A note on 1-median selection in metric spaces

Ching-Lueh Chang

Department of Computer Science and Engineering Yuan Ze University, Taoyuan, Taiwan Innovation Center for Big Data and Digital Convergence Yuan Ze University, Taoyuan, Taiwan clchang@saturn.yzu.edu.tw

Abstract

Consider the problem of finding a point x in a metric space of size $n \in \{k^h \mid k \in \mathbb{Z}^+\}$ to minimize the average distance from x to other points, where $h \in \mathbb{Z}^+ \setminus \{1\}$. We show that this problem has a deterministic, nonadaptive, $O(hn^{1+1/h})$ -time, $O(n^{1+1/h})$ -query and (2h)-approximation algorithm by modifying Chang's [2] proof of a similar result.

1 Introduction

A metric space (M, d) is a nonempty set Mendowed with a function $d: M \times M \to [0, \infty)$ such that d(x, x) = 0, d(x, y) = d(y, x), $d(x, y) + d(y, z) \ge d(x, z)$ and d(x, u) > 0 for all $x, y, z \in M$ and $u \in M \setminus \{x\}$ [7]. Given an *n*-point metric space (M, d), the METRIC 1-MEDIAN problem asks for $\operatorname{argmin}_{x \in M} \sum_{y \in M} d(x, y)$, breaking ties arbitrarily. An algorithm for METRIC 1-MEDIAN is nonadaptive if its queries (i.e., the pairs $(x, y) \in M \times M$ such that d(x, y) is asked for) depend on n but not on d.

Indyk [4, 5] shows that METRIC 1-MEDIAN has a Monte-Carlo $O(n/\epsilon^2)$ -time $(1 + \epsilon)$ -approximation algorithm with a success probability of $\Omega(1)$, where $\epsilon > 0$. Other results on METRIC 1-MEDIAN and on the more general problem of metric kmedian selection abound, especially for Euclidean spaces. See, e.g., [3, 5, 6].

We will focus on deterministic $o(n^2)$ -time algorithms for METRIC 1-MEDIAN; such algorithms read an o(1) fraction of all distances. In this respect, Guha et al. [3, Secs. 3.1–3.2] give a deterministic $O(n^{1+\epsilon})$ -time $O(n^{\epsilon})$ -space $2^{O(1/\epsilon)}$ -approximation algorithm that reads the distances in only one pass. This paper modifies Chang's [2] technique to show that for all $h \in \mathbb{Z}^+ \setminus \{1\}$, METRIC

1-MEDIAN with $n \in \{k^h \mid k \in \mathbb{Z}^+\}$ has a deterministic, nonadaptive, $O(hn^{1+1/h})$ -time, $O(n^{1+1/h})$ query and (2h)-approximation algorithm. Previously, a series of works by Chang [1, 2] and Wu [8] establish the same result with the larger query complexity of $O(hn^{1+1/h})$ but without the restriction that $n \in \{k^h \mid k \in \mathbb{Z}^+\}$.¹

2 Main result

Let (S^h, d) be a metric space and $n \stackrel{\text{def.}}{=} |S|^h$, where S is a finite set and $h \in \mathbb{Z}^+ \setminus \{1\}$. For u_1 , $u_2, \ldots, u_h, v_1, v_2, \ldots, v_h \in S$,

$$\overset{\tilde{d}((u_1, u_2, \dots, u_h), (v_1, v_2, \dots, v_h))}{=} \sum_{i=0}^{h-1} d((u_{i+1}, u_{i+2}, \dots, u_h, v_1, v_2, \dots, v_i), (u_{i+2}, u_{i+3}, \dots, u_h, v_1, v_2, \dots, v_{i+1})); (1)$$

hence

$$\tilde{d}((u_1, u_2, \dots, u_h), (v_1, v_2, \dots, v_h))
\geq d((u_1, u_2, \dots, u_h), (v_1, v_2, \dots, v_h)) \quad (2)$$

by the triangle inequality for d. Note that a sequence with a starting index greater than the ending index is empty by convention. So for example,

 $(u_{i+2}, u_{i+3}, \dots, u_h, v_1, v_2, \dots, v_{i+1}) = (v_1, v_2, \dots, v_h)$

when i = h - 1.

The following lemma shows that a 1-median with respect to \tilde{d} is a (2h)-approximate 1-median with respect to d.

