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Abstract

Connectivity κ(G) of a graph G is the minimum
number of vertices whose removal leaves the re-
maining graph disconnected or trivial. This param-
eter is important for interconnection networks and
can be used to measure reliability in such networks.
In this paper, a new interconnection network called
locally exchanged twisted cube (LETQ for short),
denoted LeTQ(s, t), is proposed. We obtain some
basic properties of LETQ including isomorphism,
decomposition, hamiltonicity and connectivity. In
particular, we determine κ(LeTQ(s, t)) = min{s+
1, t+ 1}.
Keyword: Interconnection networks; Exchanged
hypercubes; Locally twisted cubes; Connectivity;
Locally exchanged twisted cubes.

1 Introduction

Interconnection networks play an important role in
parallel computing systems, and such a network
can be modeled by a graph G = (V,E), where
V (or V (G)) represents the set of processors and
E (or E(G)) is the set of communication links
between processors. It is well-known that hyper-
cubes are the most popular and efficient intercon-
nection networks due to their rich topological prop-
erties, such as regularity, symmetry, small diame-
ter, strong connectivity, recursive structure, flexible
partition, and relatively low link complexity [21].
To overcome some shortcomings of a normal hy-
percube, variations of hypercube architecture have
been proposed for achieving the improvement on
their efficiency. For more previous results on vari-
ations of hypercubes, the reader can refer to [2, 6].
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As a variant of hypercube, the family of lo-
cally twisted cubes was first introduced by Yang
et al. [26]. It was shown that the diameter of
an n-dimensional locally twisted cube, denoted as
LTQn, is only about half of that of the correspond-
ing hypercube. Another advantage is that the rule
of adjacency for vertices in LTQn is simpler than
other variations. In particular, any two adjacent
vertices in LTQn differ only in at most two succes-
sive bits. More attractive properties and applica-
tion support merits of LTQn can be found in the
literature, e.g., studies on diagnosability [25], mesh
embedding [3], hamiltonicity [5, 16, 17, 24, 27], and
independent spanning trees [4, 11, 12].

Recently, exchanged hypercube EH(s, t), pro-
posed by Loh et al. [14] is a new interconnection
network obtained by systematically removing links
from a hypercube. The structure of exchanged hy-
percubes not only kept numerous desirable prop-
erties of the normal hypercubes, but also reduced
the interconnection complexity. In particular, re-
searches of exchanged hypercubes have been de-
voted on the topics including domination [7,8], con-
nectivity [10,15,19], cycle embedding [18], edge con-
gestion [23], wide and fault diameter [22], and oth-
ers [1, 13]. In addition, a variant of exchanged hy-
percube called exchanged crossed cubes has been
studied recently in [9, 20].

In this paper, we combine the notion of locally
twisted cubes and exchanged hypercubes to intro-
duce a new type of network topology called locally
exchanged twisted cube (LETQ for short), which
retains most well features of the two originals.
Then, we obtain some basic properties of LETQ
including isomorphism, decomposition, hamiltonic-
ity and connectivity. Especially, connectivity is an
important parameter for interconnection networks
and it can be used to measure reliability in such
networks.

The rest of this paper is organized as follows.
Section 2 gives the definition of LETQ. Section 3
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provides some basic properties of LETQ. Section 4
proves the main results for finding the connectivity
of LETQ. Finally, concluding remarks are given in
Section 5.

2 Locally exchanged twisted
cubes

For convenience, vertices in a hypercube or its vari-
ants are usually encoded by using binary string rep-
resentation. Also, we use the notation Gx to de-
note the labeled graph obtained from a graph G
by prefixing the binary string of every vertex with
x. Let ⊕ denote the modulo 2 addition. The n-
dimensional locally twisted cube LTQn is defined
as follows:

(1) LTQ2 is a graph consisting of four vertices
with labels 00, 01, 10, 11 together with four
edges (00,01), (00,10), (01,11), and (10,11).

