
A Variant of the Sum Coloring Problem on Trees

Chin-Fu Lin, Sheng-Lung Peng∗, Min-Feng Wu
Department of Computer Science and Information Engineering

National Dong Hwa University, Hualien 97401, Taiwan
∗corresponding author: slpeng@mail.ndhu.edu.tw

Abstract

Let G = (V,E) be a simple and connected
graph. The graph coloring problem on G is to color
the vertices of G such that the colors of any two ad-
jacent vertices are different and the number of used
colors is as small as possible. By assigning a pos-
itive integer to a color, the sum coloring problem
asks the minimum sum of the coloring numbers as-
signed for all vertices. In this paper, we introduce
a new coloring problem called the distinguishable
sum coloring problem. In this problem, one ad-
ditional condition is required, i.e., all the vertices
in the closed neighborhood of any vertex must be
colored in different colors. We propose a dynamic
programming algorithm for solving the distinguish-
able sum coloring problem on trees. The time com-
plexity of this algorithm is O(n×Δ(T)2×Δ(T)!),
where T is a tree, n = |V |, and Δ(T) is the max-
imum degree of T . Also, we obtain a recurrence
relation for this problem on full k-ary trees. Note
that if Δ(T) is constant, then our algorithm runs
in O(n) time.

1 Introduction

Let G = (V,E) be a simple and connected
graph. Let N(v) = {u | (u, v) ∈ E} be the open
neighborhood of v and N [v] = N(v) ∪ {v} be the
closed neighborhood of v. The degree of a vertex
v is denoted by deg(v) which is equal to |N(v)|.
The maximum degree of a graph G is denoted by
Δ(G).

A coloring on G is a function f on V mapping
to {1, 2, . . . , k} such that for any two adjacent ver-
tices u and v, i.e., (u, v) ∈ E, f(u) �= f(v). A col-
oring using at most k colors is called a k-coloring.
The Graph Coloring Problem (GCP for shot)
on G is to find a coloring function f such that k is
minimum. The k is called the chromatic number

of G and is denoted as χ(G).

GCP is a classic NP-Hard problem [6] and
has many applications such as scheduling [11],
timetabling [14], frequency assignment [16],
printed circuit testing [5], register allocation [17],
communication networks [18] and bag rationaliza-
tion [7]. On the other hand, current algorithms
can only solve small random graphs, with up to
80 vertices [3]. However, today’s applications usu-
ally need more than hundreds or thousands of ver-
tices. Therefore, some heuristic and metaheuristic
algorithms have been proposed [12, 15].

The Minimum Sum Coloring Problem
(MSCP for short) on G is to find a coloring func-
tion f such that

∑
v∈V

f(v) is minimum. This mini-

mum sum of colors is called the chromatic sum of
G and is denoted by

∑
(G). The number of colors

needed in
∑

(G) is called the strength of G. It
seems that χ(G) colors are sufficient for the MSCP.
However, it has been proved that the strength of
a graph G sometimes needs more than χ(G) col-
ors. Figure 1 uses χ(G) colors to color a tree with∑
v∈V

f(v) = 12. However, Figure 2 uses extra 1

color to color the same tree with
∑
v∈V

f(v) = 11.

Figure 1: Coloring a
tree with sum 12 using
2 colors.

Figure 2: Coloring the
same tree with sum 11
using 1 extra color.

The research of the MSCP is started from Ku-
bicka in 1989 [8]. Kubicka proved that the MSCP
was NP-complete and gave a polynomial time al-
gorithm on trees. Kroon [10] proved the NP-
hardness of MSCP on interval graphs and gave
a linear time algorithm for trees. Jansen showed

101

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

that the MSCP for cographs can be solved in
O(|V | + |E|) time and the partial k-trees can be
solved in O(|V | logk+1 |V |) time. He also proved
that this problem on bipartite graphs and permu-
tation graphs was NP-complete. In addition, he
also proved that the MSCP problem can be solved
for cobipartite graphs in polynomial time. Be-
sides, several heuristic algorithms have been pro-
posed [1, 2, 4, 9, 13, 19]. A distinguishable coloring
on G is a function f on V mapping to {1, 2, . . . , k}
such that |{f(u) | u ∈ N [v]}| = |N [v]| for each
v ∈ V. It means that any vertex and all its neigh-
bors must be colored different from each other.
The Distinguishable Sum Coloring Problem
(DSCP for short) on G is to find a distinguish-
able coloring function f such that

∑
v∈V

f(v) is min-

imum.

2 An algorithm for trees

In this section, we propose an algorithm to solve
the DSCP on trees. We define the T k

d to be a
rooted full k-ary tree with depth d. If k = 2, then
it is a full binary tree. Let sum(T) =

∑
v∈V

f(v).