Lemma 1. Let

$$\hat{\mathbf{u}} \stackrel{\text{def.}}{=} \underset{(u_1, u_2, \dots, u_h) \in S^h}{\operatorname{argmin}} \sum_{v_1, v_2, \dots, v_h \in S} \\ \tilde{d} \left(\left(u_1, u_2, \dots, u_h \right), \left(v_1, v_2, \dots, v_h \right) \right), (3)$$

¹The O(h) factor in the time and query complexities is omitted in [8] because h is independent of n.

breaking ties arbitrarily. Then for all $\mathbf{x} \in S^h$,

$$\sum_{\substack{v_1, v_2, \dots, v_h \in S \\ v_1, v_2, \dots, v_h \in S}} d\left(\hat{\mathbf{u}}, (v_1, v_2, \dots, v_h)\right)$$

$$\leq 2h \cdot \sum_{\substack{v_1, v_2, \dots, v_h \in S \\ v_1, v_2, \dots, v_h \in S}} d\left(\mathbf{x}, (v_1, v_2, \dots, v_h)\right)$$

Proof. Let $\boldsymbol{q}_1, \, \boldsymbol{q}_2, \, ..., \, \boldsymbol{q}_h, \, \boldsymbol{r}_1, \, \boldsymbol{r}_2, \, ..., \, \boldsymbol{r}_h$ be independent and uniformly random elements of S. All expectations in the proof will be taken over these random variables.

By equation (3),

$$= \begin{bmatrix} \tilde{d} (\hat{\mathbf{u}}, (\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_h)) \end{bmatrix}$$

$$= \min_{\substack{u_1, u_2, \dots, u_h \in S}} \\ \mathbb{E} \begin{bmatrix} \tilde{d} ((u_1, u_2, \dots, u_h), (\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_h)) \end{bmatrix}.$$
(4)

Now,

$$\begin{split} & \frac{1}{n} \cdot \sum_{v_1, v_2, \dots, v_h \in S} d\left(\hat{\mathbf{u}}, (v_1, v_2, \dots, v_h)\right) \\ &= & \mathbb{E}\left[d\left(\hat{\mathbf{u}}, (r_1, r_2, \dots, r_h)\right)\right] \\ \overset{(2)}{\leq} & \mathbb{E}\left[\tilde{d}\left(\hat{\mathbf{u}}, (r_1, r_2, \dots, r_h)\right)\right] \\ \overset{(4)}{\leq} & \mathbb{E}\left[\tilde{d}\left((q_1, q_2, \dots, q_h), (r_1, r_2, \dots, r_h)\right)\right] \\ \overset{(1)}{=} & \mathbb{E}\left[\sum_{i=0}^{h-1} d\left(\left(q_{i+1}, q_{i+2}, \dots, q_h, r_1, r_2, \dots, r_i\right), \right. \right. \\ & \left. \left. \left(q_{i+2}, q_{i+3}, \dots, q_h, r_1, r_2, \dots, r_{i+1}\right)\right)\right] \right] \\ &\leq & \mathbb{E}\left[\sum_{i=0}^{h-1} d\left(\mathbf{x}, \left(q_{i+1}, q_{i+2}, \dots, q_h, r_1, r_2, \dots, r_i\right)\right) \right. \\ & \left. + d\left(\mathbf{x}, \left(q_{i+2}, q_{i+3}, \dots, q_h, r_1, r_2, \dots, r_{i+1}\right)\right)\right] \right] \\ &= & \sum_{i=0}^{h-1} \mathbb{E}\left[d\left(\mathbf{x}, \left(q_{i+1}, q_{i+2}, \dots, q_h, r_1, r_2, \dots, r_i\right)\right)\right] \\ &+ & \sum_{i=0}^{h-1} \mathbb{E}\left[d\left(\mathbf{x}, \left(q_{i+2}, q_{i+3}, \dots, q_h, r_1, r_2, \dots, r_i\right)\right)\right)\right] \\ &= & \frac{2h}{n} \cdot \sum_{v_1, v_2, \dots, v_h \in S} d\left(\mathbf{x}, (v_1, v_2, \dots, v_h)\right), \end{split}$$

where the last equality follows from the uniform distribution of $\boldsymbol{q}_1, \, \boldsymbol{q}_2, \, \dots, \, \boldsymbol{q}_h, \, \boldsymbol{r}_1, \, \boldsymbol{r}_2, \, \dots, \, \boldsymbol{r}_h$ and their independence.

