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Abstract 

Sorting by prefix reversals on genome 
rearrangements, pancake graph can be 
constructed. For node-to-node routing on 
n-pancake graph, Gates and Papadimitriou first 
proposed O(n) algorithm with at most 5(n + 1) / 3 
length of the path in 1979. If there exist (n - 2) 
faulty nodes, Kaneko and Sawada proposed O(n) 
algorithm with at most 5(n + 1) / 3 + (8 / 3)  
length of the path in 2007; extending to (n - 2) 
faulty clusters with diameter 2, they also proposed 
O(n) algorithm with at most 5(n + 1) / 3 + 7 
length of the path. 

Consider the well-designed steady system, the 
probability of faulty node is very low, and it can be 
repaired well soon. So the most case of 
fault-tolerant node-to-node routing is only one 
faulty node. In this paper, we propose an efficient 
fault-tolerant node-to-node routing algorithm in 
n-pancake graph with one faulty node, the 
minimum length of the routing path is at most (5n / 
3) + 3 = 5(n + 1) / 3 + (4 / 3), and the time 
complexity is still O(n). 

1  Introduction 

Genome rearrangements are given two distinct 
objects with the same genomes but different 
ordering to transfer each other. Sorting by prefix 
reversals is very important transfer operation, and 
pancake graph can be constructed.  

An n-pancake graph denoted as Pn is an 
undirected graph with n! nodes and n – 1 links per 
node[1]. Gates and Papadimitriu[2] first proposed 
routing algorithm from any pair of nodes, d(Pn)
denoted as the minimum length of the 
node-to-node routing path is at most 5(n + 1) / 3, 
and the time complexity is O(n). Consider Pn with 
n - 2 faulty nodes, Kaneko, Sawada and Peng[3] 
designed an O(n) fault-tolerant node-to-node 
routing algorithm with at most d(Pn) + (8 / 3) 
length. Extending to n - 2 faulty clusters whose
diameter are at most 2, and then they also 
proposed O(n) fault-tolerant node-to-node routing 
algorithm with at most d(Pn) + 7 length. 

Consider the well-designed steady system, the 

probability of faulty node is very low, and it can 
be repaired well soon. So the most case of 
fault-tolerant node-to-node routing is only one 
faulty node. In this paper, we propose an efficient 
fault-tolerant node-to-node routing algorithm in 
n-pancake graph with one faulty node, the 
minimum length of the routing path is at most (5n 
/ 3) + 3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3), 
and the time complexity is still O(n). 

2  Notation 

We first introduce some definitions and 
theorems to explain the prefix reversal, n-pancake 
graph, and sub n-pancake graph.  
Definition 1: Given integer n, and let u = (u1,
u2, , ui - 1, ui, ui + 1, , un) be a permutation of [n] 
= {1, 2, , n}. The prefix reversal is defined u(i) =
(ui, ui - 1 , , u2, u1, ui + 1, , un), for i = 2, 3, , n. 
u(i, j) is defined as continuous prefix reversals with 
index i and j. 
Definition 2: An undirected graph G = (V, E) is 
called an n-pancake graph denoted as Pn, where V 
= {u| u is a permutation of [n]}, and E = {(u, u(i))| 
u � V, 2 � i � n}. 
Definition 3: The sub n-pancake graph G = (V, E) 
induced by Pn, is denoted as Pn(k), where V = {(u1,
u2, , un-1, k)| (u1, u2, , un-1) is a permutation of 
[n]\{k}}, and E = {(u, u(i))| u � V, 2 � i � n - 1}, 
for 1 � k � n.
Theorem 1: (n - 1)-pancake graph Pn 1 is 
isomorphic to sub n-pancake graph Pn(k). 
Proof: Give an (n - 1)-pancake graph Pn  1, let u = 
(u1, u2, , ui - 1, ui, ui + 1,  , un - 1) be the selected 
node of Pn  1. If ui = k, then the mapping node to 
Pn(k) is (u1, u2, , ui - 1, n, ui + 1, , un - 1, k), for 1 
� k � n. An n-pancake graph Pn can be recursively 
constructed by n disjoint (n-1)-pancake graphs 
mapping to Pn(1), Pn(2), , Pn(n). 

