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Abstract

The traditional longest common subsequence
(LCS) problem is to find the maximum number of
ordered matches in two sequences. The similarity
of two one-dimensional sequences can be measured
by the LCS algorithms, which have been exten-
sively studied. However, for the two-dimensional
data, computing the similarity with an LCS-like
approach remains worthy of investigation. In this
paper, we utilize a systematic way to give the gen-
eralized definition of the two-dimensional largest
common substructure (TLCS) problem by refer-
ring to the traditional LCS concept. With differ-
ent matching rules, we thus define four versions
of TLCS problems. We also show that two of the
TLCS problems are NP-hard by reducing the k-
clique decision problem to them.

1 Introduction

The similarity or distance of one-dimensional
data can usually be measured by the algorithms
for the longest common subsequence (LCS) prob-
lem [2, 12–16, 23] or the edit distance problem [22].
These problems have been extensively studied for
several decades since 1970.

However, with the increasing motivation for
computing the similarity for higher dimensional
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data, the LCS algorithms are no longer feasible.
For example, to find the functionality of the sec-
ondary and tertiary structure of the proteins and
RNA [5], and to compute the similarity of the pic-
tures for identifying pictures in clinical diagnosis
and criminal investigation are two application ex-
amples with data dimension higher than one. The
increasing demand for computing the similarity of
two-dimensional data is essential. In 1977, Knuth
et al. [17] presented a method to find the pattern
matching in one-dimensional data. And then the
researches for computing two-dimensional data fo-
cused on pattern matching [4, 18].

In 1987, Chang et al. [7] presented a way of rep-
resenting a two-dimensional picture by 2D strings.
With this method, one can transform a picture
into a one-dimensional string with iconic indices
[26]. They also presented three types of similar-
ity relation between two iconic objects. Chang et
al. [6] proposed a similarity retrieval algorithm,
called 2D-string-LCS, to retrieve the most similar
picture whose type similarity is the largest in the
image database. In 1992, Lee and Hsu [20] pro-
posed another similarity retrieval definition with
2D C-strings. The most previous researches of
2D strings focused on the similarity retrieval of
images, pattern matching, image database design
and its variants [6, 8, 9, 11, 19–21, 25]. With
theoretical interest, in 2000, Guan et al. [11]
proved that the problems of finding maximum sim-
ilar subpictures of relations type-0 and type-1 of
2D strings are NP-hard.

Without transforming the two-dimensional
data into 2D strings and iconic indices, in 1998,
Baeza-Yates [3] presented a method to compute
the edit distance between two matrices. In 2008,
Amir et al. [1] gave another similarity definition of
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two matrices, which is the two-dimensional largest
common substructure (TLCS, which was short-
ened as 2D LCS by Amir, but it is called TLCS
in this paper.) problem. Amir’s definition of the
TLCS problem is exactly the same as the type-1
relation in 2D strings [7, 11]. However, there is no
connection between 2D strings and Amir’s work.
Amir et al. proved the NP-hardness of the TLCS
problem with another way.

In this paper, we give more general definitions
of the TLCS problem. We first present eight pos-
sible matching rules for the TLCS problem. Then
we show that four of them are valid, and the others
are invalid. Among these valid generalized TLCS
problems, P (ENE) (introduced later) is exactly
the same as type-0 relation in 2D strings [7, 11].
Although the proof technique of NP-hardness of
type-0 relation in 2D strings [11] can be applied to
the proof that P (ENL) (introduced later) is NP-
hard, we still give a different way to prove that
P (ENL) is NP-hard. The NP-hardness proof of
P (ENL) can also be applied to P (ENE).

The organization of this paper is given as fol-
lows. In Section 2, we will give some notations,
and review the picture retrieval problem and the
TLCS problem. In Section 3, we will present
the formal definitions of two-dimensional largest
common substructure (TLCS) problems with our
matching rules. We will also show that the two
versions of the TLCS problem are NP-hard with
a different way in Section 4. Finally, in Section 5,
we will give our conclusions.

2 Preliminaries

In this section, we first present the notations
used in this paper in the following. Let S be a
sequence of elements, where S = s1s2s3 . . . s|S|.

• S is called a sequence or a string.

• si is the ith element of S.

• |S| represents the length of S, i.e., the number
of elements in S.

• Si..j = sisi+1si+2 . . . sj denotes a substring
starting from the ith element and ending at
the jth element of S.

