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Abstract

In the k-Canadian traveller problem (k-CTP),
a traveller is given a positively weighted graph G
and two vertices s, t. At most k edges in G are
blocked. The traveller only learns the blocking of
an edge when he reaches one of its endpoints. The
goal of the traveller is to minimize the total length
of the route from s to t in G. It is shown by West-
phal that no deterministic online algorithm can ob-
tain a competitive ratio less than 2k+1 and there
is a deterministic algorithm achieving the compet-
itive ratio 2k + 1. Furthermore, Westphal showed
that no randomized online algorithm can achieve
a competitive ratio smaller than k + 1.

In this paper, we study the lower bounds of
competitiveness of the k-Canadian traveller prob-
lem on equal-weight graphs (k-EWCTP). Previ-
ous lower bounds for k-CTP cannot be applied to
this special class of weighted graphs. For determin-
istic and randomized online algorithms, we show
that the lower bounds on competitive ratios are at
least 2k + 1 and at least k + 1, respectively.

1 Introduction

Given an undirected graph G = (V,E) of non-
negative weights, and two vertices s, t, the shortest
path problem is to determine a shortest path from
s to t. Let us consider the following online version
of this problem. We assume that some edges are
blocked. An online algorithm learns the blocking
of ah edge only when it reaches one of its end-
points. If the traveller reaches a blocked edge in
his currently planned route, then he cannot pass
this blocked edge. Hence the traveller must choose
another route to reach the destination t. This
online problem on graphs of at most k blocked
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edges is called the k-Canadian Traveller Problem
(k-CTP) which is introduced by Papadimitriou
and Yannakakis [3].

The performance of a deterministic algorithm
for k-CTP is based on the competitive ratio de-
fined as follows. Let σ denote the input (G, s, t)
where G is a graph and s and t are two ver-
tices of G. For any deterministic algorithm ALG
for k-CTP and any input σ, let |ALG(σ)| denote
the total length of the s − t-path produced by
ALG on input σ. Let OPT denote the optimal
offline algorithm k-CTP. Note that, for any in-
put σ = (G, s, t), |OPT(σ)| is exactly the shortest
length of s − t-path in G with the blocked edges
removed. A deterministic algorithm ALG is c-
competitive if, for input σ = (G, s, t), |ALG(σ)| ≤
c · |OPT(σ)|. The smallest value c such that ALG
is c-competitive is called the competitive ratio of
ALG. The competitive ratio of a randomized al-
gorithm ALG for k-CTP is the smallest value c
such that the expected total length E(|ALG(σ)|) ≤
c · |OPT(σ)| for any input σ.

Westphal [4] gave the first comprehensive study
of lower bounds of the competitive ratio for k-
Canadian Traveller Problem. In [4], it is shown
that no deterministic online algorithm can achieve
a competitive ratio smaller than 2k + 1 for k-
CTP. Furthermore, Westphal showed that this
bound is optimal by providing an easy algorithm
called BackTrack which obtains the competitive ra-
tio 2k+1. For lower bounds of the competitive ra-
tio of randomized online algorithms, Westphal [4]
showed that no randomized online algorithm can
achieve a competitive ratio less than k + 1 for k-
CTP by using Yao’s principle [5].

Upper bounds of the competitive ratio of ran-
domized online algorithms are also studied re-
cently. For vertex-disjoint graphs, Bender and
Westphal [1] proposed a randomized version of
the algorithm BackTrack which obtains competi-
tive ratio k + 1. For arbitrary graphs, Demaine
et al. [2] proposed a polynomial-time randomized
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algorithm which obtains the competitive ratio less
than 2k + 1 by an o(1) factor. Furthermore, they
showed a super-polynomial randomized algorithm
can achieve the competitive ratio (1+

√
2/2)k+1.

In this paper, we consider a special class
of graphs called equal-weight graphs. Let k-
EWCTP denote the k-Canadian Traveller Prob-
lem on equal-weight graphs. We study the lower
bounds of competitive ratios of deterministic and
randomized algorithms for k-EWCTP. Note that
Westphal’s lower bound provided in [4] does not
imply the lower bounds for k-EWCTP. We show
that the competitive ratio of any deterministic on-
line algorithm for k-EWCTP is at least 2k + 1.
This bound is tight since the algorithm BackTrack
can obtain this bound. Furthermore, we also show
that the competitive ratio of any randomized on-
line algorithm for k-EWCTP is at least k + 1.

2 Optimal competitive ratio of de-
terministic online algorithms for
k-EWCTP

First, we consider the upper bound. In [4],
Westphal proposed the algorithm BackTrack de-
scribed as follows: on input G = (V,E), s, t,
BackTrack finds shortest s − t-path P1. If there
is a blocked edge e1 ∈ P1, the algorithm goes back
to s and sets E1 = E\{e1}. Next, BackTrack finds
the shortest s−t-path P2 in G1 = (V,E1). If there
is a blocked edge e2 ∈ P2, BackTrack goes back to
s and sets E2 = E1\{e2}. Then BackTrack finds
the shortest s− t-path P3 in G2 = (V,E2) and so
on.

