
responding opening beforehand and move related
edges above and below K simultaneously.

Now we sketch Unfold4MonoTree as fol-
lows. This algorithm uses the procedure in Un-
fold4MonoTreeSB as a subroutine, and we
straighten the zigzags in K incrementally by con-
sidering covering relations as follows. We search
for the first openable zigzag Z in K from left to
right such that its middle chain, its right chain and
the main subtrees rooted on its right chain can be
bound, and then be verticalized without any edge
crossing. Then we apply an opening process to Z
and all the other unstraightened zigzags Z ′ in K
on its left one by one from right to left (see Fig-
ures 4). After that, we further apply an straight-
ening process to straighten these zigzags one by
one from left to right (see Figures 5). Thus by
repeating the above procedure, we eventually can
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Figure 5: The straightening process for zigzag Z1 = C[s, r2] ∈ Z ′. (a) is the continuation from Figure 4(d).

verticalize all main subtrees and also straighten
all zigzags of K. More detailed steps and correct-
ness proofs are omitted due to lack of space. Since
computing trapezoidal map M(T ) and some stick
sets, used in opening and straightening processes,
both run in O(n log n) time, we thus obtain the
following theorem.

Theorem 6 A 4-monotone linear tree can be
straightened in O(n) moves and O(n log n) time.

5 Locked linear trees of monotonic-
ity more than 4

In this section, we present two new locked linear
trees of monotonicity more than 4. To show the
lockedness, we make use of the following lemma as
the theoretical basis.

Lemma 7 ([5]) If a self-touching configuration
is rigid, then it is strongly locked.

At the beginning, we present a 5-monotone lin-
ear tree of 14 edges, whose self-touching configu-
ration is as shown in Figure 6. Clearly, the linear
geometry of this tree is a straight horizontal line
with five distinct vertices. We then claim that
the tree is rigid and thus, by Lemma 7, strongly
locked, whose proof is omitted due to lack of space.

Theorem 8 The 5-monotone linear tree of 14
edges in Figure 6 is strongly locked.

Furthermore, we observe that the backbone of
the above locked linear tree contains only one
zigzag, and the smallest monotonicity ever known
for a locked linear tree of 8 edges is 7. Thus we
present a 6-monotone linear tree of 8 edges with
straight backbone (see Figure 7), and we claim
the tree is rigid and thus, by Lemma 7, strongly
locked, whose proof is also omitted due to lack of
space.
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Figure 6: A locked 5-monotone linear tree of 14 edges. Vertices surrounded by dashed circles are tighter
than drawn.
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Figure 7: A locked 6-monotone linear trees with
straight backbone of 8 edges. Vertices surrounded
by dashed circles are tighter than drawn.

Theorem 9 The 6-monotone linear tree of 8
edges in Figure 7 is strongly locked.

6 Conclusions

In this paper, we first show that a 3-monotone
linear tree can always be straightened in O(n)
moves and O(n) time, and a 4-monotone linear
tree can always be straightened in O(n) moves and
O(n log n) time. Then we show that 5-monotone
linear trees can lock by providing a locked 5-
monotone linear tree of 14 edges. Thus we de-
termine that the minimum monotonicity of locked
linear trees is 5. Furthermore, we provide a locked
6-monotone linear tree of 8 edges with straight
backbone. Lastly, we leave open the question
whether a 5-monotone linear tree with straight
backbone can always be straightened.
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