
A (Δd + 2)-Approximation for Unweighted

Capacitated Domination with Hard Capacities

(Extended Abstract)

Mong-Jen Kao1, Hai-Lun Tu2, and D.T. Lee1,2

1Institute for Information Science, Academia Sinica, Taipei, Taiwan.
mong@iis.sinica.edu.tw, dtlee@ieee.org

2Department of Computer Science and Information Engineering, National Taiwan
University, Taiwan. d95019@csie.ntu.edu.tw

Abstract

In this paper we consider the capacitated dom-
ination problem with hard capacity constraints
(CD-HC), a generic model to covering problems,
for unweighted versions .

We obtain a (Δd + 2)-approximation for gen-
eral graphs, where Δd is the maximum number of
demanding vertices any covering vertex has in its
closed neighborhood (the demanding degree).

1 Introduction

In this paper, we consider the capacitated dom-
ination problem with hard capacities (CD-HC), a
generic model to covering problems with hard ca-
pacities, and provide approximation results as well
as trade-offs. In this problem we are given a graph
G = (V,E) with four parameters, namely weight
w(v), demand d(v), capacity c(v), and available
multiplicities m(v), defined for each vertex v ∈ V .
The demand of a vertex is the amount of service it
requires. The capacity of a vertex is the amount of
service each multiplicity of that vertex can provide
to its closed neighbors. The objective is to com-
pute a dominating multi-set of minimum weight
such that the multiplicity of each vertex in the
multi-set does not exceed its available multiplici-
ties and the demand of each vertex is served by
the capacities provided by its closed neighbors.

1.1 Previous Work

Depending on whether the available multiplici-
ties of each object is limited, the work on capac-

itated covering problems falls mainly in two cat-
egories: (1) soft capacities, where we can use as
many multiplicities as necessary, and (2) hard ca-
pacities, where the available multiplicities of each
vertex is limited.

The capacitated vertex cover with soft capac-
ities was first introduced by Guha et al. [7].
They gave a 2-approximation based on primal-
dual schema. Subsequently, Gandhi et al. [6]
proposed another 2-approximation via dependent
rounding. Kao et al. [8, 9] considered capaci-
tated domination problem and proposed a Δ∗-
approximation algorithm, where Δ∗ is the max-
imum closed degree of the graph. Special cases
and variations of this problem were also consid-
ered independently [3, 4, 10].

For hard capacities, Chuzhoy and Naor [2] con-
sidered capacitated covering with hard capacities
and unit demands. For unweighted capacitated
vertex cover with hard capacities (VCHC), they
gave a 3-approximation using randomized round-
ing with a specific patching procedure. They
showed that the weighted version of VCHC is at
least as hard as the set cover problem. Due to this
reason, subsequent work on VCHC has focused
on the unweighted version. For weighted capac-
itated set cover with unit demand, they presented
a (lnΔd+1)-approximation, where Δd is the max-
imum size of the sets. This approach further
extends to a (lnmaxS f(S) + 1)-approximation
for submodular set cover, which was proved by
Wolsey [12]. Gandhi et al. [5] proposed a refined
approach to [2] for unweighted VCHC with unit
edge demand and obtained a 2-approximation.

Saha and Khuller [11] considered unweighted

77

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

VCHC with general edge demands. They pro-
vided a 34-approximation for the case of unit mul-
tiplicity and a 38-approximation for general mul-
tiplicities. They also considered Δc-hypergraphs,
i.e., hypergraphs with largest edge size Δc, and
proposed a max {6 ·Δc, 65}-approximation. Re-
cently, these results were improved by Che-
ung et al. [1], who provided a

(
1 + 2/

√
3
)
-

approximation for general graphs and a 2 · Δc-
approximation for Δc-hypergraphs.

1.2 Our Results and Contribution

In this paper, we consider the problem of ca-
pacitated domination with hard capacities and
present algorithmic results for unweighted versions
of this problem. The approach we use is a delicate
primal-dual schema, extended from [9], combined
with a flow-based procedure and a local charging
argument.

For the unweighted CD-HC, we present a (Δd+
2)-approximation algorithm for general graphs,
where Δd is the maximum demanding degree of
any covering vertices, i.e., the maximum number
of demanding vertices any covering vertex has in
its closed neighborhood.

