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Abstract

Given a graph G = (V,E), the domination
problem is to find a minimum size vertex sub-
set S ⊆ V (G) such that every vertex not in
S is adjacent to a vertex in S. A dominat-
ing set S of G is called a paired-dominating
set if the induced subgraph G[S] contains a per-
fect matching. The paired-domination problem
involves finding a paired-dominating set S of
G such that the cardinality of S is minimized.
Suppose that, for each v ∈ V (G), we have a
weight w(v) specifying the cost for adding v to
S. The weighted paired-domination problem is
to find a paired-dominating set S whose weight
w(S) =

∑
{w(v) : v ∈ S} is minimized. In this

paper, we propose an O(n + m)-time algorithm
for the weighted paired-domination problem on
block graphs using dynamic-programming method.
Moreover, the algorithm can be completed in O(n)
time if the block-cut-vertex structure of G is
given.

1 Introduction

The domination problem has been extensively
studied in the area of algorithmic graph theory
for serval decades; see [2, 8, 10–14] for books and
survey papers. Given a graph G = (V,E), the
domination problem is to find a minimum size ver-
tex subset S ⊆ V (G) such that every vertex not
in S is adjacent to a vertex in S. The problem
has many applications in the real world such as
location problems, communication networks, and
kernels of games [11]. Depending on the require-
ments of different types of applications, there are

several variants of the domination problem, such
as the independent domination, connected domi-
nation, total domination, and perfect domination
problems [2, 8, 14, 20]. These problems have been
proved to be NP-complete and have polynomial-
time algorithms on some special classes of graphs.
In particular, Haynes and Slater [9] introduced
the concept of paired-domination motivated by
security concerns. In a museum protection pro-
gram, beside the requirement that each region has
a guard in it or is in the protection range of some
guard, the guards must be able back each other
up.

In [9], Haynes and Slater showed that the
paired-domination problem is NP-complete on
general graphs and gave a lower bound of n/Δ(G)
for the cardinality of a paired-dominating set
of G. Recently, many studies have been made
for this problem in proving NP-completeness,
providing approximation algorithms, and find-
ing polynomial-time algorithms on some special
classes of graphs. Here, we only mention some
related results. For more detailed information re-
garding this problem, please refer to [15]. Chen et
al. [5] demonstrated that the paired-domination
problem is also NP-complete on bipartite graphs,
chordal graphs, and split graphs. In [3], Chen et
al. proposed an approximation algorithm with ra-
tio ln(2Δ(G)) + 1 for general graphs and showed
that the problem is APX-complete, i.e., has no
PTAS. Panda and Pradhan [18] strengthened the
results in [5] by showing that the problem is
also NP-complete for perfect elimination bipartite
graphs.

Meanwhile, polynomial-time algorithms have
been studied intensively on some special classes
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Figure 1: (a) A block graph G. (b) The corresponding block-cut-vertex graph B for the block graph G
in (a).

of graphs such as tree graphs [19], weighted tree
graphs [3], inflated tree graphs [16], permutation
graphs [6, 17], strongly chordal graphs [4], inter-
val graphs [5, 7] and circular-arc graphs [7]. Es-
pecially, Chen et al. [5] introduced an O(m + n)-
time algorithm for block graphs, a proper super-
family of tree graphs. In this paper, we pro-
pose an O(n+m)-time algorithm for the weighted
paired-domination problem on block graphs using
dynamic-programming method, where n = |V (G)|
and m = |E(G)|. This strengthens the results
in [3, 5]. Moreover, the algorithm can be com-
pleted in O(n) time if the block-cut-vertex struc-
ture ofG is given. Notice that the block-cut-vertex
structure of a block graph G can be constructed
in O(n + m) time by the depth first search algo-
rithm [1].

The remainder of this paper is organized as fol-
lows. Section 2 gives the block-cut-vertex struc-
ture of a block graph G, we employ the dynamic-
programming method to present an O(n)-time
algorithm for finding a minimum-weight paired-
dominating set of G. Section 3, gives an efficient
implementation of the algorithm proposed in Sec-
tion 2. Section 4 contains some concluding re-
marks and future work.

2 The Proposed Algorithm for

Block Graphs

In a graph G = (V,E), a vertex subset S ⊆
V (G) is said to be a dominating set of G if ev-
ery vertex not in S is adjacent to a vertex in
S. Let G[S] denote the subgraph of G induced

by a subset S of V (G). A dominating set S
of G is called a paired-dominating set if the in-
duced subgraph G[S] contains a perfect match-
ing. The paired-domination problem involves find-
ing a paired-dominating set S of G such that the
cardinality of S is minimized. Suppose that, for
each v ∈ V (G), we have a weight w(v) specifying
the cost for adding v to S. The weighted paired-
domination problem is to find a paired-dominating
set S whose weight w(S) =

∑
{w(v) : v ∈ S} is

minimized. Given the block-cut-vertex structure
of a block graphG, we designed anO(n)-time algo-
rithm that determines a minimum-weight paired-
dominating set of G using dynamic-programming
method. Below, we introduce some preliminaries
for block graphs.

