
Genome rearrangements: efficient algorithm in pancake graphs with one
faulty node

Jer-Shyan Wu, Yu-Song Hou and Wei-Qian Cai
Department of Bioinformatics

Chung Hua University, 30012 Hsinchu, Taiwan
{jswu,yshou,m10120001}@chu.edu.tw

Abstract

Sorting by prefix reversals on genome
rearrangements, pancake graph can be
constructed. For node-to-node routing on
n-pancake graph, Gates and Papadimitriou first
proposed O(n) algorithm with at most 5(n + 1) / 3
length of the path in 1979. If there exist (n - 2)
faulty nodes, Kaneko and Sawada proposed O(n)
algorithm with at most 5(n + 1) / 3 + (8 / 3)
length of the path in 2007; extending to (n - 2)
faulty clusters with diameter 2, they also proposed
O(n) algorithm with at most 5(n + 1) / 3 + 7
length of the path.

Consider the well-designed steady system, the
probability of faulty node is very low, and it can be
repaired well soon. So the most case of
fault-tolerant node-to-node routing is only one
faulty node. In this paper, we propose an efficient
fault-tolerant node-to-node routing algorithm in
n-pancake graph with one faulty node, the
minimum length of the routing path is at most (5n /
3) + 3 = 5(n + 1) / 3 + (4 / 3), and the time
complexity is still O(n).

1 Introduction

Genome rearrangements are given two distinct
objects with the same genomes but different
ordering to transfer each other. Sorting by prefix
reversals is very important transfer operation, and
pancake graph can be constructed.

An n-pancake graph denoted as Pn is an
undirected graph with n! nodes and n – 1 links per
node[1]. Gates and Papadimitriu[2] first proposed
routing algorithm from any pair of nodes, d(Pn)
denoted as the minimum length of the
node-to-node routing path is at most 5(n + 1) / 3,
and the time complexity is O(n). Consider Pn with
n - 2 faulty nodes, Kaneko, Sawada and Peng[3]
designed an O(n) fault-tolerant node-to-node
routing algorithm with at most d(Pn) + (8 / 3)
length. Extending to n - 2 faulty clusters whose
diameter are at most 2, and then they also
proposed O(n) fault-tolerant node-to-node routing
algorithm with at most d(Pn) + 7 length.

Consider the well-designed steady system, the

probability of faulty node is very low, and it can
be repaired well soon. So the most case of
fault-tolerant node-to-node routing is only one
faulty node. In this paper, we propose an efficient
fault-tolerant node-to-node routing algorithm in
n-pancake graph with one faulty node, the
minimum length of the routing path is at most (5n
/ 3) + 3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3),
and the time complexity is still O(n).

2 Notation

We first introduce some definitions and
theorems to explain the prefix reversal, n-pancake
graph, and sub n-pancake graph.
Definition 1: Given integer n, and let u = (u1,
u2, , ui - 1, ui, ui + 1, , un) be a permutation of [n]
= {1, 2, , n}. The prefix reversal is defined u(i) =
(ui, ui - 1 , , u2, u1, ui + 1, , un), for i = 2, 3, , n.
u(i, j) is defined as continuous prefix reversals with
index i and j.
Definition 2: An undirected graph G = (V, E) is
called an n-pancake graph denoted as Pn, where V
= {u| u is a permutation of [n]}, and E = {(u, u(i))|
u � V, 2 � i � n}.
Definition 3: The sub n-pancake graph G = (V, E)
induced by Pn, is denoted as Pn(k), where V = {(u1,
u2, , un-1, k)| (u1, u2, , un-1) is a permutation of
[n]\{k}}, and E = {(u, u(i))| u � V, 2 � i � n - 1},
for 1 � k � n.
Theorem 1: (n - 1)-pancake graph Pn 1 is
isomorphic to sub n-pancake graph Pn(k).
Proof: Give an (n - 1)-pancake graph Pn 1, let u =
(u1, u2, , ui - 1, ui, ui + 1, , un - 1) be the selected
node of Pn 1. If ui = k, then the mapping node to
Pn(k) is (u1, u2, , ui - 1, n, ui + 1, , un - 1, k), for 1
� k � n. An n-pancake graph Pn can be recursively
constructed by n disjoint (n-1)-pancake graphs
mapping to Pn(1), Pn(2), , Pn(n).