By equation (1), we may compute $\tilde{d}(\mathbf{u}, \mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in S^h$ with only $|S|^{h+1} = n^{1+1/h}$ distinct queries to d. So Lemma 1 alone gives a deterministic $O(n^{1+1/h})$ -query (2h)-approximation algorithm for METRIC 1-MEDIAN. But the time complexity would be $O(hn^2)$, which we now proceed to improve to $O(hn^{1+1/h})$.

For $u_1, u_2, \ldots, u_h \in S$ and $k \in \{0, 1, \ldots, h\}$,

$$\stackrel{\text{def.}}{=} \sum_{\substack{v_1, v_2, \dots, v_k \in S}} \sum_{i=0}^{k-1} d\left((u_{i+1}, u_{i+2}, \dots, u_h, v_1, v_2, \dots, v_i), (u_{i+2}, u_{i+3}, \dots, u_h, v_1, v_2, \dots, v_{i+1}) \right).$$
(5)

As empty sums vanish,

0 / /

$$f(\cdot, 0) \equiv 0. \tag{6}$$

Clearly,

$$f((u_{1}, u_{2}, \dots, u_{h}), h)$$
(7)
=
$$\sum_{v_{1}, v_{2}, \dots, v_{h} \in S} \sum_{i=0}^{h-1} d((u_{i+1}, u_{i+2}, \dots, u_{h}, v_{1}, v_{2}, \dots, v_{i}), (u_{i+2}, u_{i+3}, \dots, u_{h}, v_{1}, v_{2}, \dots, v_{i+1}))$$

(1)
$$\sum_{v_{1}, v_{2}, \dots, v_{h} \in S} \tilde{d}((u_{1}, u_{2}, \dots, u_{h}), (v_{1}, v_{2}, \dots, v_{h})).$$
(8)

The following lemma shows how to compute $f(\cdot, k+1)$ in the increasing order of $k \in$ $\{0, 1, \ldots, h-1\}$ by standard dynamic programming.

Lemma 2. For all $u_1, u_2, \ldots, u_h \in S$ and $k \in$ $\{0, 1, \ldots, h-1\},\$

$$f((u_1, u_2, \dots, u_h), k+1) = |S|^k \cdot \sum_{v_1 \in S} d((u_1, u_2, \dots, u_h), (u_2, u_3, \dots, u_h, v_1)) + \sum_{v_1 \in S} f((u_2, u_3, \dots, u_h, v_1), k).$$

Proof. By equation (5),

$$f((u_{1}, u_{2}, \dots, u_{h}), k+1)$$
(9)
=
$$\sum_{v_{1}, v_{2}, \dots, v_{k+1} \in S} d((u_{1}, u_{2}, \dots, u_{h}), (u_{2}, u_{3}, \dots, u_{h}, v_{1}))$$

+
$$\sum_{v_{1}, v_{2}, \dots, v_{k+1} \in S} \sum_{i=1}^{k} d((u_{i+1}, u_{i+2}, \dots, u_{h}, v_{1}, v_{2}, \dots, v_{i}), (u_{i+2}, u_{i+3}, \dots, u_{h}, v_{1}, v_{2}, \dots, v_{i+1})).$$

We have

$$\sum_{\substack{v_1, v_2, \dots, v_{k+1} \in S \\ v_1 \in S}} d\left(\left(u_1, u_2, \dots, u_h\right), \left(u_2, u_3, \dots, u_h, v_1\right) \right)$$

$$= |S|^k \cdot \sum_{\substack{v_1 \in S \\ v_1 \in S}} d\left(\left(u_1, u_2, \dots, u_h\right), \left(u_2, u_3, \dots, u_h, v_1\right) \right)$$

because the common summand of both sides is independent of $v_2, v_3, \ldots, v_{k+1}$. By equation (5) (with $u_1, u_2, \ldots, u_{h-1}, u_h, v_1, v_2, \ldots, v_k$ replaced by $u_2, u_3, \ldots, u_h, v_1, v_2, \ldots, v_{k+1}$, respectively,

1: for
$$u_1, u_2, ..., u_h \in S$$
 do
2: $f[(u_1, u_2, ..., u_h)][0] \leftarrow 0;$
3: end for
4: for $k = 0$ up to $h - 1$ do
5: for $u_1, u_2, ..., u_h \in S$ do
6: $f[(u_1, u_2, ..., u_h)][k + 1] \leftarrow |S|^k \cdot \sum_{v \in S} d((u_1, u_2, ..., u_h), (u_2, u_3, ..., u_h, v));$
7: $f[(u_1, u_2, ..., u_h)][k+1] \leftarrow f[(u_1, u_2, ..., u_h)][k+1] + \sum_{v \in S} f[(u_2, u_3, ..., u_h, v)][k];$
8: end for
9: end for