(2) For n � 3, LTQn is constructed from
two copies of LTQn−1 (i.e., LTQ0

n−1 and
LTQ1

n−1) by the following rule: each ver-
tex x = 0xn−2xn−3 · · ·x0 in LTQ0

n−1 is con-
nected with the vertex 1(xn−2⊕x0)xn−3 · · ·x0

in LTQ1
n−1 by an edge.

Inspired by the idea of exchanged hypercube, we
pose the following definition.

Definition 1. A locally exchanged twisted cube is
an undirected graph LeTQ(s, t) = G(V,E), where
s, t � 1, V = {x = xt+s · · ·xt+1xt · · ·x1x0 : xi ∈
{0, 1} for 0 � i � t+ s} is the vertex set, and E is
the edge set composed of the following three types
of disjoint sets E1, E2 and E3:
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Figure 1: Locally exchanged twisted cube LeTQ(1, 3).

E1 = {(x, y)∈V ×V : x⊕ y=20},

E2 = {(x, y)∈V ×V : x0=y0=1, x1=y1=0 and

x⊕ y=2k for k∈ [3, t]} ∪ {(x, y)∈V ×V :

x0=y0=x1=y1=1 and x⊕ y=2k + 2k−1

for k∈ [3, t]} ∪ {(x, y)∈V ×V : x0=y0=1

and x⊕ y∈{21, 22}},

and

E3 = {(x, y)∈V ×V : x0=y0=xt+1=yt+1=0

and x⊕ y=2k for k∈ [t+ 3, t+ s]} ∪
{(x, y)∈V ×V : x0=y0=0, xt+1=yt+1=1

and x⊕ y=2k + 2k−1 for k∈ [t+ 3, t+ s]}
∪{(x, y)∈V ×V : x0=y0=0 and x⊕ y∈
{2t+1, 2t+2}}.

For convenience, we write Ei(G)(= Ei) for i ∈
{1, 2, 3} if we need to indicate the graph G. From
the above definition, the binary string of a vertex
in LeTQ(s, t) is partitioned into three parts: s-part
(i.e., the leftmost part with s bits), t-part (i.e.,
the middle part with t bits) and the rightmost bit.
Accordingly, LeTQ(s, t) contains 2s+t+1 vertices.
Also, we have |E1| = 2s+t, |E2| = t2s+t−1(= 2s ×
t2t−1) and |E3| = s2s+t−1(= 2t×s2s−1). Thus, the
total number of edges in LeTQ(s, t) approaches one
half of that in LTQs+t+1 as s and t are larger. To be
more precise, |E(LeTQ(s, t))| = (s+t+2)2s+t−1 =
( 12 +

1
2(s+t+1) )|E(LTQs+t+1)|. Figure 1 depicts the

locally exchanged twisted cube LeTQ(1, 3), where
links with label “0” correspond to the edge set E1,
links with label “i” for i ∈ {1, 2, 3} correspond to
the edge set E2, and links with label “4” correspond
to the edge set E3.
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The degree of a vertex x in a graph G, denoted
by degG(x), is defined to be the number of edges
connected to x in G, where we omit the subscript G
if the graph is clear from the context. Also, we write
δ(G) = minx∈G deg(x) to stand for the minimum
degree of vertices in G. For LeTQ(s, t), it is easy
to verify that the degree of a vertex x with the
rightmost bit 0 (respectively, the rightmost bit 1)
is s+1 (respectively, t+1). Thus, δ(LeTQ(s, t)) =
min{s+ 1, t+ 1}.

3 Basic Properties

Two graphs G and H are isomorphic, denoted by
G ∼= H, if there is a bijection φ : V (G) → V (H)
such that (x, y) ∈ E(G) if and only if (φ(x), φ(y)) ∈
E(H). From the definition of LETQ, we note that
LeTQ(s, t) ∼= EH(s, t) if and only if s, t � 2.

Lemma 1. LeTQ(s, t) ∼= LeTQ(t, s).

Proof. Let φ : V (LeTQ(s, t)) → V (LeTQ(t, s))
be the bijection defined as follows:

x(= xt+s · · ·xt+1xt · · ·x1x0)
φ�−→

x′(= x′s+t · · ·x′s+1x
′
s · · ·x′1x0)

where{
x′i = xt+i for 1 � i � s;

x′s+i = xi for 1 � i � t.

