
Performance testing and Engineering improvement on the current best
Parameterized 2-Cluster Editing Algorithm

De-Ting Liu, Bang Ye Wu
Department of Computer Science and Information Engineering

National Chung Cheng University
Chiayi, 621 Taiwan

Abstract

We examine parameter algorithm for NP-hard
minimum-sum 2-Clustering Editing Problem, in
which given a graph and a parameter k, the goal
is to determine if there exists a 2-partition of the
vertex set such that the sum of conflict number is
at most k, where the conflict number of a vertex u
is the number of vertices v in the same cluster but
the edge (u, v) E plus the number of vertices v
in the different clusters but edge (u, v) E. We
implemented and tested the performance of the
current best algorithm and made engineering
improvements. The current best algorithm can
solve the problem efficiently which has the larger
value of vertices n. (e.g., n=500, n=1000.) Our
algorithm saves about 20% of the running time. In
addition, we propose a new measure of comparing
parameterized algorithms.

1 Introduction

For an NP-hard problem, since it is unlikely to
develop a polynomial time algorithm, designing
good exponential-time algorithms is an important
issue if one needs to find the optimal solutions.
Parameterized algorithm, which measures the
complexity as a function in input parameters, is
another method to deal with NP-hard problems. It
can solve the problem efficiently which has the
small value of the fixed parameter.

An instance of parameterized problem is a
2-tuple (I, k), where I is the input and k is the
parameter. A problem is fixed-parameter tractable
(FPT) if the problem can be solved in

, where is a computable function in k
and q is a polynomial in input size. We refer to the
book of Downey and Fellows [5] for details.
Kernelization is a well-known technique which is
widely used for parameterized algorithms. A
kernelization algorithm converts an instance (I, k)
to a reduced instance () with and

for some computable function , and
the answer is not changed. That is, (I, k) is a
yes-instance if and only if () is a yes-instance.

Cluster Editing is a well-known NP-hard
problem with important applications in numerous

fields, especially in bioinformatics and machine
learning. The Cluster Editing problem is also
known as Correlation Clustering [3, 4] and have
been appeared in several variants of the problems
[2]. A cluster graph is an undirected graph
consisting of numerous disjoint maximal cliques.
The maximal cliques in a cluster graph are also
called clusters. The goal of the cluster editing
problem is to modify a given input graph into a
cluster graph such that the number of inserting and
deleting edges is minimized. One of the variants is
p-Cluster Editing, which modify the input graph to
a p-Cluster graph, that is, the number of clusters is
exactly p.

In this paper, we focus on the 2-cluster editing
problem [1]. Given an input graph , the
goal is to partition the vertices into two vertex
subsets, which is denoted by of
in the following. For (u, v) V, u and v conflict
with each other if u and v are in the same cluster
but (u, v) E or they are in the different clusters
but edge (u, v) E. Let denote the
number of vertices conflicting with v in . Let

be the sum of conflict
number in a partition . The min-sum 2-clustering
problem is to determine if there exists a 2-partition
of the vertex set such that the total conflict number
is at most . The problem is defined as follows.

MIN-SUM 2-CLUSTERING
Instance: An undirected graph and a

nonnegative integer k.
Question: Is there a 2-partition of

V such that and
?

A parameterized algorithm for min-sum
2-clustering running in time is
given in [1], where and . The
time complexity is for

. This implies the problem can be solved in
subexponential time. In addition, It can be solved
in polynomial time when . The
algorithm achieves the current best complexity of
the problem.

In this paper we implement the parameterized
algorithm for min-sum 2-clustering problem and
test its practical performance on random graphs.
Our experimental results indicate that the current

138

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Algorithm 1: The algorithm is presented by Wu et al. We call it Flipping algorithm in this paper.

best algorithm can solve the problem efficiently
which has the larger value of vertices n. (e.g.,
n=500, n=1000.) We summarize Algorithm 1 in
the following three steps: Step 1: Partition the
vertex set by guessing the vertex with the smallest
conflict number. Step 2: Apply kernelization-style
rules, determine which vertices should be flipped
to the other cluster. Step 3: Apply a standard
branching algorithm to deal with the undetermined
vertices. We improve the above algorithm by
proposing a better partition at step 1 and finding a
better way to pick the vertex in the tree searching
at step 3. We implement our improvement
methods and compare our performance with the
original algorithm. Our experimental results
indicate that our improved method is more
efficient than the original one. In addition, we
propose a new way of practical performance
comparison for parameterized algorithms.