For any connected graph G, a vertex x ∈ V (G)
is called a cut-vertex of G, if G− x contains more
than one connected component. A block is a max-
imal connected subgraph without a cut-vertex. A
graph G is called a block graph, if every block in G
is a complete graph. Notice that block graphs are
a proper superfamily of tree graphs and a proper
subfamily of chordal graphs. SupposeG has blocks
B1, B2, . . . , Bx and cut vertices c1, c2, . . . , cy. We
define the block-cut-vertex graph G∗ = (V,E) of
G, where

V (G∗) = {B1, B2, . . . , Bx, c1, c2, . . . , cy}; and

E(G∗) = {(Bi, cj) | cj ∈ Bj , 1 ≤ i ≤ x, 1 ≤ j ≤ y}.

Consequently, graph G∗ is a forest and the
leaves in G∗ are precisely the blocks with exactly
one cut-vertex in G. A block containing exactly
one cut-vertex in G is called an end block. It
should be noted that, by using the depth first
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Figure 2: A weighted block graph H = B ∪G1 ∪G2 ∪ . . . ∪Gk.

search algorithm, one can recognize the block
graphs and construct the block-cut-vertex graphs
G∗, both in O(n + m) time [1]. Figure 1 shows
an illustrative example, in which Figure 1(b) de-
picts the corresponding block-cut-vertex graph G∗

for the block graph G in Figure 1(a). Clearly,
G has 7 blocks B1, B2, . . . , B7 and 6 cut vertices
c1, c2, . . . , c6. Moreover, the end blocks of G are
B3, B4, B5, and B7.

2.1 The algorithm

In this subsection, given the block-cut-vertex
structure of a weighted block graph G, we propose
an O(n)-time algorithm for finding a minimum-
weight paired-dominating set ofG. Before describ-
ing the approach in detail, four notations D(H, u),
P (H, u), P ′(H, u), and P̄ (H, u) are defined below,
where H is a subgraph of G and u ∈ V (H) is
a cut vertex of G. The notations are introduced
for the purpose of describing the recursive formu-
lations used in developing dynamic-programming
algorithms.

D(H, u) : A minimum-weight dominating set of
H , u ∈ D(H, u) and H [D(H, u)− u]
has a perfect matching.

P (H, u) : A minimum-weight paired-dominating
set of H and u ∈ P (H, u).

P ′(H, u) : A minimum-weight paired-dominating
set of H and u /∈ P ′(H, u).

P̄ (H, u) : A minimum-weight paired-dominating
set of H − u, and u is not dominated
by P̄ (H, u).

Clearly, either P (G, u) or P ′(G, u) is a minimum-
weight paired-dominating set of G. For ease
of subsequent discussion, D(H, u), P (H, u),

P ′(H, u), and P̄ (H, u) are called a κ1-paired-
dominating set, κ2-paired-dominating set, κ3-
paired-dominating set, and κ4-paired-dominating
set of H with respect to u, respectively.

Consider a weighted block graph H = B ∪
G1 ∪ G2 ∪ . . . ∪ Gk, where B is a block of H ,
Gi and Gj have disjoint vertex sets for i �= j,
and u1, u2, . . . , uk are the vertices of B such that
V (B) ∩ V (Gi) = ui for 1 ≤ i ≤ k. See Figure 2
for an illustrative example. In order to obtain a
minimum-weight paired-dominating set of G, we
use a dynamic-programming approach to itera-
tively determine D(H, u1), P (H, u1), P ′(H, u1),
and P̄ (H, u1) in a bottom-up manner. Suppose
that the dominating sets D(Gi, ui), P (Gi, ui),
P ′(Gi, ui), and P̄ (Gi, ui) have been determined in
the previous iterations and are assigned to vertex
ui for 1 ≤ i ≤ k. If we know how to compute
D(H, u1), P (H, u1), P ′(H, u1), and P̄ (H, u1) in
O(k) time, we can then design an algorithm to
solve the weighted paired-domination problem in
O(n) time using dynamic-programming method.