The rest of this paper is organized as follows. In
§2 we formally introduce the problem we consider
and the primal-/dual- linear programs. In §3 we
consider unweighted- CD-HC, and in §4 we con-
clude with an overview and a discussion on future
directions.

2 Preliminaries

Let G = (V,E) be a graph with vertex set
V and edge set E. We denote the set of neigh-
bors of a vertex v ∈ V by NG(v). Formally,
NG(v) = {u : (u, v) ∈ E}. The closed neigh-
borhood of any vertex v ∈ V , i.e., NG(v) ∪ {v}, is
denoted by NG[v]. For any A ⊆ V , we use NG[A]
to denote the closed neighbors of the vertices in
A, i.e., NG[A] =

⋃
u∈A NG[u]. For the rest of this

paper, the subscript G will be omitted when there
is no confusion in the context.

2.1 Capacitated Domination with
Hard Capacities (CD-HC)

Below we formally define the problem we con-
sider. In this problem we are given a graph
G = (V,E) with four non-negative integral param-
eters defined for each v ∈ V : (1) weight w(v), (2)

demand d(v), (3) capacity c(v), and (4) available
multiplicities m(v).

By a demand assignment function f we mean
a function that maps pairs of vertices to non-
negative real numbers, i.e., f : V ×V → R+ ∪{0}.
In other words, f(u, v) denotes the amount of de-
mand of u that is assigned to v.

For any demand assignment function f , the cor-
responding multiplicity function, denoted xf , is

defined to be xf (v) =
⌈∑

u∈NG[v] f(u, v)/c(v)
⌉
.

Literally, xf gives the dominating multi-set to
which f corresponds in that it specifies the num-
ber of times a vertex has to be included in the
multi-set.

A demand assignment function f is said to be
feasible if we have

∑
v∈N [u] f(u, v) ≥ d(u) and

xf (u) ≤ m(u) for each u ∈ V . In other words,
a demand assignment is feasible if the demand of
each vertex is fully-assigned to some of its closed
neighbors (fully-served) and the multiplicity of
each vertex does not exceed its available multi-
plicities.

Lemma 1. Let G = (V,E) be an instance of
CD-HC and D be a valid dominating multi-set for
G, i.e., there exists a feasible demand assignment
whose corresponding dominating multi-set is D.
Then there exists a feasible demand assignment
f : V × V → N ∪ {0}, computable in polynomial
time, such that we have xf (v) ≤ xD(v) for every
v ∈ V , where xD is the multiplicity function for
D.

The cost of a demand assignment function f ,
denoted w(f), is defined to be w(f) =

∑
u∈V w(u)·

xf (u). Below we formally define the problem we
consider.

Definition 1 (Capacitated Domination with
Hard Capacities). Given a graph G = (V,E)
with weight w(v), demand d(v), capacity c(v),
and available multiplicities m(v) defined for each
v ∈ V , the problem of capacitated domination
with hard capacities is to compute a feasible de-
mand assignment function f such that w(f) is
minimized.

Throughout this paper, for each v ∈ V ,
we use δd(v) and δc(v) to denote the number
of demanding vertices and the number of cov-
ering vertices in N [v], respectively. Formally,
δd(v) = |{u : u ∈ N [v], d(u) > 0}| and δc(v) =
|{u : u ∈ N [v],m(u) · c(u) > 0}|. We also refer
δd(v) and δc(v) to as the demanding degree

78

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

and the covering degree of v, respectively. We
use Δd to denote the maximum demanding de-
gree of vertices with nonzero available capac-
ity in the input graph, i.e., we have Δd =
maxv∈V,m(v)·c(v)>0 δd(v). Similarly, we use Δc to
denote the maximum covering degree of demand-
ing vertices, i.e., Δc = maxv∈V,d(v)>0 δc(v).

Moreover, for the rest of this paper, we implic-
itly assume the feasibility of the input graph, i.e., a
feasible demand assignment for the input always
exists. Note that, this condition can be checked
easily by Lemma 1 via a max-flow computation.

2.2 A ILP Formulation and the Dual
of its Relaxation

An integer linear program for the CD-HC is
given below in (1). There are two sets of variables
f(u, v) and x(u), which correspond to the demand
assignment function and the multiplicities of the
vertices.

