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Abstract

Consider the problem of finding a point x in a
metric space of size n ∈ {kh | k ∈ Z

+} to mini-
mize the average distance from x to other points,
where h ∈ Z

+ \ {1}. We show that this problem
has a deterministic, nonadaptive, O(hn1+1/h)-
time, O(n1+1/h)-query and (2h)-approximation al-
gorithm by modifying Chang’s [2] proof of a simi-
lar result.

1 Introduction

A metric space (M,d) is a nonempty set M
endowed with a function d : M × M → [ 0,∞ )
such that d(x, x) = 0, d(x, y) = d(y, x), d(x, y) +
d(y, z) ≥ d(x, z) and d(x, u) > 0 for all x, y,
z ∈M and u ∈M \{x} [7]. Given an n-point met-
ric space (M,d), the metric 1-median problem
asks for argminx∈M

∑
y∈M d(x, y), breaking ties

arbitrarily. An algorithm for metric 1-median is
nonadaptive if its queries (i.e., the pairs (x, y) ∈
M ×M such that d(x, y) is asked for) depend on
n but not on d.

Indyk [4, 5] shows that metric 1-median has a
Monte-Carlo O(n/ε2)-time (1 + ε)-approximation
algorithm with a success probability of Ω(1),
where ε > 0. Other results on metric 1-median
and on the more general problem of metric k-
median selection abound, especially for Euclidean
spaces. See, e.g., [3, 5, 6].

We will focus on deterministic o(n2)-time al-
gorithms for metric 1-median; such algorithms
read an o(1) fraction of all distances. In this
respect, Guha et al. [3, Secs. 3.1–3.2] give a
deterministic O(n1+ε)-time O(nε)-space 2O(1/ε)-
approximation algorithm that reads the distances
in only one pass. This paper modifies Chang’s [2]
technique to show that for all h ∈ Z

+\{1}, metric

1-median with n ∈ {kh | k ∈ Z
+} has a determin-

istic, nonadaptive, O(hn1+1/h)-time, O(n1+1/h)-
query and (2h)-approximation algorithm. Previ-
ously, a series of works by Chang [1, 2] and Wu [8]
establish the same result with the larger query
complexity of O(hn1+1/h) but without the restric-
tion that n ∈ {kh | k ∈ Z

+}.1

2 Main result

Let (Sh, d) be a metric space and n
def.
= |S|h,

where S is a finite set and h ∈ Z
+ \ {1}. For u1,

u2, . . ., uh, v1, v2, . . ., vh ∈ S,

d̃ ((u1, u2, . . . , uh) , (v1, v2, . . . , vh))

def.
=

h−1∑

i=0

d ((ui+1, ui+2, . . . , uh, v1, v2, . . . , vi) ,

(ui+2, ui+3, . . . , uh, v1, v2, . . . , vi+1)) ; (1)

hence

d̃ ((u1, u2, . . . , uh) , (v1, v2, . . . , vh))

≥ d ((u1, u2, . . . , uh) , (v1, v2, . . . , vh)) (2)

by the triangle inequality for d. Note that a se-
quence with a starting index greater than the end-
ing index is empty by convention. So for example,

(ui+2, ui+3, . . . , uh, v1, v2, . . . , vi+1) = (v1, v2, . . . , vh)

when i = h− 1.
The following lemma shows that a 1-median

with respect to d̃ is a (2h)-approximate 1-median
with respect to d.

Lemma 1. Let

û
def.
= argmin

(u1,u2,...,uh)∈Sh

∑

v1,v2,...,vh∈S

d̃ ((u1, u2, . . . , uh) , (v1, v2, . . . , vh)) ,(3)

1The O(h) factor in the time and query complexities is
omitted in [8] because h is independent of n.
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breaking ties arbitrarily. Then for all x ∈ Sh,

∑

v1,v2,...,vh∈S
d (û, (v1, v2, . . . , vh))

≤ 2h ·
∑

v1,v2,...,vh∈S
d (x, (v1, v2, . . . , vh)) .

