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Abstract

Given a graph G, a set of spanning trees of G are
completely independent if for any vertices x and y,
the paths connecting them on these trees have nei-
ther vertex nor edge in common, except x and y.
In this paper, we prove that for graphs of order n,
with n ≥ 6, if the minimum degree is at least n−2,
then there are at least �n/3� completely indepen-
dent spanning trees.
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1 Introduction

In a graph G, a set of spanning trees are said to
be completely independent if for any vertices x and
y, the paths connecting them on the spanning trees
have neither vertex nor edge in common, except
x and y. Graphs discussed in this paper are as-
sumed to be connected and simple, where a graph
is simple if it contains neither parallel edge nor
loop. The concept of completely independent span-
ning trees was introduced by Hasunuma [3] in 2001.
He showed that determining whether a graph ad-
mits k completely independent spanning trees is
NP-complete, even for k = 2 [4]. The construc-
tion of k completely independent spanning trees
was then investigated on some graph classes, with
connectivity at least 2k [3–5]. In addition, Ha-
sunuma [4] gave a conjecture, which states that
being 2k-connected is sufficient for having k com-
pletely independent spanning trees, but that was
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disproved by Péterfalve [7]. Counterexamples were
also given by Pai et al. [6], via a necessary con-
dition to a k-connected and k-regular graph with
�k/2� completely independent spanning trees.

In 2013, Araki [1] gave a new characteriza-
tion, which is summarized later in Section 2, for
graphs admitting k completely independent span-
ning trees. Based on this, he proved that the fol-
lowing condition is sufficient for a graph G, with
enough vertices, admitting two completely indepen-
dent spanning trees.

∀x∈V deg(x) ≥ n/2, (1)

where V is the vertex set of G, n = |V |, and deg(x)
is the degree of x. Usually, (1) is called the Dirac’s
condition, due to the well-known sufficient condi-
tion for a graph being Hamiltonian. Later on, Fan
et al. [2] generalized the result by Ore’s condition,
which is

∀x,y∈V deg(x) + deg(y) ≥ n/2. (2)

Both (1) and (2) deal with the existence of two
completely independent spanning trees via the con-
straint on vertex degree. This motivates us to re-
late the number of completely independent span-
ning trees and some possible constraints on vertex
degree.

The main result of this paper is the following
theorem.

Theorem 1. Let G be a graph of order n with min-
imum degree at least n−2. If n ≥ 6, there are �n/3�
completely independent spanning trees.

The proof of Theorem 1 is given in Section 3, and
some preliminaries are given in Section 2. In the
discussion below, we assume that V is the vertex
set of the graph being considered and |V | = n ≥ 6.
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2 Preliminaries

In a graph G, the minimum degree δ(G) of G is
defined as min{deg(x) | x ∈ V }. A vertex x is
said to be universal if deg(x) = n − 1. The open
neighborhood of a vertex x consists of all the ver-
tices adjacent to x, denoted by N(x). We use Pi

and Ci to denote a path and a cycle with i vertices,
respectively. For U ⊆ V , the subgraph induced by
U is denoted by G[U ]. For x ∈ V , we denoted the
subgraph induced by V \ {x} by G − x, and anal-
ogously, we use G − U for G[V \ U ]. For an edge
with end vertices x and y, we denote it by xy, and
the graph obtained by removing xy is denoted by
G − xy. Let E be the edge set of G. For disjoint
subsets U1, U2 ⊆ V , the graph B(U1, U2) is defined
to be a bipartite graph with partite sets U1 and U2,
and edge set {xy ∈ E | x ∈ U1, y ∈ U2 }. Araki [1]
gave the following characterization for a graph ad-
mitting k completely independent spanning trees.

Theorem 2 (See [1]). A graph G has k completely
independent spanning trees if and only if there is a
partition of V into V1, V2, . . . , Vk such that

• for i ∈ { 1, 2, . . . , k }, G[Vi] is connected.

• for distinct i, j ∈ { 1, 2, . . . , k }, B(Vi, Vj) has
no tree component.

The partition is called a CIST-partition of G.

3 Main results

To simply the presentation, we elaborate the results
for even n and odd n, separately, in Sections 3.1
and 3.2. The proofs for both cases are very similar.

3.1 For even n

The idea for proving Theorem 1 for a graph G of
even order is to show the following.

• There is an (n− 2)-regular spanning subgraph
of G.

• All (n− 2)-regular graphs are isomorphic.

• There are �n/3� completely independent span-
ning trees in an (n− 2)-regular graph.

Details are given in Lemmas 1, 2, and 3.

Lemma 1. Let G1 and G2 be simple graphs of or-
der n, where n is even. If G1 and G2 are (n − 2)-
regular, then G1 and G2 are isomorphic.

Proof. Let n = 2k, for k ≥ 1. We prove this lemma
by induction on k. For k = 1 the lemma holds
trivially. Consider the case where k > 1. Since
G1 is (2k − 2)-regular, there are two vertices x1

and x2 which are not adjacent. It follows imme-
diately that N(x1) = N(x2), and G1[N(x1)] is a
(2k − 4)-regular graph. Similarly, for G2, there
are two non-adjacent vertices y1 and y2 such that
G2[N(y1)] is (2k − 4)-regular. By the induction
hypothesis, G1[N(x1)] and G2[N(y1)] are isomor-
phic, and let f : V (G1[N(x1)]) → V (G2[N(y1)])
be an isomorphism. It can be easily derived that
G1 and G2 are isomorphic via the isomorphism
f ′ : V (G1)→ V (G2), defined as

f ′(v) =

⎧⎪⎨
⎪⎩

y1 if v = x1,

y2 if v = x2,

f(v) otherwise.

