
An Efficient Algorithm for Computing Non-overlapping Inversion
and Transposition Distance

Toan Thang Ta, Cheng-Yao Lin and Chin Lung Lu

Department of Computer Science
National Tsing Hua University, Hsinchu 30013, Taiwan

{toanthanghy, begoingto0830}@gmail.com, cllu@cs.nthu.edu.tw

Abstract

Given two strings of the same length �, the

non-overlapping inversion and transposition
distance (also called mutation distance) between
them is defined as the minimum number of
non-overlapping inversion and transposition
operations used to transform one string into the
other. In this study, we present an ����� time and ����� space algorithm to compute the mutation
distance of two input strings.

1 Introduction

The dissimilarity of two strings is usually
measured by the so-called edit distance, which is
defined as the minimum number of edit operations
necessary to convert one string into the other. The
commonly used edit operations are character
insertions, deletions and substitutions. In
biological application, the aforementioned edit
operations correspond to point mutations of DNA
sequences (i.e., mutations at the level of individual
nucleotides). From evolutionary point of view,
however, DNA sequences may evolve by
large-scale mutations (also called rearrangements,
i.e., mutations at the level of sequence fragments)
[8], such as inversions (replacing a fragment of
DNA sequence by its reverse complement) and
transpositions (i.e., moving a fragment of DNA
sequence from one location to another or,
equivalently, exchanging two adjacent and
non-overlapping fragments on DNA sequence).
Note that a large-scale mutation that replaces a
fragment of DNA sequence only by its reverse
(without complement) is called a reversal. Based
on large-scale mutation operations, the
dissimilarity (or mutation distance) between two
strings can be defined to be the minimum number
of large-scale mutation operations used to
transform one string to the other. Cantone et al. [2]
introduced an ����� time and ����� space
algorithm to solve an approximate string matching
problem with non-overlapping reversals, which is
to find all locations of a given text that match a

given pattern with non-overlapping reversals,
where n is the length of the text and m is the
length of the pattern. In this problem, two
equal-length strings are said to have a match with
non-overlapping reversals if one string can be
transformed into the other using any finite
sequence of non-overlapping reversals. It should
be noted that the number of the used
non-overlapping reversals in the algorithm
proposed by Cantone et al. [2] is not required to be
less than or equal to a fixed non-negative integer.
In [2], Cantone et al. also presented another
algorithm whose average-case time complexity is ����. Cantone et al. [3] studied the same problem
by considering both non-overlapping reversals and
transpositions, where they called transpositions as
translocations and the lengths of two exchanged
adjacent fragments are constrained to be
equivalent. They finally designed an algorithm to
solve this problem in ������ time and �����
space. For the above problem, Grabowski et at. [6]
gave another algorithm whose worst-case time and
space are ������ and ���� , respectively.
Moreover, they proved that their algorithm has an ���� average time complexity. Recently, Huang
et al. [7] studied the above approximate string
matching problem under non-overlapping
reversals by further restricting the number of the
used reversals not to exceed a given positive
integer 	. They proposed a dynamic programming
algorithm to solve this problem in ������ time
and ����� space.

In this work, we are interested in the
computation of the mutation distance between two
strings of the same length under non-overlapping
inversions and transpositions (i.e.,
non-overlapping inversion and transposition
distance), where the lengths of two adjacent and
non-overlapping fragments exchanged by a
transposition can be different. For this problem,
we devise an algorithm whose time and space
complexities are ����� and �����, respectively,
where � is the length of two input strings. The
rest of the paper is organized as follows. In
Section 2, we provide some notations that are
helpful when we present our algorithm later. Next,

55

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

we develop the main algorithm and also analyze
its time and space complexities in Section 3.
Finally, we have a brief conclusion in Section 4.

