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Abstract
 
Given two strings of the same length �, the 

non-overlapping inversion and transposition 
distance (also called mutation distance) between 
them is defined as the minimum number of 
non-overlapping inversion and transposition 
operations used to transform one string into the 
other. In this study, we present an ����� time and ����� space algorithm to compute the mutation 
distance of two input strings. 
 
 
1  Introduction 
 

The dissimilarity of two strings is usually 
measured by the so-called edit distance, which is 
defined as the minimum number of edit operations 
necessary to convert one string into the other. The 
commonly used edit operations are character 
insertions, deletions and substitutions. In 
biological application, the aforementioned edit 
operations correspond to point mutations of DNA 
sequences (i.e., mutations at the level of individual 
nucleotides). From evolutionary point of view, 
however, DNA sequences may evolve by 
large-scale mutations (also called rearrangements, 
i.e., mutations at the level of sequence fragments) 
[8], such as inversions (replacing a fragment of 
DNA sequence by its reverse complement) and 
transpositions (i.e., moving a fragment of DNA 
sequence from one location to another or, 
equivalently, exchanging two adjacent and 
non-overlapping fragments on DNA sequence). 
Note that a large-scale mutation that replaces a 
fragment of DNA sequence only by its reverse 
(without complement) is called a reversal. Based 
on large-scale mutation operations, the 
dissimilarity (or mutation distance) between two 
strings can be defined to be the minimum number 
of large-scale mutation operations used to 
transform one string to the other. Cantone et al. [2] 
introduced an �����  time and �����  space 
algorithm to solve an approximate string matching 
problem with non-overlapping reversals, which is 
to find all locations of a given text that match a 

given pattern with non-overlapping reversals, 
where n is the length of the text and m is the 
length of the pattern. In this problem, two 
equal-length strings are said to have a match with 
non-overlapping reversals if one string can be 
transformed into the other using any finite 
sequence of non-overlapping reversals. It should 
be noted that the number of the used 
non-overlapping reversals in the algorithm 
proposed by Cantone et al. [2] is not required to be 
less than or equal to a fixed non-negative integer. 
In [2], Cantone et al. also presented another 
algorithm whose average-case time complexity is ����. Cantone et al. [3] studied the same problem 
by considering both non-overlapping reversals and 
transpositions, where they called transpositions as 
translocations and the lengths of two exchanged 
adjacent fragments are constrained to be 
equivalent. They finally designed an algorithm to 
solve this problem in ������ time and ����� 
space. For the above problem, Grabowski et at. [6] 
gave another algorithm whose worst-case time and 
space are ������  and ���� , respectively. 
Moreover, they proved that their algorithm has an ���� average time complexity. Recently, Huang 
et al. [7] studied the above approximate string 
matching problem under non-overlapping 
reversals by further restricting the number of the 
used reversals not to exceed a given positive 
integer 	. They proposed a dynamic programming 
algorithm to solve this problem in ������ time 
and ����� space. 

In this work, we are interested in the 
computation of the mutation distance between two 
strings of the same length under non-overlapping 
inversions and transpositions (i.e., 
non-overlapping inversion and transposition 
distance), where the lengths of two adjacent and 
non-overlapping fragments exchanged by a 
transposition can be different. For this problem, 
we devise an algorithm whose time and space 
complexities are ����� and �����, respectively, 
where � is the length of two input strings. The 
rest of the paper is organized as follows. In 
Section 2, we provide some notations that are 
helpful when we present our algorithm later. Next, 
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we develop the main algorithm and also analyze 
its time and space complexities in Section 3. 
Finally, we have a brief conclusion in Section 4. 
 