It is easy to check that sum(T k
0) = 1 and

sum(T k
1) =

(k+1)×(k+2)
2 . For the solution of T k

1 , it
can be considered as a star graph with k+1 nodes.
So, we need the colors from 1 to k+1. It can also
be considered as the root colored 1 with the sec-
ond best of T k

0 + 1, the third best of T k
0 + 2, . . . ,

and so on. Note that all vertices can be exchanged
with each other.

For T k
2 tree, we can decompose it into k T k

1

trees. By a similar argument, we can obtain that
the sum(T k

2) is k × sum(T k
1) + (k + 2). This is

shown in Figure3. Note that every root vertex of
T k
1 has a different color among these k T k

1 trees.

Figure 3: A solution for T k
2 .

By a similar argument, we can solve the prob-
lem on T k

3 . In this case, it is a little bit compli-

cated. At first, we obtain a relation between the
root color and the total sum as shown in Table 1.

Table 1: The relationship between the root value
and the total sum of the tree.

root · · · -2 -1 x +1 · · · +k
sum · · · +(2k − 2) +(k − 1) 0 +1 · · · +k

Therefore, for the solution of T k
3 , the root can

be colored with 1 and the remaining parts are TK
2 ,

TK
2 +1, . . . , TK

2 +(k−1). Note that TK
2 +(k−1)

also can be changed into TK
2 − 1, but sometime

TK
2 − 1 is not a good choice.

Figure 4: A solution of thee T k
3 .

Similarly, the solution of T k
4 is that the root can

be colored 1 and the remaining parts are TK
3 + 1,

TK
3 + 2, . . . , TK

3 + k. Note that the root and the
level-1 vertices can be exchanged with each other.

Figure 5: A solution of tree T k
4 .

Any T k
d tree can be decomposed into a set of

T k
d−1 trees by using the method mentioned above.

Hence, the solution of a full k-ary tree, sum(T k
d),

has the following possible cases.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 d = 0

k × sum(T k
d−1) +

k×(k−1)
2 + 1 d > 0 and d mod 3 = 0

k × sum(T k
d−1) +

k×(k+1)
2 + 1 d > 0 and d mod 3 = 1

k × sum(T k
d−1) + (k + 2) d > 0 and d mod 3 = 2

102

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

In the following, we propose a dynamic pro-
gramming algorithm to solve the DSCP on general
trees. By considering the input tree as a rooted
tree, our algorithm works from bottom (leaves) to
top (the root) to compute an optimal solution.

We first consider a leaf node v. Assume its par-
ent is u. The initial value of v is easy since the
maximum value of v is |N [u]|. For any internal
vertex, we compute the minimum sum of its child
vertices. Therefore, we must compute all the pos-
sible combinations from each vertex. For each in-
ternal vertex v, we must compute deg(v)2 times.
Not only this vertex but also its parent vertex will
influence the values of its child vertices. For ex-
ample, in Figure 6, the table for the internal ver-
tex v stores all the possible combinations for v
and its parent. For example, the pair (3,4) means
that v is colored with 3 and its parent is colored
with 4. In this case, the child vertices cannot use
the values 3 and 4. The minimum of this pair is
sum({1, 2, 5}) = 8.

Figure 6: An example of the table for an internal
vertex v.

If the child vertices are not leaves, then we must
look for every child vertex’s table. Consider Figure
7 as another example. The value of pair (4,3) is
the minimum sum of the combination of v’s child
vertices with their tables. Due to the value of v is
4, we must look for row 4. If A’s value is 1, then
we look for the pair (1,4) of the table of vertex A.
Note that if A’s value is more than 5, then we look
for the pair (4,4).

The following is the detail of our algorithm (Al-
gorithm 1). We assume that we have enough in-
formation about the tree, i.e., each vertex knows
all of its child vertices and its parent vertex. Also
all the leaf vertices are considered that they have
been computed in advance.

Figure 7: Another example for computing the ta-
ble for an internal vertex.

Algorithm 2
Data: A tree T = (V,E)
Result: An optimal solution for DSCP on

tree T
Let the root of T be r;
Create an empty stack S, and push r into
S;
while S is not empty do

Pop one node v from S;
if the table of each v’s child vertex is
computed then

Computed the the table of v by
trying all possibilities;

else
Push v back to S;
Push each child of v into S;

return the best value stored in the table
of r;

Clearly, n vertices need O(n). Each internal
vertex needs to compute Δ(G)2 times and each
time has Δ(G)! combinations. Thus, the time
complexity of this algorithm is O(n × Δ(G)2 ×
Δ(G)!). If Δ(G) is constant, then our algorithm
runs in O(n) time.