2 Preliminaries

Let
 be a string of length � over a finite
alphabet �. A character at position � of x is
represented with
� , where
 � � � � . A
substring of
 from position � to � is indicated
as
���, i.e.,
��� �
�
��� �
�, for
 � � � � � �.
In biological sequences, � � ��� �� �� �� , in
which � - � and � - � are considered as
complementary base pairs. We use ��
� to
denote an inversion operation acting on a string
,
resulting in a reverse and complement of
. For
example, ���� � � , ���� � � , ���� � � , ���� � � and ������ � ���. In addition, we
utilize ��� � � � to represent a transposition
operation to exchange two non-empty strings �
and . Note that the lengths of � and are
required to be identical in some previous works [3,
5, 6], but they may be different in this study. For
convenience, we call � and � as mutation
operations. We also let �����
� � ��
���� for
 �� � � � � and �����!�
� �
!��
��!"� for
 � � #	 � � � �, where $�� �% is called a mutation range
for ���� and �����! and 	 is called as a cut point
in �����!.

For an integer
 � & � � , we say that a
mutation operation ���� or �����! covers & if � �& � �. Given two mutation operations, they are
non-overlapping if the intersection of their
mutation ranges are empty. In this study, we are
only interested in non-overlapping mutation
operations. Consider a set � of non-overlapping
mutation operations and a string
, let ��
� be
the resulting string after consecutively applying
mutation operations in � on
 . For example,
suppose that � � '������� �(�() and
 � ����� .
Then we have ��
� � �����.

Definition 1. (Non-overlapping inversion and
transposition distance) Given two strings
 and * of the same length, the non-overlapping
inversion and transposition distance (simply called
mutation distance) between
 and *, denoted by �+�
� *�, is defined as the minimum number of
non-overlapping inversion and transposition
operations used to transform
 into *. If there
does not exist any set of non-overlapping

mutations that converts
 into *, then �+�
� *�
is infinite. Formally,

�+�
� *� �,
-./0�1�1 2 ��
� � *� /3,��,4567,8798,��
� � *
� :87;<=/4;

For example, consider
 � ����� and * ������ . Then there are only two sets of
non-overlapping mutation operations �� �'����� ���(�>) and �� � '���(�>) such that ���
� �* and ���
� � *. Thus, �+�
� *� = 1��1 �
.

3 The algorithm

Basically, a transposition (respectively,
inversion) operation acting on a string
 can be
considered as a permutation of characters in

(respectively, complement of
). From this view
point, a mutation operation actually comprises
several sub-operations, called as mutation
fragments, each of which is denoted either by a
tuple ��� ��
�� or ��� �� ��
��� . The mutation
fragment ��� ��
�� (respectively, ��� �� ��
���)
means that
� (respectively, complement of
�) is
moved into the position � in the resulting string
obtained when applying the mutation operation on
 . For convenience, we arrange all possible
mutation fragments in a three-dimensional table ?@$A� �� �%, which is called mutation table of
,
as follows.
� ?@$
� �� �% � ��� �� ��
���,for �� � �
� A� � � �.
� ?@$A� �� �% � ��� ��
�� for �� � �
� A� � � �.
For example, let
 � ����� . Then its

mutation table is shown in Figure 1.
When an inversion operation ���� applies on a

string
, we can decompose it into �� B � C
�
mutation fragments D������
� &� for � � & � � ,
where D������
� &� � �&� � C � B &, ��
���"E�� .
Similarly, a transposition operation �����! can be
also decomposed into �� B � C
� mutation
fragments D������!�
� &� for � � & � � , where if � � & � � C � B 	 , then D������!�
� &� � �&� 	 C& B ��
!�E"��; otherwise (i.e., if � C � B 	 # & ��), then D������!�
� &� � �&� & B � C 	 B
,,
E"��!"�� . For the sake of succinctness, let �����!�
�
� � ��&� 	 C & B ��
!�E"�� 2 � � & � � C� B 	� and �����!�
� A� � '�&� & B � C 	 B
,,
E"��!"�� 2 � C � B 	 # & � �).