Figure 1 show examples of pancake graphs P3
and P4, there are four sub pancake graphs: P4(1), 
P4(2), P4(3), and P4(4) among P4. 
Theorem 2: Given an n-pancake graph Pn,
consider the node-to-node routing algorithm, d(Pn)
denoted as the minimum length of the routing path 
is at most 5(n + 1)/3, and the time complexity is 
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O(n). 
Proof: The algorithm is proposed and proved by 
Gates and Papadimitriu[2]. 

3  Algorithms 

Given an n-pancake graph Pn, and the source 
node s = (s1, s2, , sn), the destination node t = (t1,
t2, , tn), the faulty node f = (f1, f2, , fn). We 
propose an efficient fault-tolerant routing 
algorithm from the source node s to the destination 
node s to avoid the faulty node f. 

Figure 1-5 are the details of the routing 
algorithm, there are total 11 cases. They are 
explained as follows. 
Case 1: t � Pn(sn), f � Pn(sn), t1 = s1. 

Nodes s, t, f, are in Pn(sn), we first do prefix 
reversals s(n) and t(n), now these two derived nodes 
are in Pn(t1). Finally implement the routing 
algorithm proposed by Gates and Papadimitriu[2] 
for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = (5n / 3) 
+ 2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and 
the time complexity is O(n - 1) + 2 = O(n). 
Case 2: t � Pn(sn), f � Pn(sn), t1 � s1, t1 = f1 . 

Nodes s, t, f, are in Pn(sn), we first do prefix 
reversal s(n). If tk = s1, then we do t(k, n). Now these 
two derived nodes are in Pn(s1). Finally implement 
the routing algorithm proposed by Gates and 
Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = (5n / 3) 
+ 3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3) , and 
the time complexity is O(n - 1) + 3 = O(n). 
Case 3: t � Pn(sn), f � Pn(sn), t1 � s1, t1 � f1 . 

Nodes s, t, f, are in Pn(sn), we first do prefix 
reversal t(n). If t1 = sk, then we do s(k, n). Now these 
two derived nodes are in Pn(t1). Finally implement 
the routing algorithm proposed by Gates and 
Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = (5n / 3) 
+ 3 = 5(n + 1)/3 + (4 / 3) = d(Pn) + (4 / 3), and the 
time complexity is O(n - 1) + 3 = O(n). 
Case 4: t � Pn(sn), f �� Pn(sn).

Nodes s and t are in Pn(sn), we directly 
implement the routing algorithm proposed by 
Gates and Papadimitriu[2] from the source nodes s 
to the destination node t. 

The minimum length of the routing path is at 
most d(Pn - 1) = 5[(n - 1) + 1] / 3 = 5n / 3 = 5(n + 1) 
/ 3  (5 / 3) = d(Pn)  (5 / 3), and the time 
complexity is O(n - 1) = O(n). 
Case 5: t � Pn(sn), f � Pn(tn), t1 = sn. 

We first do prefix reversal t(n), the derived node 
and s are in Pn(sn). Finally implement the routing 
algorithm proposed by Gates and Papadimitriu[2] 

for these two nodes. 
The minimum length of the routing path is at 

most d(Pn - 1) + 1 = 5[(n - 1) + 1] / 3 + 1 = (5n / 3) 
+ 1 = 5(n + 1) / 3  (2 / 3) = d(Pn)  (2 / 3), and 
the time complexity is O(n - 1) + 1 = O(n). 
Case 6: t � Pn(sn), f � Pn(tn), t1 � sn, t1 = s1.

We first do prefix reversals s(n) and t(n), these 
two derived nodes are in Pn(t1). Finally implement 
the routing algorithm proposed by Gates and 
Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = (5n / 3) 
+ 2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and 
the time complexity is O(n - 1) + 2 = O(n). 
Case 7: t � Pn(sn), f � Pn(tn), t1 � sn, t1 � s1.