3 Conclusion

In this paper, we propose a new coloring prob-
lem, namely, the distinguishable sum coloring
problem. We propose a recurrence relation for
solving the distinguishable sum coloring problem
on full k-ary trees. Finally, we propose a dy-
namic programming algorithm on trees for the
distinguishable sum coloring problem in time of
O(n×Δ(G)

2 ×Δ(G)!). If Δ(G) is constant, then

103

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

it runs in O(n) time. Is it possible to design a fully
polynomial time algorithm for the distinguishable
sum coloring problem on trees? It will be a future
work.

Acknowledgements

This work was partially supported by the Min-
istry of Science and Technology of Taiwan, under
contract MOST 103-2221-E-259 -030.

References

[1] A. Bar-Noy, M. Bellareb, M.M. Halldorsson,
H. Shachnai and T. Tamir, On Chromatic
Sums and Distributed Resource Allocation, In-
formation and Computation 140 (2), pp. 183–
202, 1998.

[2] H. Bouziri and M. Jouini, A Tabu Search Ap-
proach for the Sum Coloring Problem, Elec-
tronic Notes in Discrete Mathematics 36 (1),
pp. 915–922, 2010.

[3] E.K. Burke, B. McCollum, A. Meisels, S.
Petrovic and R. Qu, A Graph-based Hyper-
heuristic for Educational Timetabling Prob-
lems, European Journal of Operational Re-
search 176, pp. 177–192, 2007.

[4] S.M. Douiri and S. Elbernoussi, New Algo-
rithm for the Sum Coloring Problem, Interna-
tional Journal of Contemporary Mathematical
Sciences 6 (10), pp. 453–463, 2011.

[5] M.R. Garey, D.S. Johnson and H.C. So, An
Application of Graph Coloring to Printed Cir-
cuit Testing, IEEE Transactions on Circuits
and Systems 23, pp. 591–599, 1976.

[6] M.R. Garey and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
San Francisco, 1979.

[7] C. Glass, Bag Rationalisation for a Food Man-
ufacturer, Journal of the Operational Research
Society 53, pp. 544–551, 2002.

[8] E. Kubicka and A.J. Schwenk, An Introduction
to Chromatic Sums, ACM Computer Science
Conference, Louisville (Kentucky), pp. 39–45,
1989.

[9] Z. Kokosinski and K. Kawarciany, On Sum
Coloring of Graphs with Parallel Genetic Al-
gorithms, Lecture Notes in Computer Science
4431, pp. 211–219, 2007.

[10] L.G. Kroon, A. Sen, H. Deng and A. Roy. The
Optimum Cost Chromatic Partition Problem
for Trees and Interval Graphs, Lecture Notes
in Computer Science 1197, pp. 279–292, 1996.

[11] F.T. Leighton, A Graph Coloring Algorithm
for Large Scheduling Problems, Journal of Re-
search of the National Bureau of Standards 84
(6), pp. 489–506, 1979.

[12] A. Lim, Q. Lou, B. Rodrigues and Y. Zhu,
Heuristic Methods for Graph Coloring Prob-
lems, Proceedings of the ACM Symposium on
Applied Computing 2005, Santa Fe, New Mex-
ico, pp. 933–939, 2005.

[13] Y. Li, C. Lucet, A. Moukrim and K. Sghiouer,
Greedy Algorithms for the Minimum Sum Col-
oring Problem, Logistique et transports, Mar
2009, Sousse, Tunisia. pp.LT-027.

[14] E. Malaguti and P. Toth, A Survey on Vertex
Coloring Problems, International Transactions
in Operational Research 17 (1), pp. 1–34, 2010.

[15] N.R. Sabar, M. Ayob, R. Qu and G.
Kendall, A Graph Coloring Constructive
Hyper-heuristic for Examination Timetabling
Problems, Applied Intelligence 37 (1), pp. 1–
11, 2011.

[16] D.H. Smith, S. Hurley and S.U. Thiel, Im-
proving Heuristics for the Frequency Assign-
ment Problem, European Journal of Opera-
tional Research 107 (1), pp. 76–86, 1998.

[17] D. de Werra, C. Eisenbeis, S. Lelait and B.
Marmol, On a Graph-Theoretical Model for
Cyclic Register Allocation, Discrete Applied
Mathematics 93 (23), pp. 191–203, 1999.

[18] T.K. Woo, S.Y.W. Su and R. Newman-Wolfe,
Resource Allocation in a Dynamically Parti-
tionable Bus Network Using a Graph Coloring
Algorithm, IEEE Transactions on Communi-
cation 39, pp. 1794–1801, 2002.

[19] Q. Wu and J.K. Hao, An Effective Heuristic
Algorithm for Sum Coloring of Graphs, Com-
puters and Operations Research 39 (7), pp.
1593–1600, 2012.

104

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

