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Abstract

Consider the problem of finding a point x in a
metric space of size n € {k" | k € Z*} to mini-
mize the average distance from x to other points,
where h € ZT \ {1}. We show that this problem
has a deterministic, nonadaptive, O(hn'*t'/h)-
time, O(n*+t1/")-query and (2h)-approzimation al-
gorithm by modifying Chang’s [2] proof of a simi-
lar result.

1 Introduction

A metric space (M,d) is a nonempty set M
endowed with a function d: M x M — [0,00)
such that d(x,x) = 0, d(z,y) = d(y, ), d(z,y) +
d(y,z) > d(z,z) and d(z,u) > 0 for all z, y,
z € M and u € M\{z} [7]. Given an n-point met-
ric space (M,d), the METRIC 1-MEDIAN problem
asks for argming ey, -, o) d(2,y), breaking ties
arbitrarily. An algorithm for METRIC 1-MEDIAN is
nonadaptive if its queries (i.e., the pairs (x,y) €
M x M such that d(z,y) is asked for) depend on
n but not on d.

Indyk [4, 5] shows that METRIC 1-MEDIAN has a
Monte-Carlo O(n/e?)-time (1 + €)-approximation
algorithm with a success probability of (1),
where € > 0. Other results on METRIC 1-MEDIAN
and on the more general problem of metric k-
median selection abound, especially for Euclidean
spaces. See, e.g., [3, 5, 6].

We will focus on deterministic o(n?)-time al-
gorithms for METRIC 1-MEDIAN; such algorithms
read an o(1l) fraction of all distances. In this
respect, Guha et al. [3, Secs. 3.1-3.2] give a
deterministic O(n'*¢)-time O(n¢)-space 2001/
approximation algorithm that reads the distances
in only one pass. This paper modifies Chang’s [2]
technique to show that for all h € Z*\{1}, METRIC
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1-MEDIAN with n € {k" | k € Z*} has a determin-
istic, nonadaptive, O(hn'*'/")-time, O(n'*1/")-
query and (2h)-approximation algorithm. Previ-
ously, a series of works by Chang [1, 2] and Wu [§]
establish the same result with the larger query
complexity of O(hn'+1/") but without the restric-
tion that n € {k" | k € Z+}.!

2 Main result

Let (S",d) be a metric space and n def. |S|",
where S is a finite set and h € ZT \ {1}. For uy,

U,y .oy Up, V1, V2, ..., Up €5,
J((ul,uz,...,uh),(vl,vg,...,vh))
def. o
; d((ui+1,ui+2,...,uh,vl,vg,...,vi),
i=0
Ui+2»ui+37'"auhvvlana"'avi+1)); (1)
hence
j((ul,ug,...,uh),(vl,vg,...,vh))
> d((ur,uz,...,up), (v1,v2,...,0n)) (2)

by the triangle inequality for d. Note that a se-
quence with a starting index greater than the end-
ing index is empty by convention. So for example,

(Uit2, Uits, .- 5 Vig1) = (1,02, 0n)

when i = h — 1.
The following lemma shows that a 1-median

with respect to d is a (2h)-approximate 1-median
with respect to d.

S Uh, V1, V2, ..

Lemma 1. Let
def.

ua = argmin
(u1,u2,...,un)€SH V1,02,..., VR ES
J((ul,ug, cooup), (1,9, .00, 0R)) (3)

IThe O(h) factor in the time and query complexities is
omitted in [8] because h is independent of n.
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breaking ties arbitrarily. Then for all x € S",

Z 7Uh))

V1,02,...,Up €S

2h- >

V1,02,...,U, €S

d(a, (vi,ve,. ..

<

’Uh)) .

d (x, (v1,v9, ...

Proof. Let q4, g5, ..., q3, T1, T2, ..., T}, be inde-
pendent and uniformly random elements of S. All
expectations in the proof will be taken over these

random variables.
By equation (3),

E [J(ﬁ, (1’177’2,.‘.,%))}

= min
UL, U2,..., up €S
E|:CZ((U,1,’U,2,...,U}L)7(7‘1,'r‘2,...,""h))i| . (4)
Now,
1 .
— d(t, (vi,v2,...,vp))
V1,V2,...,V0 €S
= E[d(Q,(r1,72,...,7h))]
(2) _
S E[d(u,(Tl,T‘z,..‘,Th))]
(4) -
< Bld(@1 a2 @) (rre ) |
1) h—1
= E[ d((@ig1> it An,T1,72, ., T5)
1=0
(qi+2,qi+37-~~7qh:""l:"‘27~~~,”‘i+1)):|
h—1
< B [Z d(x, (qi+1qu‘+27---7Qh7"’17"’27---,7"i))
1=0
+d(x, (qi+27qi+37~~7qh,"“1,"'2,~-~77"i+1))}
h—1
= E[d(% (@41, Tit2r- - qns 172,05 70)) ]
1=0
h—1
+ E[d(x (1o Qizs>- - qn> 71,72, .., Tig1)) |
1=0
Y )
= —- X, (v1,v2,...,v)),
n 1,02 h

v1,2,...,Vp €S

where the last equality follows from the uniform
distribution of ¢4, q,, .-, q, 71, T2, ..., T and
their independence. O