10: Output $\operatorname{argmin}_{(u_1, u_2, \dots, u_h) \in S^h} f[(u_1, u_2, \dots, u_h)][h]$, breaking ties arbitrarily;

and after adjusting the indices),

 $f((u_{2}, u_{3}, \dots, u_{h}, v_{1}), k) = \sum_{\substack{v_{2}, v_{3}, \dots, v_{k+1} \in S}} \sum_{i=1}^{k} d((u_{i+1}, u_{i+2}, \dots, u_{h}, v_{1}, v_{2}, \dots, v_{i}), (u_{i+2}, u_{i+3}, \dots, u_{h}, v_{1}, v_{2}, \dots, v_{i+1})).$ (10)

for each $v_1 \in S$. Equations (9)–(10) complete the proof. \Box

Without loss of generality, assume $S = \{0, 1, \ldots, n^{1/h} - 1\}$. Then every tuple in S^h can be accessed as an $O(\log n)$ -bit word in O(1) time under the unit-cost RAM model (which is standard in the analysis of algorithms). So, once we have computed $f(\cdot, k)$, we can compute $f(\mathbf{u}, k + 1)$ in O(|S|) time for each $\mathbf{u} \in S$ by Lemma 2.

We now arrive at our main theorem.

Theorem 3. Let $h \in \mathbb{Z}^+ \setminus \{1\}$. Then MET-RIC 1-MEDIAN has a deterministic, nonadaptive, $O(hn^{1+1/h})$ -time, $O(n^{1+1/h})$ -query and (2h)approximation algorithm for a metric space of size a perfect hth power.

Proof. By equation (6), lines 1–3 of FIND-MEDIAN in Fig. 1 compute $f(\cdot, 0)$. By Lemma 2, lines 4–9 compute $f(\cdot, k + 1)$ in the increasing order of $k \in$ $\{0, 1, \ldots, h-1\}$. By equations (7)–(8), line 10 outputs a 1-median with respect to \tilde{d} ; hence Lemma 1 gives the approximation ratio of 2h.

It is easy to see that FIND-MEDIAN runs in time $O(hn|S|) = O(hn^{1+1/h})$ deterministically and nonadaptively. Because every query (to d) of FIND-MEDIAN is for

$$d((u_1, u_2, \ldots, u_h), (u_2, u_3, \ldots, u_h, v))$$

for some $u_1, u_2, \ldots, u_h, v \in S$, the query complexity is at most $|S|^{h+1} = O(n^{1+1/h})$.

Let us briefly describe the major technical difference between this and the related papers. By equation (1), computing $\tilde{d}(\mathbf{u}, \mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in S^h$ requires only $|S|^{h+1}$ (distinct) queries to d. However, the same does not hold for Chang's [2] version of \tilde{d} , forbidding him to lower the query complexity from $O(hn^{1+1/h})$ to $O(n^{1+1/h})$. Wu [8] uses the famous "median of medians" technique, which is entirely different from that of Chang, and gives a deterministic, adaptive, $O(hn^{1+1/h})$ -time, $O(hn^{1+1/h})$ -query and (2h)-approximation algorithm for all $h \in \mathbb{Z}^+ \setminus \{1\}$.

Acknowledgments

The author is supported in part by the Ministry of Science and Technology of Taiwan under grant 103-2221-E-155-026-MY2.

References

- C.-L. Chang. Deterministic sublinear-time approximations for metric 1-median selection. *In-formation Processing Letters*, 113(8):288–292, 2013.
- [2] C.-L. Chang. A deterministic sublinear-time nonadaptive algorithm for metric 1-median selection. Technical Report arXiv: 1502.06764, 2015.
- [3] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. *IEEE Transactions on Knowledge and Data Engineering*, 15(3):515–528, 2003.
- [4] P. Indyk. Sublinear time algorithms for metric space problems. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 428–434, 1999.
- [5] P. Indyk. High-dimensional computational geometry. PhD thesis, Stanford University, 2000.
- [6] A. Kumar, Y. Sabharwal, and S. Sen. Lineartime approximation schemes for clustering problems in any dimensions. *Journal of the* ACM, 57(2):5, 2010.
- [7] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

[8] B.-Y. Wu. On approximating metric 1-median in sublinear time. *Information Processing Let*ters, 114(4):163–166, 2014.