56

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

?@$
� �� �%� � �� 1� 2 3 4 5

� �� 1� �
�
� �� �A�
� �� �F�
� �� �G�
� �� �H�
� ���
2 �
�A� �� �A�A� �� �F�A� �� �G�A� �� �H�A� ���
3 �
�F� �� �A�F� �� �F�F� �� �G�F� �� �H�F� ���
4 �
�G� �� �A�G� �� �F�G� �� �G�G� �� �H�G� ���
5 �
�H� �� �A�H� �� �F�H� �� �G�H� �� �H�H� ���

 ?@$A� �� �%� � �� 1� 2 3 4 5

� �� 1� �
�
� �� �A�
� �� �F�
� �� �G�
� �� �H�
� ���
2 �
�A� �� �A�A� �� �F�A� �� �G�A� �� �H�A� ���
3 �
�F� �� �A�F� �� �F�F� �� �G�F� �� �H�F� ���
4 �
�G� �� �A�G� �� �F�G� �� �G�G� �� �H�G� ���
5 �
�H� �� �A�H� �� �F�H� �� �G�H� �� �H�H� ���

Figure 1. A mutation table ?@ for a given string
 � �����, where the column is indexed by � and the row
by �. Shaded cells respectively represent the inversion �����
� on ?@$
� �� �% and the transposition operation ���(�>�
� on ?@$A� �� �%I

The aforementioned decomposition can be
extended to apply on a set � of non-overlapping
mutation operations. That is, when � acts on a
string
, it can be decomposed into a sequence D���
� � , JK�� K�� � � KLM of mutation fragments
by the following formula: For & �
� A� � � �,

KE � ND������
� &� /3,����� O �,8798,6:P;<4,&D������!�
� &��&� &�
E� /3,������! O �,8798,6:P;<4,&:87;<=/4;

For instance, given � � '������� �>�() and
 ������ , we have D���
� � Q�
�A� ��� �A�
� ����F�F� ��� �G�H� ��� �H�G� ��R

Observation 1. Given a string x and its mutation
table ?@, the result of an inversion �����
� can
be obtained by concatenating �� B � C
�
mutation fragments starting at ?@$
� �� �% and
continuing to move in the anti-diagonal direction
to ?@$
� �� �% . Moreover, the result of a
transposition �����!�
� is obtained by
concatenating the mutation fragments on the
following two paths, one starting at ?@$A� �� 	%
and continuing to move in the diagonal direction
to ?@$A� � C � B 	� �% and the other beginning at ?@$A� � C � B 	 C
� �% and also continuing to
move in the diagonal direction to ?@$A� �� 	 B
%.

For a mutation fragment K � ��� �� S�, we say
that K yields the character S , denoted by

T�K� � S . If a sequence U � , JK�� K�� � � KVM
consists of � mutation fragments (� is also
considered as the length of U) with T�K�� � S�
for
 � � � �, then we say that U yields a string S�S� �SV , which is further written as T�S� �S�S� �SV . A subsequence W containing first &
elements of U, i.e., W � , JK�� K�� � � KEM, is called a
prefix of U and denoted by W X U, where
 �& � �.

Definition 2. (Agreed sequence) A sequence U �,JK�� K�� � � KVM of � mutation fragments is an
agreed sequence if there exists a set � of
non-overlapping mutation operations such that U X D���
�, where � � �.