Let A and B be two matrices, where A =
a1,1, a1,2, . . . , a1,cA , a2,1, a2,2, . . . , a2,cA , . . . , arA,1,
arA,2, . . . , arA,cA and B = b1,1, b1,2, . . . , b1,cB ,
b2,1, b2,2, . . . , b2,cB , . . . , brB,1, brB ,2, . . . , brB,cB . In

Figure 1: An example of the 2D string defined by
Chang et al. [7], where the 2D string is (d : e <
b = c < a = a, a = d : e < b < a = c).

addition, each ai,j ∈ Σ, 1 ≤ i ≤ rA, 1 ≤ j ≤ cA,
and each bp,q ∈ Σ, 1 ≤ p ≤ rB , 1 ≤ q ≤ cB.

• ai,j is the entry at the ith row and the jth
column of matrix A.

• ai,∗ denotes the ith row and a∗,j denotes the
jth column of matrix A.

• rA represents the number of the rows and cA
represents the number of columns of matrix
A.

• πA = rA× cA represents the size of matrix A,
i.e., the number of elements in A.

2.1 The Picture Retrieval Problem

In the pictorial information retrieval problem,
the goal is to to retrieve pictures which satisfy a
certain picture query. For example, one may want
to find all pictures with a car to the right of a tree.
In 1987, Chang et al. [7] proposed a way for repre-
senting the two-dimensional data with 2D strings.
The problem of pictorial information retrieval can
be regarded as the 2D subsequence matching prob-
lem.

A 2D string can be represented with (Sr, Sc),
where Sr and Sc denote the row relation and col-
umn relation, respectively. To represent the spa-
tial relation, three special symbols T = { = , <
, : } are used. For two objects, = represents the
same spatial relation, < means the below-above
spatial relation in Sr, or the left-right spatial re-
lation in Sc. : represents that two objects are
at the same position, that is, the same coordinate.
Suppose there are n objects. Sr and Sc can be
represented as s1s2...s2n−1, where si ∈ Σ when
i mod 2 = 1, and si ∈ T when i mod 2 = 0. Fig-
ure 1 shows an example for the 2D string.

There are many ways for describing 2D strings,
including absolute 2D strings, normal 2D strings,
2D C-strings and so on [6–8, 19–21].

2

The 33rd Workshop on Combinatorial Mathematics and Computation Theory



Furthermore, Chang et al. defined three dif-
ferent types of matches. Let ai1,j1 and ai2,j2 be
two objects (elements) in matrix A, and bp1,q1 and
bp2,q2 be two objects in matrix B. Suppose that
ai1,j1 matches to bp1,q1 and ai2,j2 matches to bp2,q2

with type-i relation. The definitions are given as
follows [7].

• type-0: (i1 − i2) × (p1 − p2) ≥ 0 and (j1 −
j2)× (q1 − q2) ≥ 0

• type-1: [(i1 − i2)× (p1 − p2) > 0 or i1 − i2 =
p1 − p2 = 0] and
[(j1−j2)×(q1−q2) > 0 or j1−j2 = q1−q2 = 0]

• type-2: i1− i2 = p1− p2 and j1 − j2 = q1− q2

In 2000, Guan et al. [11] proved the problems
of finding maximum similar subpictures of rela-
tions type-0 and type-1 are NP-hard by reduc-
ing from the Boolean satisfiability problem (SAT)
[10, 24]. In the SAT problem with each clause
having exactly three literals, the set of Boolean
variables is {x1, x2, · · · , xk}, and the Boolean for-
mula is φ = c1∧ c2∧ · · · ∧ cn, where each clause
ci = vi,1 ∨ vi,2 ∨ vi,3, for 1 ≤ i ≤ n. The trans-
formation of matrix A and matrix B is given as
follows.

• In matrix A: [vi,j , g1(i, j), h1(i, j)], which
means that an object vi,j locates at entry
(g1(i, j), h1(i, j)) of A.

• In matrix B: [vi,j , g2(i, j), h2(i, j)], which
means that an object vi,j locates at entry
(g2(i, j), h2(i, j)) of B.

g1(i, j) =







3i− 2 if j = 1,
3i− 1 if j = 2,
3i if j = 3,

(1)

g2(i, j) =







3i if j = 1,
3i− 1 if j = 2,
3i− 2 if j = 3,

(2)

h1(i, j) =















2p if vi,j is the
Boolean variable x̄p,

2p− 1 if vi,j is the
Boolean variable xp,

(3)

h2(i, j) =















2p if vi,j is the
Boolean variable x̄p,

2p− 1 if vi,j is the
Boolean variable xp,

(4)

Figure 2: Matrices A and B constructed from the
Boolean formula φ = (x1∨x3∨ x̄2) ∧(x̄1∨x2∨ x̄3).