Based on the above observation, the concept
of our algorithm is as below. The algorithm first
sets the current graph G′ = G and the set of
processed blocks W = ∅. Further, it initially
assigns D(G[{v}], v) = {v}, P (G[{v}], v) = 	,
P ′(G[{v}], v) = 	 and P̄ (G[{v}], v) = ∅ to each
vertex v ∈ V (G). Specially, we use 	 to denote
the empty set with a weight of infinity, i.e., 	 = ∅
and w(	) = ∞. The algorithm then iteratively
processes blocks in the repeat loop. During each
iteration of the loop, we remove an end block B
with exactly one cut vertex in the current graph
G′ and determines the dominating sets D(H, u),
P (H, u), P ′(H, u), and P̄ (H, u), where u is the
cut vertex and H is the connected component con-
taining u in G[B ∪W ]. After the execution of the
repeat loop, we have only one block left, i.e., the
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current graph G′ is a block. With the information
determined in the repeat loop, we now can find the
two paired-dominating sets P (G, u) and P ′(G, u),
where u is an arbitrary vertex in G′. The output
S is selected from P (G, u) and P ′(G, u) based on
the weights of the sets. The steps of the algorithm
are detailed below.

Algorithm 1 Finding a paired-dominating set on
weighted block graphs

Input: A weighted block graph G with the block-
cut-vertex structure G∗ of G.

Output: A minimum weighted paired-dominati-
ng set S of G.

1: let G′ ← G, W ← ∅;
2: for each v ∈ V (G) do
3: let D(G[{v}], v)← {v}, P (G[{v}], v)←	;
4: let P ′(G[{v}], v)←	, P̄ (G[{v}], v)← ∅;
5: end for

6: repeat

7: arbitrarily choose a block B with exactly
one cut vertex in G′;

8: suppose that V (B) = {u1, u2, . . . , uk},
where u1 is the cut vertex and Gi is the
connected component in G[W ] such that
V (B) ∩ V (Gi) = ui for 1 ≤ i ≤ k;

9: findD(H, u1), P (H, u1), P
′(H, u1), P̄ (H, u1),

where H = B ∪G1 ∪G2 ∪ . . . ∪Gk;
10: let G′ ← G′ − {u2, . . . , uk}, W ←W ∪B;
11: until G′ itself is a block
12: find P (G, u) and P ′(G, u), where u is an arbi-

trary vertex in G′;
13: let S ← P (G, u) if w(P (G, u)) < w(P ′(G, u)),

and S ← P ′(G, u) otherwise;
14: return S.

In the next section, we will prove the correct-
ness of the algorithm and give an O(n)-time im-
plementation.

3 Efficient implementation of the

algorithm

Let H = B ∪G1 ∪G2 ∪ . . . ∪Gk be a weighted
block graph such that B is a block of H and
V (Gi)∩V (Gj) = ∅ for i �= j. Further, we suppose
that u1, u2, . . . , uk are the vertices of B such that
V (B)∩V (Gi) = ui for 1 ≤ i ≤ k, refer to Figure 2
for an illustrative example. In this section, we
provide an efficient implementation of algorithm
1. More concretely, given the dominating sets

D(Gi, ui), P (Gi, ui), P
′(Gi, ui), and P̄ (Gi, ui) for

1 ≤ i ≤ k, dynamic-programming procedures are
proposed in Subsections 3.1–3.4, which can deter-
mineD(H, u1), P (H, u1), P

′(H, u1), and P̄ (H, u1)
in O(k) time, respectively. Clearly, the proposed
procedures ensure the correctness of the algorithm
and imply that the algorithm can be implemented
in O(n) time. Consequently, we can obtain the
main result of this paper.

Theorem 1 Given a weighted block graph G with
the block-cut-vertex structure of G, a paired-
dominating set of G can be found in O(n) time.

3.1 Determination of D(H,u1)

First, some notations are introduced below,
for the purpose of describing the procedures.
For a set S of sets of vertices, F (S) denotes
the set with minimum weight in S. Further,
let S∗i be the set of vertices such that S∗i =
F ({D(Gi, ui), P (Gi, ui), P

′(Gi, ui), P̄ (Gi, ui)})
for 2 ≤ i ≤ k. We use r to denote the
number of S∗i such that S∗i = D(Gi, ui), i.e.,
r = |{S∗i | S

∗
i = D(Gi, ui) and 2 ≤ i ≤ k}|. Sup-

pose α is the index in {2, 3, . . . , k} such that S∗α �=
D(Gα, uα) and w(D(Gα, uα)) − w(S∗α) is mini-
mized. Further, let β be the index in {2, 3, . . . , k}
such that we have S∗β = D(Gβ , uβ) and

w(F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}))−w(S

∗
β)

is minimized.
Recall that D(H, u1) is a minimum-weight

dominating set of H such that u1 ∈ D(H, u1)
and H [D(H, u1) − u1] has a perfect matching.
By the definition of D(H, u1), the only poten-
tial candidate for being a dominating set of G1 is
D(G1, u1). Hence, in order to obtain D(H, u1), we
first construct a dominating set X = D(G1, u1) ∪
S∗2 ∪ S∗3 ∪ . . . ∪ S∗k . We will show that if r is
even, then S = X is a κ1-dominating set of
H with respect to u1. Otherwise, for the pur-
pose of satisfying the requirement that H [X − u1]
has a perfect matching with minimum cost, we
can either replace S∗α with D(Gα, uα), or replace
S∗β with F ({P (Gβ , uβ), P

′(Gβ , uβ), P̄ (Gβ , uβ)}).