Organization of the paper. In Section 2, we give
some notation and definitions used in this paper.
In Section 3, we show that Flipping algorithm and
our improved algorithm. We give some basic idea
about Flipping algorithm in section 3.1. In section
3.2, we propose our improved methods. The
experimental results are shown in Section 4.
Finally some concluding remarks and future work
are given in Section 5.

2 Preliminaries

Throughout this paper, a graph is always
undirected and simple. For a given graph , V(G)
and E(G) denote the vertex and edge sets,
respectively. In this paper, is the input

graph and n . Let
denote the closed neighborhood of v in G. We

partition the vertex set V into a 2-partition of V,
which is represented as , that is,

and . We call two vertices
conflict, if two vertices u and v are in the same
cluster but the edge (u, v) E or they are in the
different clusters but edge (u, v) E. Let
denote the set of vertices in conflict with v in the
partition , and denote the
conflict number of v. We use the function to
represent the sum of conflict number with v V
in . Let represent the cost
of a 2-partition .

For two sets and . Let denote the
set difference. Let

denote the symmetric difference. To
move a vertex to the other cluster in a 2-partition

is called flip. We flip a vertex in a 2-partition ,
that is to change .
Conflicting-relations of a vertex are exchanged
when it is flipped. We find the optimized
2-partition by finding a best flipping set F of an
initial 2-partition.

3 Algorithm and Improvements

3.1 The original algorithm
Algorithm 1 is the proposed by Wu and Chen

[1], we call it Flipping algorithm in this paper. The
main idea is to solve the Min-Sum 2-Clustering
problem by finding the flipping set. First, the
algorithm yields a 2-partition , where

for each vertex s . Second,
the algorithm calls the reduction algorithm to

139

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Algorithm 2: The main algorithm is presented in this paper.

reduce the instance by removing the vertices
which must be flipped and the vertices which must
not be flipped. The reduction algorithm moves the
vertices which must be flipped to the other cluster
in a 2-partition . Let . The
reduction algorithm is used to compute ,
where U denotes the set of the vertices that is
undetermined, denotes the 2-partition after
flipping the vertices which must be flipped, and m
denotes the remaining flipping quota. Finally, the
algorithm performs a branching algorithm to deal
with the undetermined vertices. The reduction
rules are listed as follows.

R1: If , then v must be in any
feasible flipping set for π of size at most f.
R2: If , then v cannot be in
any feasible flipping set for π of size at most f.
R3: If for all and

, where
, then there is no feasible flipping set

for π of size exactly f.

Let f denote the size of flipping sets. It is called
flipping quota. K and t are nonnegative integers.
The reduction algorithm is applied with

as shown in the proof of the original paper.
For more details about Flipping algorithm, please

refer to [1].

3.2 An improved Algorithm
We present two improvements in Flipping

algorithm. Both of the improvements focus on the
running time while still finding an exact solution.
We start with two engineering improvements that
save a constant factor in the running time. In order
to reduce execution time, we modify the
Algorithm 1 to Algorithm 2. The first
improvement is to find a better partition order. By
testing the performances, we propose that a vertex
with smaller sum of and m should be chosen
first, since the depth of search tree is affected by
the sum of and m. Let p(s) denote the sum of

and m for vertex s. This improvement is
shown at steps 4-9 in Algorithm 2. Second, we
improve the tree searching process by finding a
better way to pick the vertex, which is described in
Algorithm 3.

A 2-partition is extreme if
or . In algorithm 2, we first exclude the
extreme case, since we can easily calculate
of the extreme case in time. After the
reduction step, we calculate p(s) for every
2-partitio , where at
step 7. For all vertex s , we can compute the
p(s) in . Then we apply the following
reduction algorithm and search tree algorithm by

140

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Algorithm 3: The Search-tree algorithm of our algorithm in this paper.

the ascending order of the summation value.
. We call the reduction algorithm at step 11, which
returns , we define U as the set of the
vertices that is undetermined, as the 2-partition
after flipping the vertices which must be flipped,
m as the remaining flipping quota. The goal of the
search-tree algorithm is to find a flipping set

with and .
The implementation of the search-tree

algorithm is shown in Algorithm 3. We have a set
U of vertices which is undetermined. The
algorithm picks a vertex , which is
maximum. Then we recursively solve the problem
for two cases: to flip u to the other cluster and not
to flip u. When or we compute the
total conflict number. If the conflict is greater than
the parameter k, return False; else return True.