Figure 1 show examples of pancake graphs P3
and P4, there are four sub pancake graphs: P4(1),
P4(2), P4(3), and P4(4) among P4.
Theorem 2: Given an n-pancake graph Pn,
consider the node-to-node routing algorithm, d(Pn)
denoted as the minimum length of the routing path
is at most 5(n + 1)/3, and the time complexity is

130

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

O(n).
Proof: The algorithm is proposed and proved by
Gates and Papadimitriu[2].

3 Algorithms

Given an n-pancake graph Pn, and the source
node s = (s1, s2, , sn), the destination node t = (t1,
t2, , tn), the faulty node f = (f1, f2, , fn). We
propose an efficient fault-tolerant routing
algorithm from the source node s to the destination
node s to avoid the faulty node f.

Figure 1-5 are the details of the routing
algorithm, there are total 11 cases. They are
explained as follows.
Case 1: t � Pn(sn), f � Pn(sn), t1 = s1.

Nodes s, t, f, are in Pn(sn), we first do prefix
reversals s(n) and t(n), now these two derived nodes
are in Pn(t1). Finally implement the routing
algorithm proposed by Gates and Papadimitriu[2]
for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = (5n / 3)
+ 2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and
the time complexity is O(n - 1) + 2 = O(n).
Case 2: t � Pn(sn), f � Pn(sn), t1 � s1, t1 = f1 .

Nodes s, t, f, are in Pn(sn), we first do prefix
reversal s(n). If tk = s1, then we do t(k, n). Now these
two derived nodes are in Pn(s1). Finally implement
the routing algorithm proposed by Gates and
Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = (5n / 3)
+ 3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3) , and
the time complexity is O(n - 1) + 3 = O(n).
Case 3: t � Pn(sn), f � Pn(sn), t1 � s1, t1 � f1 .

Nodes s, t, f, are in Pn(sn), we first do prefix
reversal t(n). If t1 = sk, then we do s(k, n). Now these
two derived nodes are in Pn(t1). Finally implement
the routing algorithm proposed by Gates and
Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = (5n / 3)
+ 3 = 5(n + 1)/3 + (4 / 3) = d(Pn) + (4 / 3), and the
time complexity is O(n - 1) + 3 = O(n).
Case 4: t � Pn(sn), f �� Pn(sn).

Nodes s and t are in Pn(sn), we directly
implement the routing algorithm proposed by
Gates and Papadimitriu[2] from the source nodes s
to the destination node t.

The minimum length of the routing path is at
most d(Pn - 1) = 5[(n - 1) + 1] / 3 = 5n / 3 = 5(n + 1)
/ 3 (5 / 3) = d(Pn) (5 / 3), and the time
complexity is O(n - 1) = O(n).
Case 5: t � Pn(sn), f � Pn(tn), t1 = sn.

We first do prefix reversal t(n), the derived node
and s are in Pn(sn). Finally implement the routing
algorithm proposed by Gates and Papadimitriu[2]

for these two nodes.
The minimum length of the routing path is at

most d(Pn - 1) + 1 = 5[(n - 1) + 1] / 3 + 1 = (5n / 3)
+ 1 = 5(n + 1) / 3 (2 / 3) = d(Pn) (2 / 3), and
the time complexity is O(n - 1) + 1 = O(n).
Case 6: t � Pn(sn), f � Pn(tn), t1 � sn, t1 = s1.

We first do prefix reversals s(n) and t(n), these
two derived nodes are in Pn(t1). Finally implement
the routing algorithm proposed by Gates and
Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = (5n / 3)
+ 2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and
the time complexity is O(n - 1) + 2 = O(n).
Case 7: t � Pn(sn), f � Pn(tn), t1 � sn, t1 � s1.

We first do prefix reversal t(n). If sk = t1, then we
do s(k, n). Now these two derived nodes are in Pn(t1).
Finally implement the routing algorithm proposed
by Gates and Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = (5n / 3)
+ 3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3), and
the time complexity is O(n - 1) + 3 = O(n).
Case 8: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 = s1.