For the former case, a dominating set X+ =
(X − S∗α) ∪ D(Gα, uα) is created. On the other
hand, a dominating set X− = (X − S∗β) ∪

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}) is built for

the latter case. The output S = F ({X+, X−}) is
selected from X+ and X− based on the weights
of the sets. Similarly, we will show that S is a
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κ1-dominating set of H with respect to u1. The
following is a formal description of the procedure.

Procedure 2 Finding D(H, u1)

Input: Dominating sets D(Gi, ui), P (Gi, ui),
P ′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k.

Output: A κ1-paired-dominating set S ofH with
respect to u1.

1: let X ← D(G1, u1) ∪ S∗2 ∪ S∗3 ∪ . . . ∪ S∗k ;
2: let X+ ← (X − S∗α) ∪D(Gα, uα);
3: let X− ← (X − S∗β) ∪

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)});

4: if r is even, then let S ← X ; otherwise, let
S ← F ({X+, X−});

5: return S.

Lemma 2 Given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
Procedure 2 outputs a κ1-paired-dominating set S
of H with respect to u1 in O(k) time.

Proof. The procedure certainly runs in O(k)
time. To prove that S is a κ1-paired-dominating
set of H with respect to u1, it suffices to show that
the output S is a minimum-weight dominating set
of H such that u1 ∈ S and H [S−u1] has a perfect
matching. By the definition of D(H, u1), the only
potential candidate for being a dominating set of
G1 is D(G1, u1). Hence, we have D(G1, u1) ⊆ S.
Since u1 ∈ D(G1, u1) and B is a clique, all the
three sets X,X+ and X− are dominating set of
H . Therefore, it remains to show that the weight
w(S) of S is minimized subject to the condition
that H [S − u1] contains a perfect matching.

Notice that, for 2 ≤ i ≤ k, both Gi[D(Gi, ui)−
ui] and Gi[P (Gi, ui)] contain perfect matchings
and ui �∈ P ′(Gi, ui) ∪ P̄ (Gi, ui). Hence, if r is
even, then H [X − u1] contains a perfect match-
ing and the weight w(X) of X is minimized, as
an immediate consequence of the selections of
S∗i . Next, suppose that r is odd. In order to
satisfy the condition that H [X − u1] contains a
perfect matching with minimum cost, it is nat-
ural to replace S∗α with D(Gα, uα), or replace
S∗β with F ({P (Gβ , uβ), P

′(Gβ , uβ), P̄ (Gβ , uβ)}).

For the former case, a dominating set X+ =
(X − S∗α) ∪ D(Gα, uα) is created. On the other
hand, a dominating set X− = (X − S∗β) ∪

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}) is built for

the latter case. And, we select S from X+ and X−

based on the weights of the sets. As a consequence
of selections of S∗α, S

∗
β , and S∗i for 2 ≤ i ≤ k, one

can verify that S = F ({X+, X−}) is a minimum-
weight dominating set of H such that H [S − u1]
contains a perfect matching.

3.2 Determination of P (H,u1)

Notice that P (H, u1) is a minimum-weight
dominating set of H such that u1 ∈ P (H, u1)
and H [P (H, u1)] has a perfect matching. There-
fore, either D(G1, u1) ⊆ P (H, u1) or P (G1, u1) ⊆
P (H, u1) is a dominating set of G1. In order to
obtain P (H, u1), we construct the six dominating
sets X,X+, X−, Y, Y +, and Y − of H . The domi-
nating sets X,X+ and X− are created for the sit-
uation when D(H, u1) is a dominating set of G1.
Meanwhile, the dominating sets Y, Y + and Y − are
built for the situation when P (G1, u1) is a domi-
nating set of G1, where Y = P (G1, u1)∪S

∗
2 ∪S

∗
3 ∪

· · · ∪ S∗k , Y
+ = (Y − S∗α) ∪D(Gα, uα), and Y − =

(Y −S∗β)∪F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}).

If r is even, then the induced subgraphs
H [X+], H [X−] and H [Y ] all contain perfect
matchings. The output S = F ({X+, X−, Y }) is
selected from X+, X− and Y based on the weights
of the sets. We will show that S is a κ2-dominating
set of H with respect to u1. Similarly, if r is
odd, then the induced subgraphs H [X ], H [Y +]
andH [Y −] all contain perfect matchings. And, we
will show that the output S = F ({X,Y +, Y −}) is
a κ2-dominating set of H with respect to u1 in
this situation. The procedure is detailed in the
next page.

Procedure 3 Finding P (H, u1)

Input: Dominating sets D(Gi, ui), P (Gi, ui),
P ′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k.