By definition, we have (x, y) ∈ E1(LeTQ(s, t)) ⇔
x ⊕ y = 20 = φ(x) ⊕ φ(y) ⇔ (φ(x), φ(y)) ∈
E1(LeTQ(t, s)). Also, it is not hard to verify
from the bijection that (x, y) ∈ E2(LeTQ(s, t)) ⇔
(φ(x), φ(y)) ∈ E3(LeTQ(t, s)) and (x, y) ∈
E3(LeTQ(s, t)) ⇔ (φ(x), φ(y)) ∈ E2(LeTQ(t, s)).
Thus, the two graphs are isomorphic. �

In [14], it has been shown that an exchanged
hypercube EH(s, t) can be decomposed into two
copies of EH(s − 1, t) or EH(s, t − 1). According
to the definition of LETQ, the following lemma can
be proven by using the same way of the decompo-
sition of EH(s, t).

Lemma 2. LeTQ(s, t) can be decomposed into two
disjoint copies of LeTQ(s − 1, t) when s � 2 or
LeTQ(s, t − 1) when t � 2 such that the two
copies of subgraph are connected by 2s+t−1 edges
in LeTQ(s, t).

Proof. We first consider t � 2 and choose an inte-

ger k ∈ [1, t]. Let

Ẽ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{(x, y) ∈ V × V : x⊕ y=2k and x1=y1=0}
if k ∈ [3, t];

{(x, y) ∈ V × V : x⊕ y=2k + 2k−1 and

x1=y1=1} if k ∈ [3, t];

{(x, y) ∈ V × V : x⊕ y = 2k} if k ∈ [1, 2].

Clearly, Ẽ is contained in E2 and the removal of
Ẽ from LeTQ(s, t) results in two disjoint copies of
LeTQ(s, t − 1). On the other hand, if s � 2, the
lemma can be proved by considering k ∈ [t+1, t+s]
and let

Ẽ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{(x, y) ∈ V × V : x⊕ y=2k and xt+1=yt+1

=0} if k ∈ [t+ 3, t+ s];

{(x, y) ∈ V × V : x⊕ y=2k + 2k−1 and xt+1

= yt+1 = 1} if k ∈ [t+ 3, t+ s];

{(x, y) ∈ V ×V : x⊕ y=2k} if k∈ [t+1, t+2].

Similarly, Ẽ is contained in E3 and there are two
disjoint copies of LeTQ(s−1, t) when Ẽ is removed
from LeTQ(s, t). Since |E(LeTQ(s, t))| = (s+ t+
2)2s+t−1, we have

|Ẽ| = (s+t+2)2s+t−1−2((s+t+1)2s+t−2) = 2s+t−1.

�

Hamiltonicity is an important property for data
transmission in interconnection networks. In [14],
exchanged hypercube EH(s, t) has been proved
to be hamiltonian, i.e., it contains a cycle pass-
ing through every vertex exactly once. For more
properties related to hamiltonicity of EH(s, t), the
reader can also refer to [18]. In what follow, we use
0k to stand for a sequence of k 0s (i.e., 0 · · · 0︸ ︷︷ ︸

k

).

Lemma 3. LeTQ(s, t) is hamiltonian for s, t � 1.

Proof. By Lemma 1, as LeTQ(s, t) ∼= LeTQ(t, s),
we may assume s � t. The proof is by induction
on t. Since LeTQ(s, t) ∼= EH(s, t) for t � 2, the
existence of a hamiltonian cycle has been proved
in [14]. We now consider t � 3 and suppose
that LeTQ(s, t − 1) is hamiltonian. According to
Lemma 2, we decompose LeTQ(s, t) into two sub-
graphs G0 and G1, where each subgraph Gk for
k ∈ {0, 1} is isomorphic to LeTQ(s, t− 1) with the
vertex set Vk shown below:

Vk = {xt+s · · ·xt+1kxt−1 · · ·x1x0 : xi ∈ {0, 1}
for i ∈ [0, t− 1] ∪ [t+ 1, t+ s]}.