Given a mutation operation ���� or �����! , we
call � and � as the left end point and right end
point of the mutation operation, respectively. We
also say that this mutation operation (i.e., ���� or �����!) intersects with a range $Y� Z% if the
intersection of $�� �% and $Y� Z% is non-empty.
The number of mutation operations in � that
intersects with the range $
��% where � � � is
denoted as [��� �� . For example, if � �'����� �>�\�(� �]�^), then [��� G� � A. Suppose that
a mutation fragment K � ��� �� S� is in D���
�
for some set � of non-overlapping mutation
operations. Then K is said to be covered by a
mutation operation �_�` or �_�`�! in � if K �D��_�`�
� �� or K � D��_�`�!�
� �� . If K is not

57

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

covered by any mutation operation in �, that is K � ��� ��
��, then we can consider that K is still
covered by a virtual mutation operation. We use a���
� K� and b���
� K� to denote the left and
right end points of a mutation operation in �
respectively that covers K. Formally,
� a���
� K� �
Nc /3,��_�`,:<,�_�`�! O �,4I 8I K � Dd�_�`�
� �e:<,K � Dd�_�`�!�
� �e� :87;<=/4;

� b���
� K� �
Nf /3,��_�`,:<,�_�`�! O �,4I 8I,,K � Dd�_�`�
� �e,:<,K � Dd�_�`�!�
� �e� :87;<=/4;

For example, suppose that � � '������� �>�() ,
 � ����� and D���
� � Q�
�A� ��� �A�F� ����F�
� ��� �G�H� ��� �H�G� ��RI For K � �A�F� ��, we
have a���
� K� �
 and b���
� K� � F.

For an integer � , let �@� � 'd� C
� &� ��
E�e 2� C
 # & � �) and g@� � ��� C
� &�
E� 2 � C
 #& � �� , which are sets of mutation fragments
covered by inversion and transposition operations
respectively acting on
 whose left end points are
all � C
, where h � � # �.

Definition 3. Let U � , JK�� K�� � � KVM be an
agreed sequence of � mutation fragments of
,
where � � �, and � be a set of non-overlapping
mutation operations such that U X D���
� .
Sequence U is called a complete sequence if b���
� KV� � �.

Observation 2. Suppose that U � , JK�� K�� � � KVM
is a complete sequence, where � # �. Then Ui �JK�� K�� � � KV� KV��M is an agreed sequence if KV�� O �@V,� ?@$
�� C
�� C
% � g@V � ?@$A�� C
�� C
%.
Definition 4. (Legal sequence) An agreed
sequence U � , JK�� K��� � KVM of � mutation
fragments of
 is legal if T�S� � *��V , where � � �.

Observation 3. Assume that U � JK�� K��� � KVM
is a legal sequence. Then Uj � JK�� K�� � � KV"�M
is also a legal sequence and T�KV� � *V, where
 # � � �.

The main idea of our algorithm is as follows.
First, the algorithm constructs all legal sequences
of length
 by examining all mutation fragments
in �@k,� ?@$
�
�
% � g@k � ?@$A�
�
%. A legal
sequence is then created if the mutation fragment
yields *� . Next, for each
 � � # � , the
algorithm produces all possible legal sequences of

length � C
 , which can be obtained from all
previously created legal sequences of length �. At
the end, if there exists a legal sequence of length �, then the algorithm returns the minimum number
of the used mutation operations among all legal
sequences of length �. Otherwise, the algorithm
returns infinity.

To distinguish all the legal sequences of length � , we define three sets of extended mutation
fragments l@� , m@� and �@� of x as follows:
� l@� � -no� +� p�� �� �d
�eqrs for h � o � � B
�,,h � + � � and � �
� ,A� , � � �.
� m@� � 'dh� +� ��� ��
��e) for h � + � �.
� �@� � 'dt� +�,1� ��� ��
��e) � 'do� +� A� ��� ��
��e)

for
 � t � � B
, h � o � � B
, h � + � �
and � �
� ,A� , � � �.

Actually, each extended mutation fragment
contains the last mutation fragment K of some
agreed sequence U of length � with extra guiding
information o� + and t. The value of o is the
number of steps that are required to move towards
the anti-diagonal or diagonal direction to complete
a mutation operation and + indicates the number
of the currently used mutation operations in U. If
the last mutation fragment K is covered by a
transposition operation, say �@ , and K O�@�
�
�, then t denotes the left end point of �@.
An extended mutation fragment is further called
an ending fragment (respectively, continuing
fragment) if the value of its first component is
zero (respectively, non-zero).