Proof. Let q1, q2, . . ., qh, r1, r2, . . ., rh be inde-
pendent and uniformly random elements of S. All
expectations in the proof will be taken over these
random variables.

By equation (3),

E
[
d̃ (û, (r1, r2, . . . , rh))

]
= min

u1,u2,...,uh∈S

E
[
d̃ ((u1, u2, . . . , uh) , (r1, r2, . . . , rh))

]
. (4)

Now,

1

n
·

∑
v1,v2,...,vh∈S

d (û, (v1, v2, . . . , vh))

= E [ d (û, (r1, r2, . . . , rh)) ]

(2)

≤ E
[
d̃ (û, (r1, r2, . . . , rh))

]
(4)

≤ E
[
d̃ ((q1, q2, . . . , qh) , (r1, r2, . . . , rh))

]
(1)
= E

[
h−1∑
i=0

d
((
qi+1, qi+2, . . . , qh, r1, r2, . . . , ri

)
,

(
qi+2, qi+3, . . . , qh, r1, r2, . . . , ri+1

)) ]

≤ E

[
h−1∑
i=0

d
(
x,

(
qi+1, qi+2, . . . , qh, r1, r2, . . . , ri

))

+ d
(
x,

(
qi+2, qi+3, . . . , qh, r1, r2, . . . , ri+1

)) ]

=

h−1∑
i=0

E
[
d
(
x,

(
qi+1, qi+2, . . . , qh, r1, r2, . . . , ri

)) ]

+

h−1∑
i=0

E
[
d
(
x,

(
qi+2, qi+3, . . . , qh, r1, r2, . . . , ri+1

)) ]

=
2h

n
·

∑
v1,v2,...,vh∈S

d (x, (v1, v2, . . . , vh)) ,

where the last equality follows from the uniform
distribution of q1, q2, . . ., qh, r1, r2, . . ., rh and
their independence.

By equation (1), we may compute d̃(u,v) for
all u, v ∈ Sh with only |S|h+1 = n1+1/h distinct
queries to d. So Lemma 1 alone gives a deter-
ministic O(n1+1/h)-query (2h)-approximation al-
gorithm for metric 1-median. But the time com-
plexity would be O(hn2), which we now proceed
to improve to O(hn1+1/h).

For u1, u2, . . ., uh ∈ S and k ∈ {0, 1, . . . , h},
f ((u1, u2, . . . , uh) , k)

def.
=

∑
v1,v2,...,vk∈S

k−1∑
i=0

d ((ui+1, ui+2, . . . , uh, v1, v2, . . . , vi) ,

(ui+2, ui+3, . . . , uh, v1, v2, . . . , vi+1)) . (5)

As empty sums vanish,

f(·, 0) ≡ 0. (6)

Clearly,

f ((u1, u2, . . . , uh) , h) (7)

=
∑

v1,v2,...,vh∈S

h−1∑

i=0

d ((ui+1, ui+2, . . . , uh, v1, v2, . . . , vi) ,

(ui+2, ui+3, . . . , uh, v1, v2, . . . , vi+1))

(1)
=

∑

v1,v2,...,vh∈S

d̃ ((u1, u2, . . . , uh) , (v1, v2, . . . , vh)) . (8)

The following lemma shows how to com-
pute f(·, k + 1) in the increasing order of k ∈
{0, 1, . . . , h − 1} by standard dynamic program-
ming.

Lemma 2. For all u1, u2, . . ., uh ∈ S and k ∈
{0, 1, . . . , h− 1},

f ((u1, u2, . . . , uh) , k + 1)

= |S|k ·
∑
v1∈S

d ((u1, u2, . . . , uh) , (u2, u3, . . . , uh, v1))

+
∑
v1∈S

f ((u2, u3, . . . , uh, v1) , k) .

Proof. By equation (5),

f ((u1, u2, . . . , uh) , k + 1) (9)

=
∑

v1,v2,...,vk+1∈S
d ((u1, u2, . . . , uh) , (u2, u3, . . . , uh, v1))

+
∑

v1,v2,...,vk+1∈S

k∑
i=1

d ((ui+1, ui+2, . . . , uh, v1, v2, . . . , vi) ,

(ui+2, ui+3, . . . , uh, v1, v2, . . . , vi+1)) .