The naïve search tree algorithm takes
time for each recursive call, and the time
complexity will be multiplied by the
number of recursive calls. The implementation
of search-tree algorithm takes time for

each recursive call, which is similar to the
technique widely used in fixed-parameter
algorithms [8]. In addition, we update ,
where and , at each
recursive call. When the value is greater than
parameter k, we can return the output immediately.
So we can determine that there is no solution in
branching process when the value is more than
parameter k. Therefore, we propose the following
method to let increase faster by picking the
vertex from the set U.
There are two cases as the value is increased at
each recursive call. One is that the value
increases by when we pick a vertex that
is determined not to flip, and the other is that the
value increases by when we
pick a vertex that is flipped. In addition, the value

is changed for each vertex v when
we pick a vertex u that is removed from U. We
experiment several methods to find the better way
to pick the vertex, such as picking the vertex u
which is the largest, picking the vertex u

141

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

(K=) 0.15 0.16 0.17 0.18 0.19 0.191 0.192 0.1921
Parameter K 150000 160000 170000 180000 190000 191000 192000 192100
Basic (avg.) 11.241 11.724 12.105 12.075 23.608 93.127 511.059 644.088

Table 1: Average running time (wall time in s) of Flipping algorithm on the first dataset (n=1000).

Vertex number 100 500 1000
Parameter K K K
Basic Alg. 0.1810 1800~1810 0.1924 48075~48100 0.1922 192100~192200

Table 2: The maximum parameter k for solving the problem within 1800 seconds on the first dataset.

(K=) 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

Basic Alg. 285 1536 8523 80986 398466 644960 3041552 7945769 11704959 24840947

Our Alg. 158 829 5130 51772 261219 415689 1957105 5418674 8134340 17273384

Improvement 44.56% 46.03% 39.81% 36.07% 34.44% 35.55% 35.65% 31.80% 30.51% 30.46%

Table 3: The improvement of average recursive time on the first dataset (n=35).

(K=) 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

Basic Alg. 0.015 0.018 0.035 0.366 1.736 2.812 12.129 30.121 44.792 90.899

Our Alg. 0.013 0.014 0.028 0.306 1.47 2.41 10.357 26.898 41.012 91.797

Improvement 13.33% 22.22% 20.40% 16.35% 15.30% 14.31% 14.61% 10.70% 8.44% 10.01%

Table 4: The improvement of average running time on the first dataset (n=35).

which is the largest, finding the
case that let increase the largest and so on.
Finally, the method that picks the vertex u which

is the largest performs the best in our
experimental results. The experiments show the
method can decrease the recursive time by 30 to
40% and decrease the running time by 10 to 20%.

4 Experimental Results

We first evaluate Flipping algorithm. Flipping
algorithm performs quite well when the parameter
k is less than a certain amount. In addition, the
algorithm can solve the instance efficiently which
is given a larger value of vertices n. (e.g., n=500,
n=1000.) Then, we compare our algorithms with
Flipping algorithm on the running time and the
number of recursive calls. The experiments show
that we can reduce 30~40% of the recursive times
and 10~20% of the running time.

Experimental Setup and Implementation
Details.

The program is written in the C programming
language and consists of about 600 lines of code.
We tested our implementation on random inputs.
The testing machine is a PC equipped an Intel(R)
Core(TM) i7-4790 CPU @3.60GHz, 8MB cache,
and 4GB main memory, running under the 64bit
Windows 7 operating system. The source was
compiled by the GNU GCC compiler (version
4.7.1, 32 bit).

Datasets and Experimental Design.
We generate two types of input dataset. The first

dataset consists of 50% Yes-instances and 50%
No-instances. The second dataset consists of all
Yes-instances. Each dataset consists of 1000
random graphs, which we built with n vertices and
the parameter k. We implemented the min-sum
2-Cluster Problem on the random graphs. We
constructed the random graphs by the following
steps: In step 1, we partition n vertices into two
vertex sets randomly, and then we generate
2-clusters graph with the two vertex sets. In step 2,
we generate an edge set randomly with n vertices
by inserting edge incident to two random vertices.
Finally, we combine the two graphs by taking
exclusive-or.

For each random graph, we set the time limit to
1800 seconds for the 2-clustering parameterized
problem. We aim at finding the maximum
parameter k such that instances can be solved in
the time limit.

4.1 Experimental Result of Flipping
algorithm

Table 1 shows the average running time of
Flipping algorithm solving the instances with
number of vertices n=1000 and parameter k on the
first dataset. Table 1 provides an overview of our
experimental results. We obtained an effective
performance for our implementation of Flipping
algorithm. Table 1 shows that Flipping algorithm
can solve the case of n=1000 in 23 seconds with

142

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Vertex number 100 500 1000
Parameter K K K
Basic Alg. 0.191 1910~1920 0.2041 51025~51050 0.2045 204500~204600
Our Alg. 0.244 2440~2450 0.233 58250~58275 0.2255 225500~225600

Table 5: The maximum parameter k for solving the problem within 1800 seconds on the second dataset.

k 190000 and the running time is
exponential growth when k 190000 (

). The result shows that our implementation
of Flipping algorithm can run fast with the
parameter k/n2 less than a certain amount. In
addition, the result shows that Flipping algorithm
can solve the instance which has the larger value
of vertices n than other exponential algorithms.