Next, we represent each legal sequence by an
extended fragment as follows. Given a legal
sequence U � JK�� K�� � � K�M that consists of �
mutation fragments of
 , let � be any set of
non-overlapping mutation operations such that U X D���
�. We further let �@ be the mutation
operation in � that covers K�. Note that �@ may
be a virtual mutation operation. We create an
extended fragment u by the following cases (each
case is also called as a type of extended mutation
fragment):

Case 1 (type l): �@ is an inversion operation.
Then u � �b���
� K�� B �� [��� ��� K��.

Case 2 (type m): �@ is a virtual mutation
operation. Then u � �h� [��� ��� K��.

Case 3 (type K�v �@ is a transposition operation
and K� O �@�
�
�I Then u � �a���
� K��� [��� ���
� K��.

Case 4 (type U�: �@ is a transposition operation
and K� O �@�
� A�I Then u � �b���
� K�� B�� [��� ��� A� K��.

Now, we briefly describe how to produce all
possible legal sequences of length � C
 from all
previously created legal sequences of length �. Let w� be the set of all extended mutation fragments at
column �, i.e., each element in w� corresponds to
some legal sequence of length �. Suppose that w�

58

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

is already known. Below, we construct w��� by
examining all extended mutation fragments in w�.
For each extended mutation fragment u O w�, we
identify all candidate mutation fragments at
column � C
 of the mutation tables ?@ based
on the guiding information contained in u. Let x@��u� be set of the candidate mutation fragments
of
 at column � C
. Then we compute x@��u�
as follows:

Case 1: u is a continuing fragment. Let K� ���� �� S� be the mutation fragment contained in u.
Then we consider three sub-cases to compute x@��u�: (1) Suppose that u is of type l . Then x@��u� � '�� C
� � B
� ��
�"���)I (2) Suppose
that u is of type K, i.e., u � �t� +�
� K��. If � #� , then x@��u� � '�� C
� � C
�
����� �� C
� t�
y�) ; otherwise (i.e., � � �), x@��u� ���� C
� t�
y��. (3) Suppose that u is of type U,
i.e., u � �o� +� A� K�� . Then x@��u� � '�� C
� � C
�
����).

Case 2: u is an ending fragment. We set x@��u� � �@� ,� ?@$
� � C
� � C
% � g@� � ?@$A� � C
� � C
%.
For any K��� O x@��u� with T�K���� � *���, an

extended mutation fragment uj is created to
contain K��� . As to the values of the guiding
information in uj, they can easily be obtained
from those in u based on Observations 1 and 2.
Finally, we add uj into w���.

Lemma 1. Let W� and W� be two complete
sequences of length � of
 with T�W�� � T�W��.
Moreover, let U� be an agreed sequence of

with W� X U� and U� be the resulting sequence
obtained by replacing W� with W� in U� . Then, U� is also an agreed sequence of
 and T�U�� �T�U��.
Proof. Since U� and W� are agreed sequences of
, there exist sets of non-overlapping mutation
operations �� and �� such that U� X D����
�
and W� X D����
� . Moreover, W� X D����
�
since W� X U� . We construct a set �� of
non-overlapping mutation operations from �� as
follows. First, let �� be the resulting set obtained
by removing all mutation operations in �� that
intersect with the range $
��% . Note that the
ranges of these removed mutation operations are
completely contained in the range $
��% because W� is a complete sequence of length �. Next, we
insert those mutation operations in �� whose
ranges entirely lie in the range $
��% into ��. It
can be verified that �� is a set of
non-overlapping mutation operations and as a
result, U� X D����
� and T�U�� � T�U��. �

Given an extended mutation fragment,u, we use +�u� to indicate the value of its second component
(i.e., the number of the used mutation operations)

for convenience. Based on Lemma 1, we have the
following corollary.