In Figure 2, we show an example of the trans-
formation. As one can see, there exist some max-
imum similar subpictures of relations type-0 and
type-1 between matrices A and B with size n if
and only if φ is satisfiable. The reason is that in
each clause, there would be only one satisfiable
relation match.

2.2 The Two-Dimensional Largest
Common Substructure Problem

In 2008, Amir et al. [1] defined the two-
dimensional largest common substructure (TLCS,
which originally was named as two-dimensional
longest common substructure and shortened as
2D-LCS by Amir et al.) problem. With the con-
cept of the one-dimensional LCS, they defined the
TLCS as the largest identical substructure which
is obtained from two input matrices by deleting
zero or more of their entries. A substructure is
obtained from a matrix by deleting some entries
but preserving the orientation of remaining entries
in the plane. In a common substructure of two in-
put matrices, the orientations of any two common
elements (matches) are the same as those in the
input matrices. In the one-dimensional LCS, the
LCS is ordered on a line. The concept is also ap-
plicable in the two-dimensional problem as well.
Hence, the TLCS problem is to find the maximal
identical symbols which preserve their order in the
two matrices. The formal TLCS definition and
matching rules are given as follows.

Definition 1. [1] Two-dimensional largest com-
mon substructure (TLCS) problem
Input: Matrix A of size πA = rA × cA and matrix
B of size πB = rB × cB.
Output: The maximum domain size of a one-
to-one function f : {1, . . . , rA} × {1, . . . , cA} →
{1, . . . , rB}×{1, . . . , cB} such that ai,j = bf(i,j) =
bp,q, (i, j) ∈ domain(f). For every pair

3

The 33rd Workshop on Combinatorial Mathematics and Computation Theory



Figure 3: The TLCS of matrix A and matrix B or
matrix C with the definition of Amir et al., where
the answers are shown by the boldface symbols.
(a) The TLCS of matricesA and B. (b) The TLCS
of matrices A and C.

(i1, j1), (i2, j2) ∈ domain(f) that (p1, q1) =
f(i1, j1) and (p2, q2) = f(i2, j2), the following
holds:

• i1 < i2 if and only if p1 < p2.

• j1 < j2 if and only if q1 < q2.

• i1 = i2 if and only if p1 = p2.

• j1 = j2 if and only if q1 = q2.

In fact, the TLCS problem defined by Amir et
al. (Definition 1) is exactly the same as the simi-
larity relation of type-1 on 2D strings, which has
been proved to be NP-hard [11]. However, Amir
et al. did not refer to the papers studying the lat-
ter problem [7, 11]. As an example, Figure 3 shows
three matrices A, B and C. It is clear that matrix
B can be obtained by rotating some columns of
matrix A. Thus, A and B are more similar than
A and C. However, the TLCS of A and B is equal
to the TLCS ofA and C, where their sizes are both
3. Consequently, in this paper, we propose some
different matching rules to disclose more similarity
as how we look.

In 2008, Amir et al. proved the TLCS is NP-
hard by reducing from the k-clique problem [1].
Suppose a graph G = (V,E) and a constant k are
given. Matrix A is transformed from a k-clique,
of size k × k, and matrix B from graph G, of size
|V | × |V |, as follows:

ai,j =

{

2 if i = j
1 otherwise

(5)

bi,j =







2 if i = j
1 if (Vi, Vj) ∈ E
0 if (Vi, Vj) /∈ E

(6)

Figure 4: Matrices A and B constructed for the
graph G and constant k = 3. (a) A graph G. (b)
Matrix A constructed from a 3-clique and matrix
B constructed from the graph G.

In Figure 4, we show an example of the trans-
formation. As one can see, there exists a TLCS of
size k2 between matrices A and B if and only if
there exists a clique of size k in G.

3 Problem Definitions

In this section, we present our formal definitions
of the two-dimensional largest common substruc-
ture (TLCS) problem and give some properties.