We propose a new way of practical performance
comparison for parameterized algorithms. To
gauge the practical merit of a fixed-parameter
algorithm, we test the maximum parameter k for
solving the case of the same number n within 1800
seconds. We show that the experimental result on
Table 2. The interval of parameter k is due to that
the data is generated randomly. Table 2 shows that
we can solve the case of n=100 with in
1800 seconds, the case of n=500 with
in 1800 seconds and the case of n=1000 with

in 1800 seconds.

4.2 Experimental Result and Comparison
of Improvement Algorithm

Our algorithm improves the branching process
by finding the better way to pick the vertex.
Because the running time of a fixed-parameter
algorithm grows exponentially when the
parameter k/n2 is more than a certain amount. We
want to observe the branching process for all kinds
of parameter k, and so we test the case with a
small number of vertices n=35 on the first dataset.
Table 3 and Table 4 show that the running time
and recursive times of the two algorithms. The
improvement denotes the difference between the
running time of Flipping algorithm and our
algorithm divided by the running time of Flipping
algorithm. The experiments show that the method
can decrease the recursive times by 30 to 40% and
decrease the running time by 10 to 20%. Fig.1
shows that the percentage of improvement on
running time and recursive times. In addition, our
algorithm is also implemented efficiently by
improving the order of partitioning on the
Yes-instances. Therefore, we experiment on the
second dataset.

We can gauge the practical merit of algorithms
by comparing the maximum parameter k of case
that is solved within the same limit time. The
Table 5 shows the experimental result for Flipping

Fig.1: Horizontal axis denotes and vertical axis
denotes the percentage of improvement.

algorithm and our algorithm on the second dataset.
Table 5 shows that we can solve the case of n=100
with in 1800 seconds, the case of
n=500 with in 1800 seconds and the
case of n=1000 with in 1800
seconds. Our algorithm can solve the instances
with larger parameter k than Flipping algorithm in
the same time limit of 1800 seconds. The result
shows that our algorithm is more efficient than
Flipping algorithm.

5 Conclusions

In this paper, we implement the parameterized
algorithm for min-sum 2-clustering problem and
test its practical performance. The problem is the
same as 2-Cluster Editing in the literature with a
multiplication factor of two in the parameter. In
addition, we present a method to get an
engineering improvement for the original
algorithm. We improve the branching process of
the algorithm by finding a better way to pick the
vertex and we also improve the running time by
finding an order of partitioning. In addition, we
propose a new way of practical performance
comparison for parameterized algorithms. Our
implementation of Flipping algorithm can run fast
when the parameter k/n2 is more than a certain
amount. In addition, the Flipping algorithm can
solve the instance efficiently which has the larger
value of vertices n. (e.g., n=500, n=1000.) The
result shows that our algorithm can solve the
instances with larger parameter k than Flipping
algorithm in the same time limit of 1800 seconds.
Our algorithm is more efficient than Flipping
algorithm.

143

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

References

[1] B. Y. Wu and L.-H. Chen. Parameterized
algorithms for the 2-clustering problem with
minimum sum and minimum sum of squares
objective functions. Algorithmica, in print,
on-line available, 2014.

[2] Chen, L.H., Chang, M.S., Wang, C.C., and
Wu, B.Y.: On the min-max 2-cluster editing
problem. J. Inf. Sci. Eng. 29(6), 1109–1120
(2013).

[3] Shamir, R., Sharan, R., Tsur, D.: Cluster
graph modification problems. Discrete Appl.
Math. 144(1–2), 173–182 (2004).

[4] Bansal, N., Blum, A., Chawla, S.: Correlation
clustering. Mach. Learn. 56, 89–113 (2004).

[5] Downey, R.G., Fellows, M.R.: Parameterized
Complexity. Springer, Berlin (1999).

[6] Fomin, F.V., Kratsch, D.: Exact Exponential
Algorithms. Springer (2010)

[7] Downey, R.G., Fellows, M.R.: Fundamentals
of Parameterized Complexity. Springer-
Verlag (2013)

[8] Niedermeier, R., Rossmanith, P.: A general
method to speed up fixed-parameter-tractable
algorithms. Inf. Process. Lett. 73(3–4), 125–
129 (2000).

144

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