Minimize
∑
u∈V

w(u) · x(u)
∑

v∈N [u]

f(u, v) ≥ d(u), u ∈ V

c(u)x(u)−
∑

v∈N [u]

f(v, u) ≥ 0, u ∈ V

d(v)x(u)− f(v, u) ≥ 0, v ∈ N [u], u ∈ V

x(u) ≤ m(u), u ∈ V

f(u, v), x(u) ∈ Z+ ∪ {0}, u, v ∈ V (1)

The first inequality states that the demand of
each vertex has to be fully-served. The second
inequality connects the multiplicity function and
the demand assignment function. The third in-
equality, which states that the multiplicity of a
vertex cannot be zero if some demand is assigned
to that vertex, is introduced to bound the integral-
ity gap of the relaxation. The fourth inequality
constraints the multiplicity of each vertex.

The dual linear program of the relaxation of
(1) is given in (2). There are four sets of variables
yu, zu, gu,v, and ηu, which can be interpreted as
a packing program as follows. We would like to
pack more values into the variable yu for all u ∈ V ,
whose values are constrained by zv and gv,u that
are further constrained by w(v) for each v ∈ N [u].

Maximize
∑
u∈V

d(u)yu −
∑
u∈V

m(u)ηu

subject to

c(u)zu +
∑

v∈N [u]

d(v)gu,v − ηu ≤ w(u), u ∈ V

yu ≤ zv + gv,u, v ∈ N [u], u ∈ V

yu ≥ 0, zu ≥ 0, gv,u ≥ 0, ηu ≥ 0,

v ∈ N [u], u ∈ V (2)

However, the fourth set of variables, ηu, com-
plicates the structure of the packing program in
that it allows us to pack even more values into yu
in the cost of a deduction in the objective value.
This provides a certain degree of flexibility, and
handling this flexibility would be one of the major
challenges for this problem.

3 A (Δd+2)-Approximation for Un-
weighted CD-HC

In this section we consider the unweighted case,
i.e., w(v) = 1 for all v ∈ V , and present a (Δd+2)-
approximation for the unweighted CD-HC. First,
we describe an approach to obtaining a feasible so-
lution for the dual program (2). In order to cope
with the effect of the non-positive contribution of
the ηu variables in the objective value, we use a
flow-based procedure to help deal with the pend-
ing decisions. During this procedure, a feasible
solution for the primal ILP (1) is also obtained.
This primal-dual scheme is presented in §3.1

3.1 Primal-Dual Scheme

We describe a process for computing a feasi-
ble dual solution Ψ = (yu, zu, gu,v, ηu) for the dual
program (2). The process starts with a trivial solu-
tion and eventually reaches a local optimal point.
During the process, the values of some dual vari-
ables will be raised and some inequalities will meet
with equality.

We first define some terms and notations to help
present our algorithm. We say a vertex u is sat-
urated if c(u)zu +

∑
v∈N [u] d(v)gu,v − ηu = w(u)

and opened if some demand from its closed neigh-
borhood is assigned to it. During the algorithm
we will maintain three vertex subsets U , V φ, and
S, which consist of the following: U contains the
set of vertices whose demand is not yet served, V φ

79

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

contains the set of vertices that have not yet been
saturated, and S contains the set of vertices that
are currently saturated but not yet opened. For
each u ∈ V , we use dφ(u) =

∑
v∈N [u]∩U d(v) to de-

note the amount of unassigned demand from the
closed neighbors of u.

Below we describe our algorithm in more detail.
Initially, U ≡ {u : u ∈ V, d(u) > 0} and all the
dual variables are set to be zero. We increase the
dual variable yu simultaneously for each u ∈ U . To
maintain the dual feasibility, as we increase yu, we
have to raise either zv or gv,u for each v ∈ N [u].
If dφ(v) ≤ c(v), then we raise gv,u. Otherwise, we
raise zv. In addition, if v ∈ S, i.e., v is currently
saturated but not yet opened, then we also raise
ηv to the extent such that it remains saturated. As
soon as one of the vertices in V φ, say, u, becomes
saturated, we perform the following operations.

