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Abstract

We examine parameter algorithm for NP-hard
minimum-sum 2-Clustering Editing Problem, in 
which given a graph and a parameter k, the goal 
is to determine if there exists a 2-partition of the 
vertex set such that the sum of conflict number is 
at most k, where the conflict number of a vertex u 
is the number of vertices v in the same cluster but 
the edge (u, v) E plus the number of vertices v 
in the different clusters but edge (u, v) E. We 
implemented and tested the performance of the 
current best algorithm and made engineering 
improvements. The current best algorithm can 
solve the problem efficiently which has the larger 
value of vertices n. (e.g., n=500, n=1000.) Our 
algorithm saves about 20% of the running time. In 
addition, we propose a new measure of comparing
parameterized algorithms.

1 Introduction

For an NP-hard problem, since it is unlikely to 
develop a polynomial time algorithm, designing 
good exponential-time algorithms is an important 
issue if one needs to find the optimal solutions.
Parameterized algorithm, which measures the 
complexity as a function in input parameters, is 
another method to deal with NP-hard problems. It 
can solve the problem efficiently which has the 
small value of the fixed parameter. 

An instance of parameterized problem is a
2-tuple (I, k), where I is the input and k is the 
parameter. A problem is fixed-parameter tractable
(FPT) if the problem can be solved in

, where is a computable function in k
and q is a polynomial in input size. We refer to the 
book of Downey and Fellows [5] for details. 
Kernelization is a well-known technique which is 
widely used for parameterized algorithms. A 
kernelization algorithm converts an instance (I, k)
to a reduced instance ( ) with and 

for some computable function , and
the answer is not changed.  That is, (I, k) is a 
yes-instance if and only if ( ) is a yes-instance.

Cluster Editing is a well-known NP-hard 
problem with important applications in numerous 

fields, especially in bioinformatics and machine 
learning. The Cluster Editing problem is also 
known as Correlation Clustering [3, 4] and have 
been appeared in several variants of the problems 
[2]. A cluster graph is an undirected graph 
consisting of numerous disjoint maximal cliques.
The maximal cliques in a cluster graph are also 
called clusters. The goal of the cluster editing 
problem is to modify a given input graph into a 
cluster graph such that the number of inserting and 
deleting edges is minimized. One of the variants is 
p-Cluster Editing, which modify the input graph to 
a p-Cluster graph, that is, the number of clusters is 
exactly p.

In this paper, we focus on the 2-cluster editing 
problem [1]. Given an input graph , the 
goal is to partition the vertices into two vertex
subsets, which is denoted by of
in the following. For (u, v) V, u and v conflict
with each other if u and v are in the same cluster 
but (u, v) E or they are in the different clusters 
but edge (u, v) E. Let denote the 
number of vertices conflicting with v in . Let

be the sum of conflict 
number in a partition . The min-sum 2-clustering 
problem is to determine if there exists a 2-partition 
of the vertex set such that the total conflict number 
is at most . The problem is defined as follows.

MIN-SUM 2-CLUSTERING
Instance: An undirected graph and a 

nonnegative integer k.
Question: Is there a 2-partition of 

V such that and
?

A parameterized algorithm for min-sum 
2-clustering running in time is
given in [1], where and . The 
time complexity is for

. This implies the problem can be solved in 
subexponential time. In addition, It can be solved 
in polynomial time when . The 
algorithm achieves the current best complexity of 
the problem.

In this paper we implement the parameterized 
algorithm for min-sum 2-clustering problem and 
test its practical performance on random graphs. 
Our experimental results indicate that the current
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Algorithm 1: The algorithm is presented by Wu et al. We call it Flipping algorithm in this paper.

best algorithm can solve the problem efficiently 
which has the larger value of vertices n. (e.g., 
n=500, n=1000.) We summarize Algorithm 1 in 
the following three steps:  Step 1: Partition the 
vertex set by guessing the vertex with the smallest 
conflict number. Step 2: Apply kernelization-style 
rules, determine which vertices should be flipped 
to the other cluster. Step 3: Apply a standard 
branching algorithm to deal with the undetermined 
vertices. We improve the above algorithm by 
proposing a better partition at step 1 and finding a 
better way to pick the vertex in the tree searching 
at step 3. We implement our improvement 
methods and compare our performance with the 
original algorithm. Our experimental results 
indicate that our improved method is more 
efficient than the original one. In addition, we 
propose a new way of practical performance 
comparison for parameterized algorithms.