Based on induction hypothesis, there exists a
hamiltonian cycle R0 in G0 that contains the edge
(x, y) for x = 0s000t−21 and y = 0s010t−21. Sim-
ilarly, there exists a hamiltonian cycle R1 in G1
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that contains the edge (z, w) for z = 0s100t−21
and w = 0s110t−21. Since (x, z), (y, w) ∈ E2, we
can find a hamiltonian cycle that is obtained from
the concatenation of R0 and R1 by replacing edges
(x, y) and (z, w) with edges (x, z) and (y, w). �

4 Proof of Connectivity

In this section, we first introduce some notations
which will be used in the following proof. Let
G = (V,E) be a graph. For S ⊂ V and v ∈ V ,
the set vertices adjacent to v and lying in S is
denoted by NS(v). We use G − S to denote the
graph obtained from G by removing S. In par-
ticular, S is called a vertex-cut of G if G − S is
disconnected, and S is called a super vertex-cut
of G if G − S is disconnected and without iso-
lated vertex. The connectivity (respectively, edge-
connectivity) of a graph G, denoted by κ(G) (re-
spectively, λ(G)), is the minimum number of ver-
tices (respectively, edges) whose removal leaves the
remaining graph disconnected or trivial. It is well
known that κ(G) � λ(G) � δ(G). Moreover, the
super connectivity κ′(G) (respectively, super edge-
connectivity λ′(G)) is the minimum number of ver-
tices (respectively, edges) whose removal results in
a disconnected graph without isolated vertex.

Theorem 4. κ(LeTQ(s, t)) = λ(LeTQ(s, t)) =
min{s + 1, t + 1} for s, t � 1. Moreover, every
minimum vertex-cut is the set of neighbors of some
vertex in LeTQ(s, t).

Proof. By Lemma 1, without loss of general-
ity we assume s � t, and thus κ(LeTQ(s, t)) �
δ(LeTQ(s, t)) = min{s + 1, t + 1} = s + 1. In the
following, we will show that κ(LeTQ(s, t)) � s+1.
By Lemma 3, κ(LeTQ(s, t)) � 2. For s = 1 (see
e.g. Figure 1), since δ(LeTQ(1, t)) = s + 1 = 2, it
implies κ(LeTQ(1, t)) = 2. We now suppose s � 2.
The proof is by induction on s+t. Since LeTQ(2, 2)
is isomorphic to EH(2, 2), κ(EH(2, 2)) = 3 has
been proved in [15]. We consider s + t � 5 and
suppose that κ(LeTQ(s−1, t)) = min{s, t+1} and
κ(LeTQ(s, t − 1)) = min{s + 1, t}. We partition
LeTQ(s, t) into two subgraphs L and R as follows:

V (L) = {0xt+s−1 · · ·xt+1xt · · ·x1x0 : xi ∈ {0, 1}
for 0 � i � t+ s− 1}

and

V (R) = {1xt+s−1 · · ·xt+1xt · · ·x1x0 : xi ∈ {0, 1}
for 0 � i � t+ s− 1}.

By Lemma 2, both L and R are isomorphic to
LeTQ(s − 1, t). Let Ẽ be the set of edges con-
necting L and R. Clearly, Ẽ ⊂ E3. Moreover, we

subdivide V (L) into A and B such that A (respec-
tively, B) contains vertices with the rightmost bit
0 (respectively, the rightmost bit 1). Similarly, we
subdivide V (R) into C and D such that C (respec-
tively, D) contains vertices with the rightmost bit 0
(respectively, the rightmost bit 1). Thus, the edges
between A and B (respectively, C and D) lie in E1

and form a perfect matching in L (respectively, in
R).