Output: A κ2-paired-dominating set S ofH with
respect to u1.

1: find the dominating sets X,X+ and X− as
described in Procedure 2;

2: let Y ← P (G1, u1) ∪ S∗2 ∪ S∗3 ∪ · · · ∪ S∗k ;
3: let Y + ← (Y − S∗α) ∪D(Gα, uα);
4: let Y − ← (Y − S∗β) ∪

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)});

5: if r is even, then let S ← F ({X+, X−, Y });
otherwise, let S ← F ({X,Y +, Y −});

6: return S.

Lemma 3 Given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
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Procedure 3 outputs a κ2-paired-dominating set S
of H with respect to u1 in O(k) time.

Proof. The procedure certainly can be completed
in O(k) time. To prove the correctness of the pro-
cedure, it suffices to show that the output S is
a minimum-weight dominating set of H such that
u1 ∈ S andH [S] contains a perfect matching. Fur-
ther, since v1 ∈ D(G1, u1) ∩ P (G1, u1) and B is a
clique, X,X+, X−, Y, Y +, and Y − are all domi-
nating sets of H . Thus, it remains to show that
the weight w(S) of S is minimized subject to the
condition that H [S] contains a perfect matching.

Notice that, for 2 ≤ i ≤ k, both Gi[D(Gi, ui)−
ui] and Gi[P (Gi, ui)] contain perfect matchings
and ui �∈ P ′(Gi, ui) ∪ P̄ (Gi, ui). We first con-
sider the situation when r is even. For the case
when D(G1, u1) is a dominating set of G1, in
order to satisfy the condition that H [X ] con-
tains a perfect matching with minimum cost, we
can either replace S∗α with D(Gα, uα) or replace
S∗β with F ({P (Gβ , uβ), P

′(Gβ , uβ), P̄ (Gβ , uβ)}).

Thus, X+ and X− are the two potential candi-
dates for S when D(G1, u1) ⊆ P (H, u1). For
the case when P (G1, u1) is a dominating set of
G1, H [Y ] contains a perfect matching. We select
S = F ({X+, X−, Y }) from X+, X− and Y based
on the weights of the sets. As a consequence of
selections of S∗α, S

∗
β , and S∗i for 2 ≤ i ≤ k, one

can verify that the output S is a minimum-weight
dominating set of H such that H [S] contains a
perfect matching. Using a similar method of the
above arguments, one can show that the correct-
ness also holds for the situation when r is odd.

3.3 Determination of P ′(H,u1)

Recall that P ′(H, u1) is a minimum-weight
dominating set of H such that u1 �∈ P ′(H, u1)
and H [P ′(H, u1)] has a perfect matching. There-
fore, either P ′(G1, u1) ⊆ P ′(H, u1) or P̄ (G1, u1) ⊆
P ′(H, u1) is a dominating set of G1. For ease
of subsequent discussion, we consider the two
cases P ′(G1, u1) ⊆ P ′(H, u1) and P̄ (G1, u1) ⊆
P ′(H, u1), respectively, in the rest of this subsec-
tion. More concretely, a paired-dominating set Q1

is created for the former situation. Meanwhile, a
paired-dominating set Q2 is built for the latter sit-
uation. Clearly, P ′(H, u1) can be selected fromQ1

and Q2 based on the weights of the sets.

3.3.1 Finding Q1

Below we present an O(k)-time procedure for
finding Q1. The procedure solves the problem
by considering eight cases C1, C2, . . . , C8 depend-
ing on S∗i and r. For 1 ≤ i ≤ 8, the case
Ci = (c1, c2, c3, c4, c5) is an ordered 5-tuple. For
1 ≤ j ≤ 5, cj = 1 if condition Dj holds, and cj = 0
otherwise. Further, we have cj = “ ∗ ” if condition
Dj is known never to occur. The five conditions
D1, D2, . . . , D5 are defined as follows:

D1 : S∗i = P (Gi, ui) for some 2 ≤ i ≤ k.
D2 : r is odd.
D3 : r is equal to 1.
D4 : r is equal to 0.
D5 : S∗i = P̄ (Gi, ui) for some 2 ≤ i ≤ k.

Then, we define the cases C1 = (1, 1, ∗, ∗, ∗),
C2 = (1, 0, ∗, ∗, ∗), C3 = (0, 1, 1, ∗, 1), C4 =
(0, 1, 1, ∗, 0), C5 = (0, 1, 0, ∗, ∗), C6 = (0, 0, ∗, 1, 1),
C7 = (0, 0, ∗, 1, 0), and C8 = (0, 0, ∗, 0, ∗). For
example, case C1 represents the situation when
there exists an index � such that S∗� = P (G�, u�)
with 2 ≤ � ≤ k and r is an odd number. Fur-
ther, case C7 represents the situation when there
exists no index � such that S∗� = P (G�, u�), or
S∗� = P̄ (G�, u�) and r = 0, i.e., S∗i = P ′(Gi, ui)
for 2 ≤ i ≤ k. Moreover, one can verify that all
the possible combinations of the five conditions
have been considered.