We have ∑
v1,v2,...,vk+1∈S

d ((u1, u2, . . . , uh) , (u2, u3, . . . , uh, v1))

= |S|k ·
∑
v1∈S

d ((u1, u2, . . . , uh) , (u2, u3, . . . , uh, v1))

because the common summand of both sides is
independent of v2, v3, . . ., vk+1. By equation (5)
(with u1, u2, . . ., uh−1, uh, v1, v2, . . ., vk replaced
by u2, u3, . . ., uh, v1, v2, . . ., vk+1, respectively,
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1: for u1, u2, . . ., uh ∈ S do
2: f [(u1, u2, . . . , uh)][0]← 0;
3: end for
4: for k = 0 up to h− 1 do
5: for u1, u2, . . ., uh ∈ S do
6: f [(u1, u2, . . . , uh)][k + 1] ← |S|k ·∑

v∈S d((u1, u2, . . . , uh), (u2, u3, . . . , uh, v));
7: f [(u1, u2, . . . , uh)][k+1]← f [(u1, u2, . . . , uh)][k+

1] +
∑

v∈S f [(u2, u3, . . . , uh, v)][k];
8: end for
9: end for
10: Output argmin(u1,u2,...,uh)∈Sh f [(u1, u2, . . . , uh)][h],

breaking ties arbitrarily;

Figure 1: Algorithm find-median.

and after adjusting the indices),

f ((u2, u3, . . . , uh, v1) , k)

=
∑

v2,v3,...,vk+1∈S

k∑
i=1

d ((ui+1, ui+2, . . . , uh, v1, v2, . . . , vi) ,

(ui+2, ui+3, . . . , uh, v1, v2, . . . , vi+1)) . (10)

for each v1 ∈ S. Equations (9)–(10) complete the
proof.

Without loss of generality, assume S =
{0, 1, . . . , n1/h−1}. Then every tuple in Sh can be
accessed as an O(log n)-bit word in O(1) time un-
der the unit-cost RAM model (which is standard
in the analysis of algorithms). So, once we have
computed f(·, k), we can compute f(u, k + 1) in
O(|S|) time for each u ∈ S by Lemma 2.

We now arrive at our main theorem.

Theorem 3. Let h ∈ Z
+ \ {1}. Then met-

ric 1-median has a deterministic, nonadap-
tive, O(hn1+1/h)-time, O(n1+1/h)-query and (2h)-
approximation algorithm for a metric space of size
a perfect hth power.

Proof. By equation (6), lines 1–3 of find-median
in Fig. 1 compute f(·, 0). By Lemma 2, lines 4–9
compute f(·, k + 1) in the increasing order of k ∈
{0, 1, . . . , h−1}. By equations (7)–(8), line 10 out-
puts a 1-median with respect to d̃; hence Lemma 1
gives the approximation ratio of 2h.

It is easy to see that find-median runs in
time O(hn|S|) = O(hn1+1/h) deterministically
and nonadaptively. Because every query (to d)
of find-median is for

d ((u1, u2, . . . , uh) , (u2, u3, . . . , uh, v))

for some u1, u2, . . ., uh, v ∈ S, the query com-
plexity is at most |S|h+1 = O(n1+1/h).

Let us briefly describe the major technical dif-
ference between this and the related papers. By
equation (1), computing d̃(u,v) for all u, v ∈ Sh

requires only |S|h+1 (distinct) queries to d. How-
ever, the same does not hold for Chang’s [2] ver-
sion of d̃, forbidding him to lower the query com-
plexity from O(hn1+1/h) to O(n1+1/h). Wu [8]
uses the famous “median of medians” technique,
which is entirely different from that of Chang, and
gives a deterministic, adaptive, O(hn1+1/h)-time,
O(hn1+1/h)-query and (2h)-approximation algo-
rithm for all h ∈ Z

+ \ {1}.
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