Corollary 1. Let u� and u� be two ending
fragments in w�. If +�u�� # +�u��, then we can
safely discard u� from w� when computing the
mutation distance between
 and *.

Lemma 2. Let u� and u� be two continuing
fragments u� and u� of the same type U in w�
with u� � do� +�� A� ��� ��
��e and u� �do� +�� A� ��� ��
��e. If +�u�� # +�u�� (i.e., +� #+�), then we can safely remove u� from w�
without affecting the computation of the mutation
distance between
 and *.
Proof. Since two continuing fragments u� and u�
of type U contain the same mutation fragment
and guiding information o, the right end point of
the mutation operation covering ��� ��
�� in u� is
equal to that of the mutation operation covering ��� ��
�� in u�. Denote by & the above right end
point. Therefore, the candidate mutation fragments
from column � to column & on the mutation
table ?@ are exactly equivalent. Then we can
safely discard u� from w� if +� # +� according
to Corollary 1. �

Based on Corollary 1, we can also verify that
there does not exist two continuing fragments of
same type l or K in w� such that the values of
all their components, excluding the second
components (i.e., the number of used mutation
operations), are equal. Now, the details of our
algorithm for computing non-overlapping
inversion and transposition distance between two
strings is described in Algorithm 1.

Algorithm 1: Computing
non-overlapping inversion and
transposition distance between two
strings
Input: Two strings
 and * of the
same length �.
Output: Mutation distance �+�
� *�.
1) Let � � h, + � h and w� � �;
2) Construct w� by calling
EMF_Creation��� +�;
3) if w� � � then return �;
4) for � �
 to � B
 do
5) w��� � EMF_Extension�w��;
6) if w��� � � then return �;
7) end for
8) return ./0�+�u� 2 u O wL�;

Procedure 1: EMF_Creation��� +�
Input: Column � and current number
of mutation operations +.

59

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Output: Extended mutation fragments
to be added to w��� when there is an
ending fragment at column �.
1) for each d� C
� &� ��
E�e O �@� do
2) if ��
E� � *��� then
3) Add d& B � B
� + C
� �� C
� &� ��
E��e of type l to w���;
4) end if
5) end for
6) if ��
���� � *��� then
7) Add ending fragment dh� + C
� �� C
� � C
� ��
�����e of type l to w���
based on Corollary 1;
8) end if
9) for each �� C
� &�
E� O g@� do
10) if
E � *��� then
11) Add d� C
� + C
�
� �� C
� &�
E�e
of type K to w���;
12) end if
13) end for
14) if
��� � *��� then
15) Add ending fragment dh� +� �� C
� � C
�
����e of type m to w��� based on
Corollary 1;
16) end if

Procedure 2: EMF_Extension�w��
Input: w�.
Output:,w���.
1) Let z� be a set of ending
fragments at column �;
2) w��� 	 �; z� 	 �;
3) for each extended mutation
fragment u in w� do
4) case 1: u is of type K, let u �dt� +�
� ��� ��
��e.
5) if � # � and
��� � *��� then
6) Add dt� +�
� �� C
� � C
�
����e
of type K to w���;
7) end if
8) if
y � *��� then
9) Add d� B � B
� +� A� �� C
� t�
y�e of type U to w���, based on
Lemma 2;
10) end if
11) case 2: u is of type U, let u �do� +� A� ��� ��
��e.
12) if o { h then
13) if
��� � *��� then
14) Add do B
� +� A� �� C
� � C
�
����e of type U to w��� based on
Lemma 2;
15) end if
16) else // o � h
17) Add u to z� based on
Corollary 1;
18) end if