Next, some notations and paired-dominating
sets are introduced. Let α′ be the index in
{2, 3, . . . , k} − {α} such that S∗α′ �= D(Gα′ , uα′)
and w(D(Gα′ , uα′)) − w(S∗α′ ) is minimized. Let
γ be the index in {2, 3, . . . , k} such that S∗γ �=
P (Gγ , uγ) and w(P (Gγ , uγ))−w(S

∗
γ) is minimized.

Let I = {i | S∗i = P̄ (Gi, ui) and 2 ≤ i ≤ k}. We
define the following paired-dominating sets of H ,
which are the potential candidates for Q1.

Z1 = P ′(G1, u1) ∪ S∗2 ∪ S∗3 ∪ . . . ∪ S∗k .
Z+
1 = (Z1 − S∗α) ∪D(Gα, uα).

Z−1 = (Z1 − S∗β) ∪

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}).

T1 = (Z1 − S∗γ) ∪ P (Gγ , uγ).
T2 = (Z1−S∗α−S∗α′)∪D(Gα, uα)∪D(Gα′ , uα′).
T3 = (Z1 − ∪i∈IS

∗
i ) ∪ (∪i∈IP

′(Gi, ui)).
T4 = (Z1 − S∗β) ∪ P (Gβ , uβ).
T5 = (Z1 − S∗β) ∪ F ({P (Gβ , uβ), P

′(Gβ , uβ)}).
T6 = (Z1 − S∗γ − S∗β) ∪ P (Gγ , uγ) ∪

F ({P ′(Gβ , uβ), P̄ (Gβ , uβ)}).
T7 = (Z1 − S∗γ − S∗β) ∪ P (Gγ , uγ) ∪ P̄ (Gβ , uβ).
T8 = (Z1 −∪i∈IS

∗
i − S∗β) ∪ (∪i∈IP

′(Gi, ui)) ∪
P ′(Gβ , uβ).
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As mentioned earlier, we solve the problem by con-
sidering the eight cases C1, C2, . . . , C8. The re-
lations between the cases C1, C2, . . . , C8 and the
dominating sets Z1, Z+

1 , Z−1 , T1, . . . , T8 are de-
tailed in the following procedure. We will prove
its correctness and analyze its running time in
Lemma 4.

Procedure 4 Finding Q1

Input: Dominating sets D(Gi, ui), P (Gi, ui),
P ′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k.

Output: A minimum-weight dominating set S of
H such that u1 �∈ S, H [S] has a perfect
matching, and P ′(G1, u1) ⊆ S.

1: if C1 or C5 holds, then let S ← F ({Z+
1 , Z−1 });

2: if C2 or C7 or C8 holds, then let S ← Z1;
3: if C3 holds, then let S ← F ({Z+

1 , T4, T6, T8});
4: if C4 holds, then let S ← F ({Z+

1 , T5, T7});
5: if C6 holds, then let S ← F ({T1, T2, T3});
6: return S.

Lemma 4 Given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
Procedure 4 outputs a minimum-weight dominat-
ing set S of H such that u1 �∈ S, H [S] has a per-
fect matching, and P ′(G1, u1) ⊆ S. Moreover, the
procedure can be completed in O(k) time.

Proof. Clearly, all the paired-dominating sets Z1,
Z+

1 , Z−1 , T1, . . . , T8 can be constructed in O(k)
time. Hence, the procedure certainly runs in O(k)
time. Further, one can verify that all the possible
combinations of conditions D1, D2, . . . , D5 have
been considered in cases C1, C2, . . . , C8. Hence,
to prove the correctness of the procedure, it suf-
fices to show that each step of the procedure is
correct.

First, we consider cases C1 and C2. In both
of these cases, there exists an index � such that
S∗� = P (G�, u�). Therefore, Z1, Z

+
1 , and Z−1 are

dominating sets of H . It follows that, if r is
even, then Z1 is a minimum-weight dominating
set of H such that u1 �∈ Z1 and H [Z1] has a
perfect matching due to the selections of S∗i for
2 ≤ i ≤ k. So, we have S = Z1 for case C2.
On the other hand, if r is odd, then in order to
satisfy the condition that H [Q1] contains a per-
fect matching with minimum cost, we can either
replace S∗α with D(Gα, uα), or replace S∗β with

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}). This im-

plies that we have S = F ({Z+

1 , Z−1 }) for case C1.
Next, we consider cases C3, C4, and C5. No-

tice that in all three cases, there exists no index �

such that S∗� = P (G�, u�) and r is an odd number.
Moreover, for any paired-dominating set Q1 of H ,
we have either S∗i = P ′(Gi, ui) for 2 ≤ i ≤ k or
V (B)∩V (Q1) �= ∅, whereB = H [{u1, u2, . . . , uk}].
In case C3, a paired-dominating set T8 is created
for the former. Meanwhile, paired-dominating sets
Z+