Lemma 1. ( [4]) For any input σ = (G, s, t), the
competitive ratio of BackTrack is at most 2k + 1.

Theorem 1. For k-EWCTP, no deterministic
online algorithm can have its competitive ratio less
than 2k + 1 .

Proof. The proof roadmap is as follows. Given any
deterministic online algorithm ALG, we design an
equal-weight graph G and its two vertices s, t as
its input σ = (G, s, t). Then we show that ALG
must have its competitive ratio at least 2k+ 1 for
this particular input σ. The input σ = (G, s, t) is
illustrated in the Fig. 1. Note that there are k+1
vertex-disjoint paths s→ vi → t for 1 ≤ i ≤ k+1.
We can view each deterministic algorithm ALG as
a permutation on these k + 1 paths where each
permutation corresponds to the order of paths
{s → vi → t : 1 ≤ i ≤ k + 1} which ALG takes

Figure 1: The input σ = (G, s, t) for the proof of
the lower bound.

while searching a route from s to t. Without loss of
generality, we assume that edges (vi, t) are blocked
for 1 ≤ i ≤ k and the last path which ALG chooses
is s→ vk+1 → t. The cost of ALG is 2km+m+ 1
while the cost of the optimal offline algorithm is
m + 1. Hence, the competitive ratio of ALG is at
least

2km+m+ 1

m+ 1
=

2k + 1 + 1/m

1 + 1/m
→ 2k + 1.

as m is sufficiently large. Therefore, the competi-
tive ratio of ALG will be close to 2k + 1.

By Lemma 1, the algorithm BackTrack obtains
the competitive ratio 2k+1. Hence there is no de-
terministic online algorithm with competitive ra-
tio less than 2k + 1.

2.0.1 Lower bounds of the competitiveness
of randomized online algorithm for
k-EWCTP

In this subsection, we consider the competi-
tive ratio of randomized online algorithms for k-
EWCTP. We will use the known Yao’s minimax
principle. For completeness, we include the defi-
nitions, the statement, and its proof here.

Definition 1. Let A denote the set of determin-
istic algorithms and let X denote the set of inputs.
Given a ∈ A and x ∈ X , let c(a, x) be the cost of
the algorithm a on input x.

Let p and q be distributions on A and X , re-
spectively. Let A be the random algorithm chosen
according to p and let X be the random input cho-
sen according to q.
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Lemma 2. (Yao’s Minimax Principle [5])
mina∈A E[c(a,X)] ≤ maxx∈X E[c(A, x)].

Proof. Let C = maxx∈X E[c(A, x)]. For any x ∈
X ,

∑

a∈A
pa · c(a, x) = E[c(A, x)] ≤ C.

This implies that

min
a∈A

E[c(a,X)] = min
a∈A

∑

x∈X
qx · c(a, x)

≤
∑

a∈A
pa

∑

x∈X
qx · c(a, x)

=
∑

x∈X
qx

∑

a∈A
pa · c(a, x)

≤
∑

x∈X
qx · C

= C.

Next, we show the lower bound of competi-
tive ratio of randomized online algorithm for k-
EWCTP by using Lemma 2.‘

Theorem 2. There is no randomized online algo-
rithm against an oblivious adversary with compet-
itive ratio less than k + 1.

Proof. The proof roadmap is as follows. Here we
define the cost c(A, σ) of an algorithm A on an
input σ = (G, s, t) as the total length which A
walks from s to t in the equal-weight graph G with
at most k blocked edges. To prove the lower bound
of the competitiveness of a randomized algorithm,
we construct a deterministic algorithm ALG and
an input distribution X and show that the cost of
ALG on the input distribution X is at least k + 1.
Then, by Yao’s minimax principle, the theorem
follows.

We consider the following k + 1 inputs σi =
(Gi, s, t) where each Gi is the same as the graph
shown in Fig. 1 in which the edges (vj , t) are
blocked for all j �= i. The input distribution X
is defined by X = σi with probability 1/(k + 1).
Note that ALG corresponds to a permutation on
k+1 paths it searches for a way from s to t. With-
out loss of generality, we assume the corresponding
searching order is (1, 2, . . . , k + 1). For this ALG,
its expected competitive ratio with respect to X

is

E[c(ALG,X)]

m+ 1

=
1

(k + 1)(m+ 1)

k+1∑

i=1

(2(i− 1)m+ (m+ 1))

=
1

(k + 1)(m+ 1)

k+1∑

i=1

(2i− 1)m+ 1)

=
(k + 1)(k + 2)m+ (1−m)(k + 1)

(k + 1)(m+ 1)

=
(k + 1)(k + 1)(m+ 1)− (k + 1)k

(k + 1)(m+ 1)

= k + 1− k

m+ 1
.

The last term is close to k+1 as m is large enough.
By Lemma 2, the competitive ratio of any random-
ized algorithm for k-EWCTP is at least k + 1.
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