 
2  Preliminaries 
 

Let 
  be a string of length � over a finite 
alphabet �. A character at position �  of x is 
represented with 
� , where 
 � � � � . A 
substring of 
 from position � to � is indicated 
as 
���, i.e., 
��� � 
�
��� �
�, for 
 � � � � � �. 
In biological sequences, � � ��� �� �� �� , in 
which � - �  and � - �  are considered as 
complementary base pairs. We use ��
�  to 
denote an inversion operation acting on a string 
, 
resulting in a reverse and complement of 
. For 
example, ���� � � , ���� � � , ���� � � , ���� � � and ������ � ���. In addition, we 
utilize ��� � �  �  to represent a transposition 
operation to exchange two non-empty strings � 
and  . Note that the lengths of �  and   are 
required to be identical in some previous works [3, 
5, 6], but they may be different in this study. For 
convenience, we call �  and �  as mutation 
operations. We also let �����
� � ��
���� for 
 �� � � � � and �����!�
� � 
!��
��!"�  for 
 � � #	 � � � �, where $�� �% is called a mutation range 
for ���� and �����! and 	 is called as a cut point 
in �����!. 

For an integer 
 � & � � , we say that a 
mutation operation ���� or �����! covers & if � �& � �. Given two mutation operations, they are 
non-overlapping if the intersection of their 
mutation ranges are empty. In this study, we are 
only interested in non-overlapping mutation 
operations. Consider a set � of non-overlapping 
mutation operations and a string 
, let ��
� be 
the resulting string after consecutively applying 
mutation operations in �  on 
 . For example, 
suppose that � � '������� �(�() and 
 � ����� . 
Then we have ��
� � �����. 
 
Definition 1. (Non-overlapping inversion and 
transposition distance) Given two strings 
 and *  of the same length, the non-overlapping 
inversion and transposition distance (simply called 
mutation distance) between 
 and *, denoted by �+�
� *�, is defined as the minimum number of 
non-overlapping inversion and transposition 
operations used to transform 
 into *. If there 
does not exist any set of non-overlapping 

mutations that converts 
 into *, then �+�
� *� 
is infinite. Formally, 

�+�
� *� �,
-./0�1�1 2 ��
� � *� /3,��,4567,8798,��
� � *
� :87;<=/4;  

For example, consider 
 � �����  and * ������ . Then there are only two sets of 
non-overlapping mutation operations �� �'����� ���(�>) and �� � '���(�>) such that ���
� �* and ���
� � *. Thus, �+�
� *� = 1��1 � 
. 
 
 
3  The algorithm 
 

Basically, a transposition (respectively, 
inversion) operation acting on a string 
 can be 
considered as a permutation of characters in 
 
(respectively, complement of 
). From this view 
point, a mutation operation actually comprises 
several sub-operations, called as mutation 
fragments, each of which is denoted either by a 
tuple ��� �� 
��  or ��� �� ��
��� . The mutation 
fragment ��� �� 
��  (respectively, ��� �� ��
��� ) 
means that 
� (respectively, complement of 
�) is 
moved into the position � in the resulting string 
obtained when applying the mutation operation on 
 . For convenience, we arrange all possible 
mutation fragments in a three-dimensional table ?@$A� �� �%, which is called mutation table of 
, 
as follows. 
� ?@$
� �� �% � ��� �� ��
���,for �� � � 
� A� � � �. 
� ?@$A� �� �% � ��� �� 
�� for �� � � 
� A� � � �. 
For example, let 
 � ����� . Then its 

mutation table is shown in Figure 1. 
When an inversion operation ���� applies on a 

string 
, we can decompose it into �� B � C 
� 
mutation fragments D������ 
� &�  for � � & � � , 
where D������ 
� &� � �&� � C � B &, ��
���"E�� . 
Similarly, a transposition operation �����! can be 
also decomposed into �� B � C 
�  mutation 
fragments D������!� 
� &�  for � � & � � , where if � � & � � C � B 	 , then D������!� 
� &� � �&� 	 C& B �� 
!�E"��; otherwise (i.e., if � C � B 	 # & �� ), then D������!� 
� &� � �&� & B � C 	 B
,,
E"��!"�� . For the sake of succinctness, let �����!�
� 
� � ��&� 	 C & B �� 
!�E"�� 2 � � & � � C� B 	�  and �����!�
� A� � '�&� & B � C 	 B
,,
E"��!"�� 2 � C � B 	 # & � �). 
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?@$
� �� �%� � �� 1� 2 3 4 5 