Organization of the paper. In Section 2, we give 
some notation and definitions used in this paper.
In Section 3, we show that Flipping algorithm and 
our improved algorithm. We give some basic idea 
about Flipping algorithm in section 3.1. In section 
3.2, we propose our improved methods. The 
experimental results are shown in Section 4.
Finally some concluding remarks and future work 
are given in Section 5.

2 Preliminaries

Throughout this paper, a graph is always 
undirected and simple. For a given graph , V(G)
and E(G) denote the vertex and edge sets, 
respectively. In this paper, is the input 

graph and n . Let 
denote the closed neighborhood of v in G. We 

partition the vertex set V into a 2-partition of V,
which is represented as , that is,

and . We call two vertices 
conflict, if two vertices u and v are in the same 
cluster but the edge (u, v) E or they are in the 
different clusters but edge (u, v) E. Let 
denote the set of vertices in conflict with v in the 
partition , and denote the 
conflict number of v. We use the function to
represent the sum of conflict number with v V
in . Let represent the cost
of a 2-partition .

For two sets and . Let denote the 
set difference. Let 

denote the symmetric difference. To 
move a vertex to the other cluster in a 2-partition 

is called flip. We flip a vertex in a 2-partition ,
that is to change .
Conflicting-relations of a vertex are exchanged 
when it is flipped. We find the optimized 
2-partition by finding a best flipping set F of an 
initial 2-partition.

3 Algorithm and Improvements

3.1 The original algorithm
Algorithm 1 is the proposed by Wu and Chen

[1], we call it Flipping algorithm in this paper. The 
main idea is to solve the Min-Sum 2-Clustering 
problem by finding the flipping set. First, the 
algorithm yields a 2-partition , where 

for each vertex s . Second, 
the algorithm calls the reduction algorithm to 
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Algorithm 2: The main algorithm is presented in this paper.

reduce the instance by removing the vertices 
which must be flipped and the vertices which must 
not be flipped. The reduction algorithm moves the 
vertices which must be flipped to the other cluster 
in a 2-partition . Let . The 
reduction algorithm is used to compute ,
where U denotes the set of the vertices that is
undetermined, denotes the 2-partition after 
flipping the vertices which must be flipped, and m 
denotes the remaining flipping quota. Finally, the 
algorithm performs a branching algorithm to deal 
with the undetermined vertices. The reduction 
rules are listed as follows.

R1: If , then v must be in any 
feasible flipping set for π of size at most f.
R2: If , then v cannot be in 
any feasible flipping set for π of size at most f.
R3: If for all and

, where
, then there is no feasible flipping set 

for π of size exactly f.

Let f denote the size of flipping sets. It is called 
flipping quota. K and t are nonnegative integers. 
The reduction algorithm is applied with

as shown in the proof of the original paper.
For more details about Flipping algorithm, please 

refer to [1].

3.2 An improved Algorithm
We present two improvements in Flipping 

algorithm. Both of the improvements focus on the
running time while still finding an exact solution.
We start with two engineering improvements that
save a constant factor in the running time. In order 
to reduce execution time, we modify the 
Algorithm 1 to Algorithm 2. The first 
improvement is to find a better partition order. By 
testing the performances, we propose that a vertex 
with smaller sum of and m should be chosen 
first, since the depth of search tree is affected by 
the sum of and m. Let p(s) denote the sum of 

and m for vertex s. This improvement is 
shown at steps 4-9 in Algorithm 2. Second, we 
improve the tree searching process by finding a 
better way to pick the vertex, which is described in 
Algorithm 3.

A 2-partition is extreme if
or . In algorithm 2, we first exclude the 
extreme case, since we can easily calculate 
of the extreme case in time. After the 
reduction step, we calculate p(s) for every 
2-partitio , where at 
step 7. For all vertex s , we can compute the 
p(s) in . Then we apply the following
reduction algorithm and search tree algorithm by
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Algorithm 3: The Search-tree algorithm of our algorithm in this paper.

the ascending order of the summation value.
. We call the reduction algorithm at step 11, which 
returns , we define U as the set of the 
vertices that is undetermined, as the 2-partition 
after flipping the vertices which must be flipped,
m as the remaining flipping quota. The goal of the
search-tree algorithm is to find a flipping set

with and .
The implementation of the search-tree 

algorithm is shown in Algorithm 3. We have a set 
U of vertices which is undetermined. The 
algorithm picks a vertex , which is 
maximum. Then we recursively solve the problem 
for two cases: to flip u to the other cluster and not 
to flip u. When or we compute the 
total conflict number. If the conflict is greater than 
the parameter k, return False; else return True.