We first do prefix reversal t(n). If sk = t1, then we 
do s(k, n). Now these two derived nodes are in Pn(t1). 
Finally implement the routing algorithm proposed 
by Gates and Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = (5n / 3) 
+ 3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3), and 
the time complexity is O(n - 1) + 3 = O(n). 
Case 8: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 = s1.

We first do prefix reversals s(n) and t(n), these 
two derived nodes are in Pn(s1). Finally implement 
the routing algorithm proposed by Gates and 
Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = 5n / 3 + 
2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and the 
time complexity is O(n - 1) + 2 = O(n). 
Case 9: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 � s1.

We first do prefix reversal s(n). If tk = s1, then we 
do t(k, n). Now these two derived nodes are in Pn(s1). 
Finally implement the routing algorithm proposed 
by Gates and Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = 5n / 3 + 
3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3), and the 
time complexity is O(n - 1) + 3 = O(n). 
Case 10: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 = sn.

We first do prefix reversal t(n), the derived node 
and s are in Pn(sn). Finally implement the routing 
algorithm proposed by Gates and Papadimitriu[2] 
for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 1 = 5[(n - 1) + 1] / 3 + 1 = (5n / 3) 
+ 1 = 5(n + 1) / 3  (2 / 3) = d(Pn)  (2 / 3), and 
the time complexity is O(n - 1) + 1 = O(n). 
Case 11: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 � sn.

If tk = sn, then we do t(k, n). Now the derived 
node and s are in Pn(sn). Finally implement the 
routing algorithm proposed by Gates and 
Papadimitriu[2] for these two nodes. 

The minimum length of the routing path is at 
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = (5n / 3) 
+ 2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and 
the time complexity is O(n - 1) + 3 = O(n). 
Theorem 3: Given an n-pancake graph Pn, there is 
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one faulty node, consider the routing algorithm 
from source node to destination node, the 
minimum length of the routing path is at most d(Pn)
+ (4 / 3), and the time complexity is O(n). 

Proof: Routing algorithm is one possibility of 
the above 11 cases, so the minimum length of the 
routing path is at most (5n / 3) + 3 = 5(n + 1) / 3 + 
(4 / 3) = d(Pn) + (4 / 3), and the time complexity is 
O(n). 

4  Conclusions 

In this paper, we propose an efficient 
O(n) fault-tolerant node-to-node routing 
algorithm with one faulty node in 
n-pancake graph Pn. The minimum length 
of the routing path is at most (5n / 3) + 3 = 

d(Pn) + (4 / 3). The related research 
comparisons are listed in Table 1.  
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Table 1: The related research comparisons, one faulty node algorithms is proposed in this paper.
Faulty Node No One node n 2 nodes n 2 clusters

Time complexity O(n) O(n) O(n) O(n)

Length of routing path d(Pn) d(Pn) + (4 / 3) d(Pn) + (8 / 3) d(Pn) + 7

Figure 1: The example of pancake graphs P3 and P4, there are four sub-pancake graphs: P4(1), P4(2), P4(3), 
and P4(4) among P4. 
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Figure 2: The total 11 cases of fault-tolerant routing algorithms in n-pancake graph with one faulty node. The 
source node s = (s1, s2, , sn), the destination node t = (t1, t2, , tn), and the faulty node f = (f1, f2, , fn). 

Figure 3: The Case 1-4 of the fault-tolerant routing algorithms from the source node s to the destination node t 
in n-pancake graph to avoid the faulty node f. 
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Figure 4: The Case 5-7 of the fault-tolerant routing algorithms from the source node s to the destination node t 
in n-pancake graph to avoid the faulty node f. 

Figure 5: The Case 8-11 of the fault-tolerant routing algorithms from the source node s to the destination node 
t in n-pancake graph to avoid the faulty node f. 
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