� �� 1� �
�
� �� �A�
� �� �F�
� �� �G�
� �� �H�
� ���
2 �
�A� �� �A�A� �� �F�A� �� �G�A� �� �H�A� ���
3 �
�F� �� �A�F� �� �F�F� �� �G�F� �� �H�F� ���
4 �
�G� �� �A�G� �� �F�G� �� �G�G� �� �H�G� ���
5 �
�H� �� �A�H� �� �F�H� �� �G�H� �� �H�H� ���

 ?@$A� �� �%� � �� 1� 2 3 4 5 

� �� 1� �
�
� �� �A�
� �� �F�
� �� �G�
� �� �H�
� ���
2 �
�A� �� �A�A� �� �F�A� �� �G�A� �� �H�A� ���
3 �
�F� �� �A�F� �� �F�F� �� �G�F� �� �H�F� ���
4 �
�G� �� �A�G� �� �F�G� �� �G�G� �� �H�G� ���
5 �
�H� �� �A�H� �� �F�H� �� �G�H� �� �H�H� ���

Figure 1. A mutation table ?@ for a given string 
 � �����, where the column is indexed by � and the row 
by �. Shaded cells respectively represent the inversion �����
� on ?@$
� �� �% and the transposition operation ���(�>�
� on ?@$A� �� �%I

The aforementioned decomposition can be 
extended to apply on a set � of non-overlapping 
mutation operations. That is, when � acts on a 
string 
, it can be decomposed into a sequence D��� 
� � , JK�� K�� � � KLM of mutation fragments 
by the following formula: For & � 
� A� � � �, 

KE � ND������ 
� &� /3,����� O �,8798,6:P;<4,&D������!� 
� &��&� &� 
E� /3,������! O �,8798,6:P;<4,&:87;<=/4;  

For instance, given � � '������� �>�() and 
 ������ , we have D��� 
� � Q�
�A� ��� �A�
� ����F�F� ��� �G�H� ��� �H�G� ��R  
 
Observation 1. Given a string x and its mutation 
table ?@, the result of an inversion �����
� can 
be obtained by concatenating �� B � C 
� 
mutation fragments starting at ?@$
� �� �%  and 
continuing to move in the anti-diagonal direction 
to ?@$
� �� �% . Moreover, the result of a 
transposition �����!�
�  is obtained by 
concatenating the mutation fragments on the 
following two paths, one starting at ?@$A� �� 	% 
and continuing to move in the diagonal direction 
to ?@$A� � C � B 	� �% and the other beginning at ?@$A� � C � B 	 C 
� �%  and also continuing to 
move in the diagonal direction to ?@$A� �� 	 B 
%. 

For a mutation fragment K � ��� �� S�, we say 
that K  yields the character S , denoted by 

T�K� � S . If a sequence U � , JK�� K�� � � KVM 
consists of �  mutation fragments (�  is also 
considered as the length of U) with T�K�� � S� 
for 
 � � � �, then we say that U yields a string S�S� �SV , which is further written as T�S� �S�S� �SV . A subsequence W containing first & 
elements of U, i.e., W � , JK�� K�� � � KEM, is called a 
prefix of U and denoted by W X U, where 
 �& � �. 
 

Definition 2. (Agreed sequence) A sequence U �,JK�� K�� � � KVM  of �  mutation fragments is an 
agreed sequence if there exists a set �  of 
non-overlapping mutation operations such that U X D��� 
�, where � � �. 

Given a mutation operation ����  or �����! , we 
call � and � as the left end point and right end 
point of the mutation operation, respectively. We 
also say that this mutation operation (i.e., ���� or �����! ) intersects with a range $Y� Z%  if the 
intersection of $�� �%  and $Y� Z%  is non-empty. 
The number of mutation operations in �  that 
intersects with the range $
��% where � � � is 
denoted as [��� �� . For example, if � �'����� �>�\�(� �]�^), then [��� G� � A. Suppose that 
a mutation fragment K � ��� �� S� is in D��� 
� 
for some set �  of non-overlapping mutation 
operations. Then K is said to be covered by a 
mutation operation �_�`  or �_�`�!  in �  if K �D��_�`� 
� ��  or K � D��_�`�!� 
� �� . If K  is not 
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covered by any mutation operation in �, that is K � ��� �� 
��, then we can consider that K is still 
covered by a virtual mutation operation. We use a��� 
� K� and b��� 
� K� to denote the left and 
right end points of a mutation operation in � 
respectively that covers K. Formally,  
� a��� 
� K� �
Nc /3,��_�`,:<,�_�`�! O �,4I 8I K � Dd�_�`� 
� �e:<,K � Dd�_�`�!� 
� �e� :87;<=/4;  