The naïve search tree algorithm takes
time for each recursive call, and the time 
complexity will be multiplied by the
number of recursive calls.  The implementation 
of search-tree algorithm takes time for 

each recursive call, which is similar to the 
technique widely used in fixed-parameter 
algorithms [8]. In addition, we update ,
where and , at each 
recursive call. When the value is greater than 
parameter k, we can return the output immediately.
So we can determine that there is no solution in 
branching process when the value is more than 
parameter k. Therefore, we propose the following 
method to let increase faster by picking the 
vertex from the set U.
There are two cases as the value is increased at 
each recursive call. One is that the value
increases by when we pick a vertex that 
is determined not to flip, and the other is that the 
value increases by when we 
pick a vertex that is flipped. In addition, the value 

is changed for each vertex v when
we pick a vertex u that is removed from U. We 
experiment several methods to find the better way 
to pick the vertex, such as picking the vertex u
which is the largest, picking the vertex u
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(K= ) 0.15 0.16 0.17 0.18 0.19 0.191 0.192 0.1921
Parameter K 150000 160000 170000 180000 190000 191000 192000 192100
Basic (avg.) 11.241 11.724 12.105 12.075 23.608 93.127 511.059 644.088

Table 1: Average running time (wall time in s) of Flipping algorithm on the first dataset (n=1000). 

Vertex number 100 500 1000
Parameter K K K
Basic Alg. 0.1810 1800~1810 0.1924 48075~48100 0.1922 192100~192200

Table 2: The maximum parameter k for solving the problem within 1800 seconds on the first dataset.

(K= ) 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

Basic Alg. 285 1536 8523 80986 398466 644960 3041552 7945769 11704959 24840947

Our Alg. 158 829 5130 51772 261219 415689 1957105 5418674 8134340 17273384

Improvement 44.56% 46.03% 39.81% 36.07% 34.44% 35.55% 35.65% 31.80% 30.51% 30.46%

Table 3: The improvement of average recursive time on the first dataset (n=35). 

(K= ) 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

Basic Alg. 0.015 0.018 0.035 0.366 1.736 2.812 12.129 30.121 44.792 90.899

Our Alg. 0.013 0.014 0.028 0.306 1.47 2.41 10.357 26.898 41.012 91.797

Improvement 13.33% 22.22% 20.40% 16.35% 15.30% 14.31% 14.61% 10.70% 8.44% 10.01%

Table 4: The improvement of average running time on the first dataset (n=35). 

which is the largest, finding the 
case that let increase the largest and so on. 
Finally, the method that picks the vertex u which 

is the largest performs the best in our 
experimental results. The experiments show the 
method can decrease the recursive time by 30 to 
40% and decrease the running time by 10 to 20%.

4 Experimental Results

We first evaluate Flipping algorithm. Flipping 
algorithm performs quite well when the parameter 
k is less than a certain amount. In addition, the 
algorithm can solve the instance efficiently which 
is given a larger value of vertices n. (e.g., n=500, 
n=1000.) Then, we compare our algorithms with
Flipping algorithm on the running time and the 
number of recursive calls. The experiments show 
that we can reduce 30~40% of the recursive times
and 10~20% of the running time.

Experimental Setup and Implementation 
Details.

The program is written in the C programming 
language and consists of about 600 lines of code. 
We tested our implementation on random inputs.
The testing machine is a PC equipped an Intel(R) 
Core(TM) i7-4790 CPU @3.60GHz, 8MB cache, 
and 4GB main memory, running under the 64bit 
Windows 7 operating system. The source was 
compiled by the GNU GCC compiler (version 
4.7.1, 32 bit).

Datasets and Experimental Design.
We generate two types of input dataset. The first 

dataset consists of 50% Yes-instances and 50% 
No-instances. The second dataset consists of all 
Yes-instances. Each dataset consists of 1000 
random graphs, which we built with n vertices and 
the parameter k. We implemented the min-sum 
2-Cluster Problem on the random graphs. We 
constructed the random graphs by the following 
steps: In step 1, we partition n vertices into two 
vertex sets randomly, and then we generate
2-clusters graph with the two vertex sets. In step 2, 
we generate an edge set randomly with n vertices
by inserting edge incident to two random vertices.
Finally, we combine the two graphs by taking
exclusive-or.