Assume that S is a minimum vertex-cut of
LeTQ(s, t). Let SL = S∩V (L) and SR = S∩V (R).
If both L − SL and R − SR are connected, then
every edge e ∈ Ẽ must have at least one endver-
tex in S. By Lemma 2, this yields |S| � |Ẽ| =
2s+t−1 > s+ t− 1 � s+ 1, a contradiction. Hence,
we may assume that L − SL is disconnected. This
implies, by induction hypothesis, |SL| � κ(L) =
κ(LeTQ(s− 1, t)) = min{s, t+1} = s. If R−SR is
also disconnected, then |SR| � κ(R) = s. It follows
that |S| = |SL|+ |SR| � 2s > s+1, a contradiction.
Hence, R−SR is connected. Consider the following
two subcases:

Case 1: SR = ∅. Clearly, S = SL and R is
connected. Let M = S ∩ A and F = S ∩ B.
Also, let M ′ be the subset of B such that every
vertex of M ′ is adjacent to a vertex of M by an
edge in E1 (see Figure 2). Then |M ′| = |M |.
Let T be the subgraph obtained from LeTQ(s, t)
by removing S ∪ M ′. It is clear that V (T ) =
V (R)∪ (A−M)∪ (B−F −M ′). Since each vertex
of B −F −M ′ is adjacent to a vertex in A−M by
an edge in E1 and each vertex of A −M is adja-
cent to a vertex in C (and thus in R) by an edge in
Ẽ, the subgraph T is connected. Hence, removing
S from LeTQ(s, t) make some vertex v ∈ M ′ dis-
connect to T . Then, we have NB(v) ⊆ F ∪ M ′.
Otherwise, there is a vertex w ∈ B − F − M ′

such that v is connected to T through w. Thus,
|NB(v)| = |NF (v)| + |NM ′(v)| � |F | + |M ′| − 1.
Since v ∈ B, we have |NM (v)| = 1 and |NB(v)| = t.
This shows that κ(LeTQ(s, t)) = |S| = |F |+ |M | =
|F |+ |M ′| � |NB(v)|+ 1 = t+ 1 � s+ 1.

Next, we claim that |M ′| = 1, i.e., there is only
one vertex v ∈M ′ disconnecting to T after remov-
ing S from LeTQ(s, t). Suppose not, and there
exists another vertex u( �= v) ∈ M ′ such that u
and v are adjacent. Because there is no cycle of
length three in LeTQ(s, t), u and v have no com-
mon neighbors. Also, from the above argument, we
know that NB(u) ∪NB(v) ⊆ F ∪M ′. Thus, |S| =
|F |+ |M | = |F |+ |M ′| � |NB(u)|+ |NB(v)| = 2t >
t+1 � s+1, a contradiction. On the other hand, we
consider |M ′| � 2 and every vertex u( �= v) ∈ M ′

is nonadjacent to v. Since NB(v) ⊆ F , we have
|S| = |F | + |M | � |NB(v)| + |M ′| = t + 2 > s + 1,
a contradiction. According to the aforementioned
claim, S is the set of neighbors of v in LeTQ(s, t).
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Figure 2: Illustration for the proof of Case 1 in Theo-
rem 4.

Case 2: SR �= ∅. That is, |SR| � 1. By induc-
tion hypothesis, |SL| � κ(L) = κ(LeTQ(s− 1, t) =
s and a minimum vertex-cut of L is the set of
neighbors of some vertex in L. Thus, we have
κ(LeTQ(s, t)) = |S| = |SL| + |SR| � s + 1. Since
L − SL is disconnected and R − SR is connected,
by induction hypothesis, equality requires SL to be
the set of neighbors of some vertex v ∈ A (see Fig-
ure 3). Hence, the unique method for removing a
vertex to break all paths from v to R is to remove
the neighbor of v in R.

Accordingly, we complete the proof. �

B A C D

L R

v

E1 :

Ẽ :

S

Figure 3: Illustration for the proof of Case 2 in Theo-
rem 4.

5 Concluding remarks

In this paper, we introduce a new interconnec-
tion network called locally exchanged twisted cube.
This network retains most of the well topological
features of locally twisted cube and exchanged hy-
percube. Some basic properties including isomor-
phism, decomposition, hamiltonicity and connec-

tivity of LETQ are provided. In particular, we ob-
tain κ(LeTQ(s, t)) = min{s+ 1, t+ 1}.
The super connectivity of a network is the mini-

mum number of vertices whose removal leaves the
remaining network disconnected and without iso-
lated vertex. Again, this parameter is important
for measuring reliability of a communication net-
work. Thus, it would be an interesting study for
finding the super connectivity of LETQ in the fu-
ture research.
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[8] S. Klavžar, M. Ma, The domination number of
exchanged hypercubes, Inform. Process. Lett.
114 (2014) 159–162.