19) case 3: u is of type l, let u � po� +� d�� �� ��
��eq.
20) if o { h then
21) if �d
�"�e � *��� then
22) Add po B
� +� d� C
� � B
� ��
�"��eq of type l to w���;
23) end if
24) else //o � h
25) Add u to z� based on
Corollary 1;
26) end if
27) case 4: u is of type m.
28) Add u to z� based on
Corollary 1;
29) end for
30) if z� | � then
31) + � ./0�+�u� 2 u O z��;
32) EMF_Creation��� +�;
33) end if
34) return w���;
Theorem 1. Algorithm 1 computes mutation
distance of two input strings in O���� time and
O���� space.
Proof. The correctness of Algorithm 1 can be
verified according to the discussion we mentioned
before. Below, we analyze the complexities of
Algorithm 1. For convenience, we use 1}1 to
denote the number of extended mutation
fragments of type } in w�. By Corollary 1 and
Lemma 2, the numbers of extended mutation
fragments of type l, K and U in w� are �����.
Therefore, Procedure 2 can be done in ��1l1 C1U1 C 1K1� � ����� time. It is not hard to see that
Procedure 1 costs ���� time in the worst case.
Moreover, Procedure 2 is called at most ����
times in Algorithm 1. As a result, the total time
complexity of Algorithm 1 is �����. In addition,
the space complexity of Algorithm 1 is ��1l1 C1K1 C 1U1� � �����. �

4 Conclusions

In this work, we studied the computation of
non-overlapping inversion and transposition
distance between two strings, which can be useful
applications especially in computational biology
(e.g., evolutionary tree reconstruction of biological
sequences). As a result, we presented an O����
time and O���� space algorithm to compute this
mutation distance. Note that the mutation
operations we considered allow both inversion and
transposition and the lengths of two substrings
exchanged by a transposition are not necessarily
identical. It is worth mentioning that the algorithm
we proposed in this study can be used to solve the
approximate string matching problem under

60

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

non-overlapping inversion and/or transposition
distance.

References

[1] A. Amir, T. Hartman, O. Kapah, A. Levy, E.

Porat, On the cost of interchange rearrangement
in strings, SIAM Journal On Computing 39
(2009) 1444–1461

[2] D. Cantone, S. Cristofaro, S. Faro, Efficient
string-matching allowing for non-overlapping
inversions, Theoretical Computer Science 483
(2013) 85–95

[3] D. Cantone, S. Faro, E. Giaquinta,
Approximate string matching allowing for
inversions and translocations, Proceedings of
the Prague Stringology Conference 2010, pp.
37–51

[4] D.-J. Cho, Y.-S. Han, H. Kim, Alignment with
non-overlapping inversions on two strings, in:
S.P. Pal, K. Sadakane (eds.) WALCOM 2014,
LNCS , vol. 8344, Springer, Heidelberg, 2014,
pp. 261–272.

[5] D.-J. Cho, Y.-S. Han, H. Kim, Alignment with
non-overlapping inversions and translocations
on two strings, Theoretical Computer Science,
in press (2014)

[6] S. Grabowski, S. Faro, E. Giaquinta, String
matching with inversions and translocations in
linear average time (most of the time),
Information Processing Letters 111 (2011)
516–520

[7] S.-Y. Huang, C.-H. Yang, T.T. Ta, C.L. Lu,
Approximate string matching problem under
non-overlapping inversion distance, in:
Workshop on Algorithms and Computation
Theory in conjunction with 2014 International
Computer Symposium, 2014, pp. 38–46

[8] Y.-L. Huang, C.L. Lu, Sorting by reversals,
generalized transpositions, and translocations
using permutation groups. Journal of
Computational Biology 17 (2010) 685–705

[9] O. Kapah, G.M. Landau, A. Levy, N. Oz:
Interchange rearrangement: the element-cost
model, Theoretical Computer Science, 410
(2009) 4315–4326

[10] F.T. Zohora, M.S. Rahman, Application of
consensus string matching in the diagnosis of
allelic heterogeneity, in: Basu, M., Pan, Y.,
Wang, J. (eds.) ISBRA 2014. LNBI 8492, vol.
8344, Springer, Switzerland, 2014, pp. 163–175

61

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