� b��� 
� K� �
Nf /3,��_�`,:<,�_�`�! O �,4I 8I,,K � Dd�_�`� 
� �e,:<,K � Dd�_�`�!� 
� �e� :87;<=/4;  

For example, suppose that � � '������� �>�() , 
 � �����  and D��� 
� � Q�
�A� ��� �A�F� ����F�
� ��� �G�H� ��� �H�G� ��RI For K � �A�F� ��, we 
have a��� 
� K� � 
 and b��� 
� K� � F. 

For an integer � , let �@� � 'd� C 
� &� ��
E�e 2� C 
 # & � �)  and g@� � ��� C 
� &� 
E� 2 � C 
 #& � �� , which are sets of mutation fragments 
covered by inversion and transposition operations 
respectively acting on 
 whose left end points are 
all � C 
, where h � � # �. 
 
Definition 3. Let U � , JK�� K�� � � KVM  be an 
agreed sequence of � mutation fragments of 
, 
where � � �, and � be a set of non-overlapping 
mutation operations such that U X D��� 
� . 
Sequence U  is called a complete sequence if b��� 
� KV� � �.

Observation 2. Suppose that U � , JK�� K�� � � KVM 
is a complete sequence, where � # �. Then Ui �JK�� K�� � � KV� KV��M  is an agreed sequence if KV�� O �@V,�  ?@$
�� C 
�� C 
%  � g@V  � ?@$A�� C 
�� C 
%.
Definition 4. (Legal sequence) An agreed 
sequence U � , JK�� K��� � KVM  of �  mutation 
fragments of 
  is legal if T�S� � *��V , where � � �. 

Observation 3. Assume that U � JK�� K��� � KVM 
is a legal sequence. Then Uj � JK�� K�� � � KV"�M 
is also a legal sequence and T�KV� � *V, where 
 # � � �. 

The main idea of our algorithm is as follows. 
First, the algorithm constructs all legal sequences 
of length 
 by examining all mutation fragments 
in �@k,� ?@$
�
�
% � g@k � ?@$A�
�
%. A legal 
sequence is then created if the mutation fragment 
yields *� . Next, for each 
 � � # � , the 
algorithm produces all possible legal sequences of 

length � C 
 , which can be obtained from all 
previously created legal sequences of length �. At 
the end, if there exists a legal sequence of length �, then the algorithm returns the minimum number 
of the used mutation operations among all legal 
sequences of length �. Otherwise, the algorithm 
returns infinity. 

To distinguish all the legal sequences of length � , we define three sets of extended mutation 
fragments l@� , m@� and �@� of x as follows: 
� l@� � -no� +� p�� �� �d
�eqrs for h � o � � B 
�,,h � + � � and � � 
� ,A� , � � �. 
� m@� � 'dh� +� ��� �� 
��e) for h � + � �. 
� �@� � 'dt� +�,1� ��� �� 
��e) � 'do� +� A� ��� �� 
��e) 

for 
 � t � � B 
, h � o � � B 
, h � + � � 
and � � 
� ,A� , � � �. 

Actually, each extended mutation fragment 
contains the last mutation fragment K of some 
agreed sequence U of length � with extra guiding 
information o� + and t. The value of o is the 
number of steps that are required to move towards 
the anti-diagonal or diagonal direction to complete 
a mutation operation and + indicates the number 
of the currently used mutation operations in U. If 
the last mutation fragment K  is covered by a 
transposition operation, say �@ , and K O�@�
� 
�, then t denotes the left end point of �@. 
An extended mutation fragment is further called 
an ending fragment (respectively, continuing 
fragment) if the value of its first component is 
zero (respectively, non-zero). 