[9] K. Li, Y. Mu, K. Li, G. Min, Exchanged
crossed cube: a novel interconnection network
for parallel computation, IEEE Trans. Parallel
Distrib. Syst. 24 (2013) 2211–2219.

[10] X.-J. Li, J.-M. Xu, Generalized measures of
fault tolerance in exchanged hypercubes, In-
form. Process. Lett. 113 (2013) 533–537.

[11] J.-C. Lin, J.-S. Yang, C.-C. Hsu, J.-M. Chang,
Independent spanning trees vs. edge-disjoint
spanning trees in locally twisted cubes, In-
form. Process. Lett. 110 (2010) 414–419.

[12] Y-J. Liu, J.K. Lan, W.Y. Chou, C. Chen, Con-
structing independent spanning trees for lo-
cally twisted cubes, Theoret. Comput. Sci. 412
(2011) 2237–2252.

122

The 32nd Workshop on Combinatorial Mathematics and Computation Theory



[13] Y.-L. Liu, Routing and wavelength assignment
for exchanged hypercubes in linear array opti-
cal networks, Inform. Process. Lett. 115 (2015)
203–208.

[14] P.K.K. Loh, W.J. Hsu, Y. Pan, The exchanged
hypercube, IEEE Trans. Parallel Distrib. Syst.
16 (2005) 866–874.

[15] M. Ma, The connectivity of exchanged hyper-
cube, Discrete Math. Algo. Appl. 2 (2010) 213–
220.

[16] M. Ma, J.-M. Xu, Panconnectivity of locally
twisted cubes, Appl. Math. Lett. 19 (2006)
673–677.

[17] M. Ma, J.-M. Xu, Weak Edge-pancyclicity of
locally twisted cubes, Ars Combin. 89 (2008)
89–94.

[18] M. Ma, B. Liu, Cycles embedding in exchanged
hypercubes, Inform. Process. Lett. 110 (2009)
71–76.

[19] M. Ma, L. Zhu, The super connectivity of
exchanged hypercubes, Inform. Process. Lett.
111 (2011) 360–364.

[20] W. Ning, X. Feng, L. Wang, The connectivity
of exchanged crossed cube, Inform. Process.
Lett. 115 (2015) 394–396.

[21] Y. Saad, M.H. Schultz, Topological proper-
ties of hypercubes, IEEE Trans. Comput. 37
(1988) 867–872.

[22] T.-H Tsai, Y-C. Chen, Jimmy J.M.
Tan, Topological properties on the wide
and fault diameters of exchanged hyper-
cubes, IEEE Trans. Parallel Distrib. Syst.
doi:10.1109/TPDS.2014.2307853

[23] T.-H Tsai, Y-C. Chen, Jimmy J.M. Tan, Op-
timal edge congestion of exchanged hyper-
cubes, IEEE Trans. Parallel Distrib. Syst.
doi:10.1109/TPDS.2014.2387284

[24] X. Xu, W. Zhai, J.-M. Xu, A. Deng, Y.
Yang, Fault-tolerant edge-pancyclicity of lo-
cally twisted cubes Inform. Sci. 181 (2011)
2268–2277.

[25] H. Yang, X. Yang, A fast diagnosis algorithm
for locally twisted cube multiprocessor systems
under the MM∗ model, Comput. Math. Appl.
53 (2007) 918–926.

[26] X. Yang, D.J. Evans, G.M. Megson, The lo-
cally twisted cubes, Int. J. Comput. Math. 82
(2005) 401–413.

[27] X. Yang, G.M. Megson, D.J. Evans, Locally
twisted cubes are 4-pancyclic, Appl. Math.
Lett. 17 (2004) 919–925.

123

The 32nd Workshop on Combinatorial Mathematics and Computation Theory