By equation (1), we may compute d(u,v) for
all u, v € S" with only |S|"*! = n!+1/7 distinct
queries to d. So Lemma 1 alone gives a deter-
ministic O(n'*t1/")-query (2h)-approximation al-
gorithm for METRIC 1-MEDIAN. But the time com-
plexity would be O(hn?), which we now proceed
to improve to O(hn'*T1/").
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For wy, ug, ..., up € S and k € {0,1,...,h},
f((u17u27"'7uh)7k)
ot k—1
= Z Z (Wit 1, Wi 2505 UR, V1,02, 0, 0i)
V1,V2,...,0, €S =0
(Wi 2, Wit 3, .oy U,y V1,02, -+, Vig 1)) - (5)
As empty sums vanish,
f(,0)=0. (6)
Clearly,
f((ur,ug, ..., up), h) (7)
h—1
V1,02,...,0, €S =0
d ((ui+1,ui+2, ceey Up, V1,02, ... ,UZ‘) 5
(uz‘+2,ui+3,-~-,W“UMUQ,---7Ui+1))
EEEDS
V1,V2,..., 05, €S
d((uy,ug, ... up), (v1,v2,...,00)) . (8)

The following lemma shows how to com-
pute f(-,k + 1) in the increasing order of k €
{0,1,...,h — 1} by standard dynamic program-
ming.

Lemma 2. For all uy, ua, ..., up € S and k €

{0,1,...,h — 1},
f((ulau27'~~uuh)ak+1)
= I8/F- > d((ui,ua, ... up), (U2, us, . .., up,v1))
v1 €S
+ Z f((u2,us,...,up,v1), k).
v1€S
Proof. By equation (5),
f((’U/l,’U,Q,...,uh),k‘-‘rl) (9)
= Z d((ur,u2,...,up), (uz2,us,...,up,v1))

V1,020,V 41 €S

k
> > d (i1, iR, 1,02, )

+
VY,V vp1 €S i=1
(Wit 2, Wit 3y ooy Upy V1,025 005 Vi 1)) -
We have
> d((u1,u2,...,up), (u2,u3,. .., up,v1))
V1,V2,. V41 €S
= 181" >0 d((ui,ug,. . un), (ug,us, . up,v1)

v1E€S

because the common summand of both sides is
independent of v, vs, ..., vp+1. By equation (5)
(with uy, ug, ..., Up—1, Up, V1, Va2, ..., v replaced
by wa, us, ..., up, v1, V9, ..., Vpt1, respectively,
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1: for uy, us, ..., up € S do
20 fl(ur,uz, ..., up)][0] < 0;
3: end for
4: for k=0 up to h—1 do
5: for ui, ug, ..., up € S do
6: fllur,uz, ..., up)|lk + 1] — |S|k
D owes A(ur,uz, ... up), (u2,us, ..., up, v));
T ez, u k) Fl(us g, un)let
U+ Ses Fluzus,... up, o)k
8: end for
9: end for
10: Output argmin(ul,u2 """ up)esh fllur,uz, ..., up)lh],
breaking ties arbitrarily;
Figure 1: Algorithm FIND-MEDIAN.
and after adjusting the indices),
J((u2,us, .. up,v1) , k)
k
V2,V3,.. ., vk+1€S 1=1
d((Wit1,Uig2, .-, Uns V1,02, -, 0i)
(Wig2, Wits, -5 Up, V1,02, ..+, 0ig1)) . (10)

for each v; € S. Equations (9)-(10) complete the
proof. O

Without loss of generality, assume S
{0,1,...,nY"—1}. Then every tuple in S can be
accessed as an O(logn)-bit word in O(1) time un-
der the unit-cost RAM model (which is standard
in the analysis of algorithms). So, once we have
computed f(-, k), we can compute f(u,k + 1) in
O(]S|) time for each u € S by Lemma 2.

We now arrive at our main theorem.

Theorem 3. Let h € Z* \ {1}. Then MET-
RIC 1-MEDIAN has a deterministic, monadap-
tive, O(hn*t1/")-time, O(n*+/")-query and (2h)-
approzimation algorithm for a metric space of size
a perfect hth power.

Proof. By equation (6), lines 1-3 of FIND-MEDIAN
in Fig. 1 compute f(-,0). By Lemma 2, lines 4-9
compute f(-,k+ 1) in the increasing order of k €
{0,1,...,h—1}. By equations (7)—(8), line 10 out-
puts a 1-median with respect to J; hence Lemma, 1
gives the approximation ratio of 2h.

It is easy to see that FIND-MEDIAN runs in
time O(hn|S|) = O(hn't'/") deterministically
and nonadaptively. Because every query (to d)
of FIND-MEDIAN is for

d((ug,us,...

sup) s (g, us,y oy Up, v))

. Up, v €S, the query com-
O

for some wuy, ua, ..
plexity is at most ||+ = O(n' /7).
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Let us briefly describe the major technical dif-
ference between this and the related papers. By
equation (1), computing d(u,v) for all u, v € S*
requires only |S|"*1 (distinct) queries to d. How-
ever, the same does not hold for Chang’s [2] ver-
sion of d, forbidding him to lower the query com-
plexity from O(hn'**/") to O(n't'/"). Wu [g]
uses the famous “median of medians” technique,
which is entirely different from that of Chang, and
gives a deterministic, adaptive, O(hn'*t1/")-time,
O(hn**t1/")-query and (2h)-approximation algo-
rithm for all h € Z* \ {1}.
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