We use a recursive procedure Update(S ∪
{u}, u), described in the next paragraph, to com-
pute a pair (S′, f ′), where S′ is a maximal subset
of S∪{u} that can fully-serve all the demand from
N [S′]∩U and f ′ is the corresponding demand as-
signment function. If S′ = ∅, then we add u to S.
Otherwise, we assign the demand from N [S′] ∩ U
to S′ according to f ′. Then we remove S′ from
S and each vertex v ∈ N [S′] ∩ U from U . This
process is repeated until U = ∅.

The procedure Update(A, u). Below we de-
scribe the recursive procedure Update(A, u). For
any vertex subset A ⊆ V , we define a directed
flow-graph G(A) with a source s+ and a sink s− as
follows. Excluding s+ and s−, G(A) is a bipartite
graph induced by N [A] ∩ U and A. In particular,
for each v ∈ N [A] ∩ U , we have a vertex v+ and
an edge (s+, v+) in G. Similarly, we have a vertex
v− and an edge (v−, s−) for each v ∈ A. Finally,
for each v1 ∈ A and each v2 ∈ N [v1] ∩ U , we have
an edge (v+2 , v

−
1) in G.

The capacity of each edge is defined as follows.
For each v ∈ N [A]∩U , c(s+, v+) is set to be d(v).
For each v ∈ A, c(v−, s−) is set to be m(v) · c(v).
The capacities of the remaining edges are unlim-
ited.

If u ∈ A, then we compute the max-flow of
G(A) under the additional constraint that the flow
between u− and s− is as small as possible, i.e.,
whenever there are multiple choices, the flow tends
to go through v− for any v ∈ A\{u} instead of
u−. Note that this can be done by augmenting
the procedure of computing augmenting paths. If
u /∈ A, then we do not have this constraint and

we simply compute the max-flow of G(A). Let
f̃ denote the resulting flow function and f̃(v1, v2)
denotes the flow from vertex v1 to v2 in G. Let

S′ =
{
v1 : v1 ∈ A, f̃(s+, v+2) = d(v2)

for all v2 ∈ N [v1] ∩ U
}

be the subset of A that can fully-serve the demand
from N [S′] ∩ U . If S′ = A or S′ = ∅, then we re-
turn (S′, f̃ ′), where f̃ ′ is the demand assignment
function from N [S′]∩U to S′ induced by f̃ . Oth-
erwise we return Update(S′, u).

3.2 Feasibility of Our Algorithm

In the following we present prilimary analy-
sis for the approach. First, we show that our
Primal-Dual Scheme computes a feasible demand
assignment if the input graph G admits one. It
is not difficult to see that, the assignment the al-
gorithm performs in each iteration, i.e., the func-
tion f̃ ′ computed by procedure Update(S∪{u}, u)
which corresponds to a demand assignment from
N [S′] ∩ U to S′, is always valid. Hence, it suffices
to argue that the set U becomes empty after some
iterations. To this end, we prove the following
property for the procedure Update(S ∪ {u}, u).
Lemma 2. If there exists any B ⊆ S ∪ {u} such
that B can fully-serve the demand in N [B] ∩ U ,
then we have B ⊆ S′, where S′ is the set returned
by Update(S ∪ {u}, u).

We prove this by arguing that B ⊆ Si implies
that B ⊆ Si+1 for all 1 ≤ i < k, where Si de-
notes the input of the procedure Update(·) in ith
recursion.

Lemma 2 ensures that, at the end of each it-
eration, �B ⊆ S such that B can fully-serve
N [B]∩U . Hence, in all iterations, we have u ∈ S′

whenever S′ �= ∅, where u is the vertex to satu-
rate in that iteration and S′ is the set returned
by Update(S ∪ {u}, u). Furthermore, the proce-
dure Update(·) guarantees that, after a vertex is
opened, all the demand from its closed neighbor-
hood will be served.

Hence, if S �= ∅, then the demand in N [S] ∩ U
is not yet served and we know that none of
the vertices in N [N [S] ∩ U] is opened, mean-
ing that no vertex in N [N [S] ∩ U]\S has been
saturated. If none of the vertices in N [N [S] ∩
U]\S can further saturate in later iterations, i.e.,
(N [N [S] ∩ U]\S) ∩ V φ = ∅, then we have found a
proof that the input graph is infeasible. In other

80

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

words, (N [N [S] ∩ U]\S) ∩ V φ �= ∅ as long as the
input graph is feasible. Similar argument holds for
the set U .