We first do prefix reversals s(n) and t(n), these
two derived nodes are in Pn(s1). Finally implement
the routing algorithm proposed by Gates and
Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = 5n / 3 +
2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and the
time complexity is O(n - 1) + 2 = O(n).
Case 9: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 � s1.

We first do prefix reversal s(n). If tk = s1, then we
do t(k, n). Now these two derived nodes are in Pn(s1).
Finally implement the routing algorithm proposed
by Gates and Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 3 = 5[(n - 1) + 1] / 3 + 3 = 5n / 3 +
3 = 5(n + 1) / 3 + (4 / 3) = d(Pn) + (4 / 3), and the
time complexity is O(n - 1) + 3 = O(n).
Case 10: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 = sn.

We first do prefix reversal t(n), the derived node
and s are in Pn(sn). Finally implement the routing
algorithm proposed by Gates and Papadimitriu[2]
for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 1 = 5[(n - 1) + 1] / 3 + 1 = (5n / 3)
+ 1 = 5(n + 1) / 3 (2 / 3) = d(Pn) (2 / 3), and
the time complexity is O(n - 1) + 1 = O(n).
Case 11: t � Pn(sn), f � Pn(tn), f � Pn(sn), t1 � sn.

If tk = sn, then we do t(k, n). Now the derived
node and s are in Pn(sn). Finally implement the
routing algorithm proposed by Gates and
Papadimitriu[2] for these two nodes.

The minimum length of the routing path is at
most d(Pn - 1) + 2 = 5[(n - 1) + 1] / 3 + 2 = (5n / 3)
+ 2 = 5(n + 1) / 3 + (1 / 3) = d(Pn) + (1 / 3), and
the time complexity is O(n - 1) + 3 = O(n).
Theorem 3: Given an n-pancake graph Pn, there is

131

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

one faulty node, consider the routing algorithm
from source node to destination node, the
minimum length of the routing path is at most d(Pn)
+ (4 / 3), and the time complexity is O(n).

Proof: Routing algorithm is one possibility of
the above 11 cases, so the minimum length of the
routing path is at most (5n / 3) + 3 = 5(n + 1) / 3 +
(4 / 3) = d(Pn) + (4 / 3), and the time complexity is
O(n).

4 Conclusions

In this paper, we propose an efficient
O(n) fault-tolerant node-to-node routing
algorithm with one faulty node in
n-pancake graph Pn. The minimum length
of the routing path is at most (5n / 3) + 3 =

d(Pn) + (4 / 3). The related research
comparisons are listed in Table 1.

References

[1] S.B. Akers and B. Krishnamurthy. A
group-theoretic model for symmetric
interconnection networks. IEEE Trans.
Computers, vol 38 (4), pp 555-566, 1989.

[2] W.H. Gates and C.H. Papadimitriou. Bounds
for sorting by prefix reversal. Discrete Math.
Vol 27, pp 47-57, 1979.

[3] K. Kaneko, N. Sawada and S. Peng. Cluster
fault-tolerant routing in pancake graphs. Proc.
the 19th IASTED conf. Parallel and
Distributed Computing and Systems, pp
19-21, 2007.

Table 1: The related research comparisons, one faulty node algorithms is proposed in this paper.
Faulty Node No One node n 2 nodes n 2 clusters

Time complexity O(n) O(n) O(n) O(n)

Length of routing path d(Pn) d(Pn) + (4 / 3) d(Pn) + (8 / 3) d(Pn) + 7

Figure 1: The example of pancake graphs P3 and P4, there are four sub-pancake graphs: P4(1), P4(2), P4(3),
and P4(4) among P4.

132

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Figure 2: The total 11 cases of fault-tolerant routing algorithms in n-pancake graph with one faulty node. The
source node s = (s1, s2, , sn), the destination node t = (t1, t2, , tn), and the faulty node f = (f1, f2, , fn).

Figure 3: The Case 1-4 of the fault-tolerant routing algorithms from the source node s to the destination node t
in n-pancake graph to avoid the faulty node f.

133

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Figure 4: The Case 5-7 of the fault-tolerant routing algorithms from the source node s to the destination node t
in n-pancake graph to avoid the faulty node f.

Figure 5: The Case 8-11 of the fault-tolerant routing algorithms from the source node s to the destination node
t in n-pancake graph to avoid the faulty node f.

134

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