Next, we represent each legal sequence by an 
extended fragment as follows. Given a legal 
sequence U � JK�� K�� � � K�M  that consists of � 
mutation fragments of 
 , let � be any set of 
non-overlapping mutation operations such that U X D��� 
�. We further let �@ be the mutation 
operation in � that covers K�. Note that �@ may 
be a virtual mutation operation. We create an 
extended fragment u by the following cases (each 
case is also called as a type of extended mutation 
fragment): 

Case 1 (type l): �@ is an inversion operation. 
Then u � �b��� 
� K�� B �� [��� ��� K��. 

Case 2 (type m ): �@  is a virtual mutation 
operation. Then u � �h� [��� ��� K��. 

Case 3 (type K�v �@ is a transposition operation 
and K� O �@�
� 
�I  Then u � �a��� 
� K��� [��� ��� 
� K��. 

Case 4 (type U�: �@ is a transposition operation 
and K� O �@�
� A�I  Then u � �b��� 
� K�� B�� [��� ��� A� K��. 

Now, we briefly describe how to produce all 
possible legal sequences of length � C 
 from all 
previously created legal sequences of length �. Let w� be the set of all extended mutation fragments at 
column �, i.e., each element in w� corresponds to 
some legal sequence of length �. Suppose that w� 
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is already known. Below, we construct w��� by 
examining all extended mutation fragments in w�. 
For each extended mutation fragment u O w�, we 
identify all candidate mutation fragments at 
column � C 
 of the mutation tables ?@  based 
on the guiding information contained in u. Let x@��u� be set of the candidate mutation fragments 
of 
 at column � C 
. Then we compute x@��u� 
as follows: 

Case 1: u is a continuing fragment. Let K� ���� �� S� be the mutation fragment contained in u. 
Then we consider three sub-cases to compute x@��u�: (1) Suppose that u  is of type l . Then x@��u� � '�� C 
� � B 
� ��
�"���)I  (2) Suppose 
that u is of type K, i.e., u � �t� +� 
� K��. If � #� , then x@��u� � '�� C 
� � C 
� 
����� �� C
� t� 
y�) ; otherwise (i.e., � � � ), x@��u� ���� C 
� t� 
y��. (3) Suppose that u is of type U, 
i.e., u � �o� +� A� K�� . Then x@��u� � '�� C 
� � C
� 
����). 

Case 2: u is an ending fragment. We set x@��u� � �@� ,�  ?@$
� � C 
� � C 
%  � g@�  � ?@$A� � C 
� � C 
%. 
For any K��� O x@��u� with T�K���� � *���, an 

extended mutation fragment uj  is created to 
contain K��� . As to the values of the guiding 
information in uj, they can easily be obtained 
from those in u based on Observations 1 and 2. 
Finally, we add uj into w���. 

Lemma 1. Let W�  and W�  be two complete 
sequences of length � of 
 with T�W�� � T�W��.
Moreover, let U�  be an agreed sequence of 

with W� X U� and U� be the resulting sequence 
obtained by replacing W� with W�  in U� . Then, U� is also an agreed sequence of 
 and T�U�� �T�U��. 
Proof. Since U� and W� are agreed sequences of 
, there exist sets of non-overlapping mutation 
operations �� and ��  such that U� X D���� 
� 
and W� X D���� 
� . Moreover, W� X D���� 
� 
since W� X U� . We construct a set ��  of 
non-overlapping mutation operations from �� as 
follows. First, let �� be the resulting set obtained 
by removing all mutation operations in �� that 
intersect with the range $
��% . Note that the 
ranges of these removed mutation operations are 
completely contained in the range $
��% because W� is a complete sequence of length �. Next, we 
insert those mutation operations in ��  whose 
ranges entirely lie in the range $
��% into ��. It 
can be verified that ��  is a set of 
non-overlapping mutation operations and as a 
result, U� X D���� 
� and T�U�� � T�U��. � 

Given an extended mutation fragment,u, we use +�u� to indicate the value of its second component 
(i.e., the number of the used mutation operations) 

for convenience. Based on Lemma 1, we have the 
following corollary.

Corollary 1. Let u�  and u�  be two ending 
fragments in w�. If +�u�� # +�u��, then we can 
safely discard u� from w�  when computing the 
mutation distance between 
 and *. 
 