Since the cardinality of V φ strictly decreases
in each iteration, we know that both S and U will
eventually become empty if the input graph is fea-
sible. This proves the feasibility of our algorithm.

3.3 Approxmation Guarantee

Below we bound the cost of the solution com-
puted by Algorithm Unweighted-CD-HC. The
idea is to distribute the cost we spend for each
multiplicity to the value of the dual solution we
obtained and the cost of an arbitrary optimal de-
mand assignment. For vertices whose cost can
be paid by the dual solution, we charge the de-
mands served by the multiplicities. (The demands
pay for the services they use.) For those whose
cost cannot be paid properly by the dual solution,
we bound their cost using a local argument and
the assumption that vertices are unweighted. To-
gether this gives a factor of Δd + 2.

Let f̂ denote the demand assignment computed
by our algorithm and xf̂ be the corresponding
multiplicity function. For each u ∈ V , we use
d∗(u) =

∑
v∈N [u] f̂(v, u) to denote the amount of

demand that is assigned to u in f̂ .

For each u ∈ V with xf̂ (u) > 0, we distinguish
the following three cases:

(i) u ∈ S during some iteration,
(ii) u /∈ S for all iterations and d∗(u) ≥ c(u),

and
(iii) u /∈ S for all iterations but d∗(u) < c(u).

Let V1, V2, and V3 denote the set of vertices
that fall into the above three cases, respectively.
Clearly, we have w(f̂) =

∑
1≤i≤3

∑
u∈Vi

xf̂ (u).
Below we consider the three cases separately.

Lemma 3. For any u ∈ V1, we have d∗(u) =
m(u)·c(u). Furthermore, w(u)·m(u) = d∗(u)·yv−
m(u) · ηu for each v ∈ N [u] such that f̂(v, u) > 0.

We prove the first half of this lemma by contra-
diction.

Consider the specific iteration for which the
vertex u was removed from S and let u0 be the
vertex that becomes saturated in that iteration.
We argue that it exits an alternating path to
which we can reroute the flow from u0 to u if
d∗(u) < m(u) · c(u).

And since d∗(u) = m(u) · c(u), we know that
dφ(u) ≥ c(u) before u gets saturated. So only zu

will be raised, and yv = zu for all v ∈ N [u] such

that f̂(v, u) > 0. It yields the second half of this
lemma.

Lemma 4. For any u ∈ V2 and v ∈ N [u] such that

f̂(v, u) > 0, we have w(u) · xf̂ (u) ≤ 2 · d∗(u) · yv.
Proof of Lemma 4. Since u /∈ S in all iterations,
we have ηu = 0. Since d∗(u) ≥ c(u), we know
that dφ(u) ≥ c(u) until saturated. Hence we have
w(u) = c(u) · zu and yv = zu for all v ∈ N [u] by
our scheme. Therefore w(u) · xf̂ (u) = c(u) · zu ·⌈
d∗(u)
c(u)

⌉
≤ 2 · d∗(u) · yv.

Let fOPT denote an optimal demand assign-
ment for the input graph and xfOPT

denote the
corresponding multiplicity function. By charging
the cost incurred by vertices in V3 to the cost in-
curred by fOPT, we have the following lemma.

Lemma 5. We have
∑

u∈V3
xf̂ (u) ≤ Δd·w(fOPT).

For any v ∈ N [u] such that f̂(v, u) > 0, we
know that fOPT(v, v

′) > 0 for some v′ ∈ N [v].
Since xf̂ (u) = 1, we charge the cost incurred by

u in our solution to the cost incurred by v′ in the
optimal solution.

According to the design of our algorithm, we
know that the demand of v is assigned in one
particular iteration, and hence it can only be as-
signed to at most one vertex in V3 since at most
one vertex could be classified into V3 in any it-
eration. Therefore v′ can be charged by at most
δd(v

′) ≤ Δd times.