This proves the lemma. �

Lemma 2. Let n be a positive even integer, and
let G be a simple graph with δ(G) ≥ n − 2. There
exists an (n− 2)-regular spanning subgraph of G.

Proof. Since δ(G) ≥ n − 2, we may assume that
there are i vertices with degree n − 1 and n − i
vertices with degree n − 2, where 0 ≤ i ≤ n. Con-
sidering the sum of vertex degrees of G, we have

∑
v∈V (G)

deg(v) = i(n−1)+(n−i)(n−2) = n(n−2)+i,

which leads to the fact that i is even. For i �= 0,
there are at least two adjacent vertices which are of
degree n − 1. By iteratively removing these edges,
we have an (n− 2)-regular subgraph. �

Remark 1. If n is even, the (n− 2)-regular graph
can be obtained by removing a perfect matching
from Kn.

Remark 2. Graphs with minimum degree k do not
always contain a k-regular subgraph, even for k =
n− 3.

Lemma 3. Let G be an (n − 2)-regular graph. If
n ≥ 6, then there are �n/3� completely independent
spanning trees.

Proof. By Theorem 2, it suffices to show that there
is a size �n/3� CIST-partition. Let k = �n/3�, and
let V be partitioned into V1, V2, . . . , Vk as even as
possible, i.e.,

∀i∈{1,...,k} 3 ≤ |Vi| ≤ 4.

Without loss of generality, let j be the index such
that |Vi| = 3 for 1 ≤ i ≤ j, and |Vi| = 4 for i > j.
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Figure 1: The CIST-partition of G defined in Lemma 3. The vertices are pairwise adjacent, except those
connected by dotted lines. In other words, dotted lines denoted the perfect matching removed from Kn.

Notice that when j = 0, there is no Vi of size 3.
Clearly, j is even, and we can further define the
partition so that

• G[Vi] is P3, for 1 ≤ i ≤ j.

• G[V2i−1 ∪V2i] is a 4-regular graph, for 1 ≤ i ≤
j/2.

• G[Vi] is C4, for i > j.

An illustration is given in Figure 1. By definition,
Vi induces either P3 or C4 on G. Moreover, for any
two subsets Vl and Vr, B(Vl, Vr) is either K3,3 − e
or a complete bipartite graph other than a star. It
follows that V1, V2, . . . , Vk is a CIST-partition of G.
This proves the lemma. �

3.2 For odd n

For odd n, any graph G with minimum degree at
least n−2 cannot be (n−2)-regular since otherwise∑

v deg(v), which is n(n−2), is odd. Thus, at least
one vertex x of G has degree n − 1. Consider the
graph G− x. Obviously, G− x is a graph on which
lemmas in Section 3.1 hold. Therefore, the “odd
n version” of Lemmas 1 and 2 can be derived in
a straightforward manner. We elaborate in more
detail as follows.

For convenience, we define a graph G to be k+-
regular if

• there is exactly one vertex x with deg(x) =
k + 1, and

• for each vertex y other than x, deg(y) = k.

Lemma 4. Let G1 and G2 be simple graphs of or-
der n, where n is odd. If G1 and G2 are (n− 2)+-
regular, then G1 and G2 are isomorphic.

Lemma 5. Let n be a positive odd integer, and let
G be a simple graph with δ(G) ≥ n−2. There exists
an (n− 2)+-regular spanning subgraph of G.

Similar to Lemma 3, we can show the existence
of �n/3� completely independent spanning trees of
G by defining a CIST-partition of size �n/3�. The
partition is similar to that defined in Lemma 3. The
only modification we need is to deal with the odd

number of subsets of size three. By letting the
universal vertex be in one of these subsets, we get
the requested CIST-partition. More precisely, let x
be the universal vertex, and let yz be a non-edge.
The graph G − {x, y, z} is of order n − 3 and is
(n − 5)-regular. We can partition the vertices of
G− {x, y, z} as we do in Lemma 3. Together with
the subset {x, y, z}, we have the CIST-partition of
G. This yields the following theorem.

Lemma 6. Let G be an (n−2)+-regular graph with
order n. If n ≥ 6, then there are �n/3� completely
independent spanning trees in G.

3.3 Proof of Theorem 1

Proof. Consider the case where n is even. By Lem-
mas 1 and 2, it suffices to show that “the” (n− 2)-
regular graph contains �n/3� CISTs, and the result
is given by Lemma 3. Similarly, for n being odd,
the result can be derived from Lemmas 4, 5 and 6.
Thus, Theorem 1 is proved. �

4 Concluding remarks

In this paper, we show that for a graph G of order
n ≥ 6 with δ(G) ≥ n − 2, there are �n/3� com-
pletely independent spanning trees. As mentioned
in Section 1, the following results are known:

• If δ(G) ≥ n−1, there are �(n−1)/2� completely
independent spanning trees [6].

• If δ(G) ≥ n/2, there are 2 completely indepen-
dent spanning trees [1].

A straightforward generalization of the above two
statements is “If δ(G) ≥ a, there are b completely
independent spanning trees.” How a and b are re-
lated is what we are interested in, and this problem
will be conducted as future work.
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