Lemma 2. Let u�  and u�  be two continuing 
fragments u� and u� of the same type U in w�
with u� � do� +�� A� ��� �� 
��e and u� �do� +�� A� ��� �� 
��e. If +�u�� # +�u�� (i.e., +� #+� ), then we can safely remove u�  from w�
without affecting the computation of the mutation 
distance between 
 and *. 
Proof. Since two continuing fragments u� and u� 
of type U  contain the same mutation fragment 
and guiding information o, the right end point of 
the mutation operation covering ��� �� 
�� in u� is 
equal to that of the mutation operation covering ��� �� 
�� in u�. Denote by & the above right end 
point. Therefore, the candidate mutation fragments 
from column �  to column &  on the mutation 
table ?@  are exactly equivalent. Then we can 
safely discard u� from w� if +� # +� according 
to Corollary 1. � 

Based on Corollary 1, we can also verify that 
there does not exist two continuing fragments of 
same type l or K in w� such that the values of 
all their components, excluding the second 
components (i.e., the number of used mutation 
operations), are equal. Now, the details of our 
algorithm for computing non-overlapping 
inversion and transposition distance between two 
strings is described in Algorithm 1. 

Algorithm 1: Computing 
non-overlapping inversion and 
transposition distance between two 
strings 
Input: Two strings 
 and * of the 
same length �. 
Output: Mutation distance �+�
� *�. 
1) Let � � h, + � h and w� � �; 
2) Construct w� by calling 
EMF_Creation��� +�; 
3) if w� � � then return �; 
4) for � � 
 to � B 
 do 
5)    w��� � EMF_Extension�w��; 
6)    if w��� � � then return �; 
7) end for 
8) return ./0�+�u� 2 u O wL�; 
 
Procedure 1: EMF_Creation��� +� 
Input: Column � and current number 
of mutation operations +. 
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Output: Extended mutation fragments 
to be added to w��� when there is an 
ending fragment at column �. 
1)  for each d� C 
� &� ��
E�e O �@�  do 
2)     if ��
E� � *��� then 
3)        Add d& B � B 
� + C 
� �� C
� &� ��
E��e of type l to w���; 
4)     end if 
5)  end for 
6)  if ��
���� � *��� then 
7)     Add ending fragment dh� + C
� �� C 
� � C 
� ��
�����e of type l to w��� 
based on Corollary 1; 
8)  end if 
9)  for each �� C 
� &� 
E� O g@� do 
10)    if 
E � *��� then 
11)       Add d� C 
� + C 
�
� �� C 
� &� 
E�e 
of type K to w���; 
12)    end if 
13) end for 
14) if 
��� � *��� then 
15)    Add ending fragment dh� +� �� C
� � C 
� 
����e of type m to w��� based on 
Corollary 1; 
16) end if 
 
Procedure 2: EMF_Extension�w�� 
Input: w�. 
Output:,w���. 
1)  Let z� be a set of ending 
fragments at column �;  
2)  w��� 	 �; z� 	 �; 
3)  for each extended mutation 
fragment u in w� do 
4)     case 1: u is of type K, let u �dt� +� 
� ��� �� 
��e. 
5)        if � # � and 
��� � *��� then 
6)           Add dt� +� 
� �� C 
� � C 
� 
����e 
of type K to w���; 
7)        end if 
8)        if 
y � *��� then 
9)           Add d� B � B 
� +� A� �� C
� t� 
y�e of type U to w���, based on 
Lemma 2; 
10)       end if 
11)    case 2: u is of type U, let u �do� +� A� ��� �� 
��e. 
12)       if o { h then 
13)          if 
��� � *��� then 
14)            Add do B 
� +� A� �� C 
� � C
� 
����e of type U to w��� based on 
Lemma 2; 
15)          end if 
16)       else           // o � h 
17)          Add u to z� based on 
Corollary 1; 
18)       end if 