By combining the upper-bounds we obtained
for the three sets V1, V2, and V3, and the discussion
in §3.2, we have the following theorem.

Theorem 6. Algorithm Unweighted-CD-HC
computes a (Δd + 2)-approximation for the un-
weighted capacitated domination problem with
hard capacities in polynomial time.

4 Conclusion

We conclude with an overview and future di-
rections. In this paper we consider the prob-
lem of capacitated domination with hard capaci-
ties and provide algorithmic results for unweighted
versions of this problem. We present a (Δd + 2)-
approximation for unweighted CD-HC. Our main
ingredient is a delicate primal-dual schema com-
bined with network flow and local arguments.

81

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Below we discuss some future directions. Al-
though as shown in [2], weighted VC-HC is already
set-cover-hard.It is very interesting to explore the
problem complexity of the weighted hard capaci-
tated covering. On the other hand, the (Δd + 2)
approximation factor we obtain for unweighted
CD-HC seems to have room for further improve-
ments. It is also interesting to explore for the
possibility to obtain approximations with a lower-
order factor.

References

[1] Wang-Chi Cheung, Michel X. Goemans, and
Sam Chiu-Wai Wong. Improved algorithms
for vertex cover with hard capacities on multi-
graphs and hypergraphs. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’14,
pages 1714–1726, 2014.

[2] Julia Chuzhoy and Joseph (Seffi) Naor. Cov-
ering problems with hard capacities. SIAM
Journal on Computing, 36(2):498–515, Au-
gust 2006.

[3] Marek Cygan, Marcin Pilipczuk, and
Jakub Onufry Wojtaszczyk. Capacitated
domination faster than o(2n). In Proceedings
of the 12th Scandinavian Conference on
Algorithm Theory, SWAT’10, pages 74–80,
Berlin, Heidelberg, 2010. Springer-Verlag.

[4] Michael Dom, Daniel Lokshtanov, Saket
Saurabh, and Yngve Villanger. Capacitated
domination and covering: A parameterized
perspective. In Proceedings of the 3rd In-
ternational Conference on Parameterized and
Exact Computation, IWPEC’08, pages 78–90,
Berlin, Heidelberg, 2008. Springer-Verlag.

[5] Rajiv Gandhi, Eran Halperin, Samir Khuller,
Guy Kortsarz, and Aravind Srinivasan. An
improved approximation algorithm for ver-
tex cover with hard capacities. In Pro-
ceedings of the 30th International Confer-
ence on Automata, Languages and Program-
ming, ICALP’03, pages 164–175, Berlin, Hei-
delberg, 2003. Springer-Verlag.

[6] Rajiv Gandhi, Samir Khuller, and Aravind
Srinivasan. Approximation algorithms for
partial covering problems. Journal of Algo-
rithms, 53(1):55–84, October 2004.

[7] Sudipto Guha, Refael Hassin, Samir Khuller,
and Einat Or. Capacitated vertex covering.
Journal of Algorithms, 48(1):257–270, Au-
gust 2003.

[8] Mong-Jen Kao, Han-Lin Chen, and D.T. Lee.
Capacitated domination: Problem complex-
ity and approximation algorithms. Algorith-
mica, November 2013.

[9] Mong-Jen Kao, Chung-Shou Liao, and D. T.
Lee. Capacitated domination problem. Algo-
rithmica, 60(2):274–300, June 2011.

[10] Mathieu Liedloff, Ioan Todinca, and Yngve
Villanger. Solving capacitated dominating set
by using covering by subsets and maximum
matching. In Proceedings of the 36th Inter-
national Conference on Graph-theoretic Con-
cepts in Computer Science, WG’10, pages 88–
99, Berlin, Heidelberg, 2010. Springer-Verlag.

[11] Barna Saha and Samir Khuller. Set cover
revisited: Hypergraph cover with hard ca-
pacities. In Proceedings of the 39th Interna-
tional Colloquium Conference on Automata,
Languages, and Programming - Volume Part
I, ICALP’12, pages 762–773, Berlin, Heidel-
berg, 2012. Springer-Verlag.

[12] Laurence A. Wolsey. An analysis of the
greedy algorithm for the submodular set cov-
ering problem. Combinatorica, 2(4):385–393,
1982.

82

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

�

83

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