1 , T4, and T6 are built for the latter. As a con-
sequence of r = 1, in order to ensure H [Q1] con-
tains a perfect matching when V (B)∩V (Q1) �= ∅,
we replace S∗α with D(Gα, uα) in Z+

1 , replace S∗β
with P (Gβ , uβ) in T4, and replace S∗γ and S∗β
with P (Gγ , uγ) and F ({P ′(Gβ , uβ), P̄ (Gβ , uβ)})
in T6, respectively. Under the premise of mini-
mizing weight, one can verify that Z+

1 , T4, and
T6 are exactly the three potential candidates for
Q1. In case C4, we have S∗β = D(Gβ , uβ) and
S∗i = P ′(Gi, ui) for 2 ≤ i ≤ k and i �= β. Using
a similar method of the above arguments, one can
show that S = F ({Z+

1 , T5, T7}) is true for case C4.
In case C5, we have r ≥ 3. Therefore, for the same
reasons as case C1, we have S = F ({Z+

1 , Z−1 }) for
case C5.

Finally, we consider cases C6, C7, and C8. No-
tice that in all three cases, there exists no index �
such that S∗� = P (G�, u�) and r is an even num-
ber. In case C6, we have either S∗i = P ′(Gi, ui)
or S∗i = P̄ (Gi, ui), where 1 ≤ i ≤ k. To ensure
H [Q1] contains a perfect matching, we replace S∗γ
with P (Gγ , uγ) in T1, replace S∗α and S∗α′ with
D(Gα, uα) and D(Gα′ , uα′) in T2, and replace S∗i
with P ′(Gi, ui)) for all i ∈ I in T3, respectively.
Under the premise of minimizing the weight w(S),
one can verify that T1, T2, and T3 are exactly the
three potential candidates for Q1. Notice that, in
case C7, S

∗
i = P ′(Gi, ui) for 2 ≤ i ≤ k. Further,

r ≥ 2 is an even number in case C8. Thus, we
have S = Z1 for the same reasons as case C2.

3.3.2 Finding Q2

In the following, we present a procedure to find the
paired-dominating set Q2. Similar to Procedure 4,
the procedure solves the problem by considering
six cases C9, C10, . . . , C14. For 9 ≤ i ≤ 14, the case
Ci = (c1, c2, c3, c4) is an ordered 4-tuple. Further,
the value of ck has the same definition as before for
1 ≤ k ≤ 4. Then, we define C9 = (1, 1, ∗, ∗), C10 =
(1, 0, ∗, ∗), C11 = (0, 1, 1, ∗), C12 = (0, 1, 0, ∗),
C13 = (0, 0, ∗, 1), and C14 = (0, 0, ∗, 0). Again,
one can verify that all the possible combinations of
the four conditions have been considered in cases
C9, C10, . . . , C14. The paired-dominating sets Z2,
Z+

2 , Z−2 , T9, . . . , T12 ofH are defined below, which
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are the potential candidates for Q2.

Z2 = P̄ (G1, u1) ∪ S∗2 ∪ S∗3 ∪ . . . ∪ S∗k .
Z+

2 = (Z1 − S∗α) ∪D(Gα, uα).
Z−2 = (Z1 − S∗β) ∪

F ({P (Gβ , uβ), P
′(Gβ , uβ), P̄ (Gβ , uβ)}).

T9 = (Z2 − S∗γ) ∪ P (Gγ , uγ).
T10 = (Z2−S∗α−S∗α′)∪D(Gα, uα)∪D(Gα′ , uα′).
T11 = (Z2 − S∗β) ∪ P (Gβ , uβ).
T12 = (Z2 − S∗γ − S∗β) ∪ P (Gγ , uγ) ∪

F ({P ′(Gβ , uβ), P̄ (Gβ , uβ)}).

Moreover, the relations between the cases
C9, C10, . . . , C14 and the paired-dominating sets
Z2, Z+

2 , Z−2 , T9, . . . , T12 are detailed in the fol-
lowing procedure.

Procedure 5 Finding Q2

Input: Dominating sets D(Gi, ui), P (Gi, ui),
P ′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k.

Output: A minimum-weight dominating set S of
H such that u1 �∈ S, H [S] has a perfect
matching, and P̄ (G1, u1) ⊆ S.

1: if C9 or C12 holds, then
let S ← F ({Z+

2 , Z−2 });
2: if C10 or C14 holds, then let S ← Z2;
3: if C11 holds, then let S ← F ({Z+

2 , T11, T12});
4: if C13 holds, then let S ← F ({T9, T10});
5: return S.