19)    case 3: u is of type l, let u � po� +� d�� �� ��
��eq. 
20)       if o { h then 
21)          if �d
�"�e � *��� then 
22)             Add po B 
� +� d� C 
� � B
� ��
�"��eq of type l to w���; 
23)          end if 
24)       else           //o � h 
25)          Add u to z� based on 
Corollary 1; 
26)       end if 
27)    case 4: u is of type m. 
28)       Add u to z� based on 
Corollary 1; 
29) end for 
30) if z� | � then 
31)    + � ./0�+�u� 2 u O z��; 
32)    EMF_Creation��� +�; 
33) end if 
34) return w���; 
Theorem 1. Algorithm 1 computes mutation 
distance of two input strings in O���� time and 
O���� space. 
Proof. The correctness of Algorithm 1 can be 
verified according to the discussion we mentioned 
before. Below, we analyze the complexities of 
Algorithm 1. For convenience, we use 1}1  to 
denote the number of extended mutation 
fragments of type } in w�. By Corollary 1 and 
Lemma 2, the numbers of extended mutation 
fragments of type l, K and U in w� are �����. 
Therefore, Procedure 2 can be done in ��1l1 C1U1 C 1K1� � ����� time. It is not hard to see that 
Procedure 1 costs ���� time in the worst case. 
Moreover, Procedure 2 is called at most ���� 
times in Algorithm 1. As a result, the total time 
complexity of Algorithm 1 is �����. In addition, 
the space complexity of Algorithm 1 is ��1l1 C1K1 C 1U1� � �����. � 
 
 
4  Conclusions 
 

In this work, we studied the computation of 
non-overlapping inversion and transposition 
distance between two strings, which can be useful 
applications especially in computational biology 
(e.g., evolutionary tree reconstruction of biological 
sequences). As a result, we presented an O���� 
time and O���� space algorithm to compute this 
mutation distance. Note that the mutation 
operations we considered allow both inversion and 
transposition and the lengths of two substrings 
exchanged by a transposition are not necessarily 
identical. It is worth mentioning that the algorithm 
we proposed in this study can be used to solve the 
approximate string matching problem under 
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non-overlapping inversion and/or transposition 
distance. 
 
 
References 
 
[1] A. Amir, T. Hartman, O. Kapah, A. Levy, E. 

Porat, On the cost of interchange rearrangement 
in strings, SIAM Journal On Computing 39 
(2009) 1444–1461 

[2] D. Cantone, S. Cristofaro, S. Faro, Efficient 
string-matching allowing for non-overlapping 
inversions, Theoretical Computer Science 483 
(2013) 85–95  

[3] D. Cantone, S. Faro, E. Giaquinta, 
Approximate string matching allowing for 
inversions and translocations, Proceedings of 
the Prague Stringology Conference 2010, pp. 
37–51 

[4] D.-J. Cho, Y.-S. Han, H. Kim, Alignment with 
non-overlapping inversions on two strings, in: 
S.P. Pal, K. Sadakane (eds.) WALCOM 2014, 
LNCS , vol. 8344, Springer, Heidelberg, 2014, 
pp. 261–272. 

[5] D.-J. Cho, Y.-S. Han, H. Kim, Alignment with 
non-overlapping inversions and translocations 
on two strings, Theoretical Computer Science, 
in press (2014)  

[6] S. Grabowski, S. Faro, E. Giaquinta, String 
matching with inversions and translocations in 
linear average time (most of the time), 
Information Processing Letters 111 (2011) 
516–520 

[7] S.-Y. Huang, C.-H. Yang, T.T. Ta, C.L. Lu, 
Approximate string matching problem under 
non-overlapping inversion distance, in: 
Workshop on Algorithms and Computation 
Theory in conjunction with 2014 International 
Computer Symposium, 2014, pp. 38–46 

[8] Y.-L. Huang, C.L. Lu, Sorting by reversals, 
generalized transpositions, and translocations 
using permutation groups. Journal of 
Computational Biology 17 (2010) 685–705  

[9] O. Kapah, G.M. Landau, A. Levy, N. Oz: 
Interchange rearrangement: the element-cost 
model, Theoretical Computer Science, 410 
(2009) 4315–4326 

[10] F.T. Zohora, M.S. Rahman, Application of 
consensus string matching in the diagnosis of 
allelic heterogeneity, in: Basu, M., Pan, Y., 
Wang, J. (eds.) ISBRA 2014. LNBI 8492, vol. 
8344, Springer, Switzerland, 2014, pp. 163–175 

61

The 32nd Workshop on Combinatorial Mathematics and Computation Theory