For each random graph, we set the time limit to
1800 seconds for the 2-clustering parameterized 
problem. We aim at finding the maximum 
parameter k such that instances can be solved in 
the time limit.

4.1 Experimental Result of Flipping 
algorithm

Table 1 shows the average running time of 
Flipping algorithm solving the instances with 
number of vertices n=1000 and parameter k on the 
first dataset. Table 1 provides an overview of our 
experimental results. We obtained an effective
performance for our implementation of Flipping 
algorithm. Table 1 shows that Flipping algorithm
can solve the case of n=1000 in 23 seconds with

142

The 32nd Workshop on Combinatorial Mathematics and Computation Theory



Vertex number 100 500 1000
Parameter K K K
Basic Alg. 0.191 1910~1920 0.2041 51025~51050 0.2045 204500~204600
Our Alg. 0.244 2440~2450 0.233 58250~58275 0.2255 225500~225600

Table 5: The maximum parameter k for solving the problem within 1800 seconds on the second dataset.

k 190000 and the running time is 
exponential growth when k 190000 (

). The result shows that our implementation
of Flipping algorithm can run fast with the 
parameter k/n2 less than a certain amount. In 
addition, the result shows that Flipping algorithm 
can solve the instance which has the larger value 
of vertices n than other exponential algorithms.

We propose a new way of practical performance 
comparison for parameterized algorithms. To 
gauge the practical merit of a fixed-parameter 
algorithm, we test the maximum parameter k for 
solving the case of the same number n within 1800 
seconds. We show that the experimental result on 
Table 2. The interval of parameter k is due to that 
the data is generated randomly. Table 2 shows that 
we can solve the case of n=100 with in 
1800 seconds, the case of n=500 with
in 1800 seconds and the case of n=1000 with

in 1800 seconds.

4.2 Experimental Result and Comparison 
of Improvement Algorithm

Our algorithm improves the branching process 
by finding the better way to pick the vertex.
Because the running time of a fixed-parameter 
algorithm grows exponentially when the 
parameter k/n2 is more than a certain amount. We 
want to observe the branching process for all kinds 
of parameter k, and so we test the case with a 
small number of vertices n=35 on the first dataset. 
Table 3 and Table 4 show that the running time 
and recursive times of the two algorithms. The 
improvement denotes the difference between the 
running time of Flipping algorithm and our 
algorithm divided by the running time of Flipping 
algorithm. The experiments show that the method 
can decrease the recursive times by 30 to 40% and 
decrease the running time by 10 to 20%. Fig.1 
shows that the percentage of improvement on 
running time and recursive times. In addition, our 
algorithm is also implemented efficiently by 
improving the order of partitioning on the 
Yes-instances. Therefore, we experiment on the 
second dataset.

We can gauge the practical merit of algorithms 
by comparing the maximum parameter k of case 
that is solved within the same limit time. The 
Table 5 shows the experimental result for Flipping

Fig.1: Horizontal axis denotes and vertical axis 
denotes the percentage of improvement.

algorithm and our algorithm on the second dataset. 
Table 5 shows that we can solve the case of n=100 
with in 1800 seconds, the case of
n=500 with in 1800 seconds and the 
case of n=1000 with in 1800 
seconds. Our algorithm can solve the instances 
with larger parameter k than Flipping algorithm in 
the same time limit of 1800 seconds. The result 
shows that our algorithm is more efficient than 
Flipping algorithm.

5 Conclusions

In this paper, we implement the parameterized 
algorithm for min-sum 2-clustering problem and 
test its practical performance. The problem is the 
same as 2-Cluster Editing in the literature with a
multiplication factor of two in the parameter. In 
addition, we present a method to get an 
engineering improvement for the original 
algorithm. We improve the branching process of
the algorithm by finding a better way to pick the 
vertex and we also improve the running time by 
finding an order of partitioning. In addition, we 
propose a new way of practical performance 
comparison for parameterized algorithms. Our 
implementation of Flipping algorithm can run fast 
when the parameter k/n2 is more than a certain 
amount. In addition, the Flipping algorithm can 
solve the instance efficiently which has the larger 
value of vertices n. (e.g., n=500, n=1000.) The 
result shows that our algorithm can solve the 
instances with larger parameter k than Flipping 
algorithm in the same time limit of 1800 seconds.
Our algorithm is more efficient than Flipping 
algorithm.
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