Lemma 5 Given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
Procedure 5 outputs a minimum-weight dominat-
ing set S of H such that u1 �∈ S, H [S] has a perfect
matching, and P̄ (G1, u1) ⊆ S. Moreover, the pro-
cedure can be completed in O(k) time.
Proof. Clearly, each step of the procedure can
be completed in O(k) time. Therefore, the proce-
dure runs in O(k) time. Further, one can verify
that all the possible combinations of conditions
D1, D2, D3, and D4 have been considered in cases
C9, C10, . . . , C14. Hence, to prove the correctness
of the procedure, it suffices to show that each step
of the procedure is correct.

First, we consider cases C9 and C10. In both
of these cases, there exists an index � such that
S∗� = P (G�, u�). Therefore, for the same rea-
sons as cases C1 and C2 in Procedure 4, we have
S = F ({Z+

2 , Z−2 }) for case C9 and S = Z2 for case
C10, respectively. Next, we consider cases C11,
and C12. Notice that in both cases, there exists no
index � such that S∗� = P (G�, u�) and r is an odd
number. Since we have r = 1 in case C11, in order

to satisfy the condition that H [Q2] contains a per-
fect matching with minimum cost, we replace S∗α
with D(Gα, uα) in Z+

2 , replace S∗β with P (Gβ , uβ)
in T11, and replace S∗γ and S∗β with P (Gγ , uγ) and

F ({P ′(Gβ , uβ), P̄ (Gβ , uβ)}) in T12, respectively.
Under the premise of minimizing weight, one can
verify that Z+

2 , T11, and T12 are exactly the three
potential candidates for Q2. In case C12, we have
r ≥ 3. Therefore, for the same reasons as case C9,
we have S = F ({Z+

2 , Z−2 }) for case C12.

Finally, we consider cases C13, and C14. Notice
that in both cases, there exists no index � such
that S∗� = P (G�, u�) and r is an even number. In
case C13, either S

∗
i = P ′(Gi, ui) or S

∗
i = P̄ (Gi, ui)

for 1 ≤ i ≤ k. Therefore, to satisfy the condi-
tion that H [Q2] contains a perfect matching, we
replace S∗γ with P (Gγ , uγ) in T9, and replace S∗α
and S∗α′ with D(Gα, uα) and D(Gα′ , uα′) in T10,
respectively. Again, under the premise of mini-
mizing the weight, one can verify that T9 and T10

are exactly the two potential candidates for Q2.
Notice that, in case C14, r ≥ 2 is an even number.
Thus, we have S = Z2 for the same reasons as case
C2 in Procedure 4.

Combining Lemmas 4 and 5, we obtain the follow-
ing result.

Lemma 6 Given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
a κ3-paired-dominating set P ′(H, u1) can be deter-
mined in O(k) time.

3.4 Determination of P̄ (H,u1)

Remember that P̄ (H, u1) is a minimum-weight
dominating set of H − u1 and u1 is not domi-
nated by P̄ (H, u1). Hence, by the definition of
P̄ (H, u1), the only composition is P̄ (H, u1) =
P̄ (G1, u1) ∪ P ′(G2, u2) ∪ . . . ∪ P ′(Gk, uk). This
implies that, given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
a κ4-paired-dominating set P̄ (H, u1) can be deter-
mined in O(k) time. Thus, we have the following
result.

Lemma 7 Given the dominating sets D(Gi, ui),
P (Gi, ui), P

′(Gi, ui), and P̄ (Gi, ui) for 1 ≤ i ≤ k,
a κ4-paired-dominating set P̄ (H, u1) can be deter-
mined in O(k) time.
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4 Conclusion and Future Work

In this paper, we have presented an optimal al-
gorithm for finding a paired-dominating set of a
block graph G. The algorithm uses a dynamic-
programming approach to iteratively determine
D(H, u), P (H, u), P ′(H, u), and P̄ (H, u) in a
bottom-up manner, where H is a subgraph of G
and u ∈ V (H) is a cut vertex of G. When the
graph is given in an adjacency list representation,
our algorithm runs in O(n +m) time. Moreover,
the algorithm can be completed in O(n) time if
the block-cut-vertex structure of G is given.

Below we present some open problems related
to the paired-domination problem. It is known
that distance-hereditary graphs is a proper super-
family of block graphs. Therefore, it is interesting
to study the time complexity of paired-domination
problem in distance-hereditary graphs. In [3],
Chen et al. proposed an approximation algorithm
with ratio ln(2Δ(G)) + 1 for general graphs and
showed that the problem is APX-complete, i.e.,
has no PTAS. Thus, it would be useful if we could
develop an approximation algorithm for general
graphs with constant ratio. Meanwhile, it would
be desirable to show that the problem remains NP-
complete in planar graphs and design an approxi-
mation algorithm.
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