3.1 Operator Definitions

To find the similarity of the two-dimensional
data, we extend the concept for defining the one-
dimensional LCS problem to the TLCS problem.
The inputs of the TLCS problem are two matri-
ces of characters, and we aim to find the largest
common substructure. We regard matrix A of size
rA × cA as the index set TA = {(i, j)|1 ≤ i ≤ rA
and 1 ≤ j ≤ cA}. A substructure of A is defined
as an index subset of TA. A common substructure
U of two matrices A and B is defined as an set
of index pairs, one from A and the other from B,
which obey the matching rules. Since each index
of A or B has two tuples, U consists of four-tuples.
That is, the set of matching index pairs is defined
as U = {(i, j, p, q) | ai,j = bp,q, and the matching
rules are obeyed.}. The matching rules will deter-
mine whether every two matches (two four-tuples)
are allowed or not. We will introduce the match-
ing rules in detail later. In the following, we first
present the definition of the TLCS problem, which
is the generalization of Definition 1 given by Amir
et al. [1].

Definition 2. Two-dimensional largest common
substructure problem (TLCS)
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Figure 5: An example of the TLCS with P (ENL)
of two matrices.

Input: Matrix A with size πA = rA × cA and ma-
trix B with size πB = rB × cB.
Output: The set CU of four-tuple indices of A and
B with maximum cardinality, where every two ele-
ments in CU obey the matching rules (given later).

The goal of the TLCS problem is to find the
maximum number of matches such that every two
matches satisfy the matching rules for determining
whether the two matches are valid or not. In other
words, the TLCS problem aims to find the largest
common substructure CU between two character
matrices. In Figure 5, we show an example for the
TLCS definition with the matching rule P (ENL)
which is one of the matching rules we define (ex-
plained later).

In the traditional one-dimensional LCS prob-
lem, two matching rules have to be obeyed for one
common sequence: (1) no duplicate match; and
(2) no crossing matches. Similarly, in the TLCS
problem, these two rules are still applicable. How-
ever, the concept of no crossing matches becomes
more complicated in TLCS. In other words, the
orientation of TLCS would be more various, and
the matching rules would become more diverse.
In the TLCS problem, there are eight possible di-
rections in the orientation. They are left, right,
upper, lower, upper left, upper right, lower left
and lower right. Therefore, we divide the two-
dimensional matching rules into two parts, logi-
cal operator and orientation. The logical opera-
tor combines the relationship between rows and
columns. For logical operators, there are two
ways, one is And(N) for considering both the ori-
entation of rows and columns together, and the
other is Or(R) for treating rows and columns as
independent. The formal definition of logical op-
erators is given as follows.

Definition 3. Logical operator
And (N): Both row and column relationships are
satisfied.
Or (O): The row relationship or the column rela-
tionships is satisfied.

Figure 6: Examples for illustrating corners. (a)
Matrix A. (b) The definition of corners with logi-
cal operator N. (c) The definition of corners with
logical operator O.

For two elements ai1,j1 and ai2,j2 , there are
two different conditions of the orientation. Corner
means that i1 6= i2 and j1 6= j2, and side means
that i1 = i2 or j1 = j2.

There are two possible corner rules. Sup-
pose two elements ai1,j1 and ai2,j2 are in matrix
A, and bp1,q1 and bp2,q2 are in matrix B, where
(i1, j1, p1, q1), (i2, j2, p2, q2) ∈ U . For the row re-
lationship, if i1 < i2 in matrix A, we have either
p1 < p2 or p1 ≤ p2, but not p1 > p2 in matrix
B, because the orientation should be preserved.
Similarly, for the column relationship, there are
still two feasible cases, q1 < q2 or q1 ≤ q2, when
j1 < j2. On the other hand, if i1 > i2 in matrix
A, we have either p1 > p2 or p1 ≥ p2 in matrix B.
We denote p1 < p2 or p1 > p2 as less than (L),
and p1 ≤ p2 or p1 ≥ p2 as less than or equal to
(E) when i1 < i2 or i1 > i2. The definition of the
corner is given as follows.

Definition 4. Corner: Let two elements ai1,j1
and ai2,j2 be in A where i1 6= i2 and j1 6= j2.
And let two elements bp1,q1 and bp2,q2 be in matrix
B. (i1, j1, p1, q1), (i2, j2, p2, q2) ∈ U .
Less than (L): p1 < p2 when i1 < i2, and q1 < q2
when j1 < j2.
Less than or equal to (E): p1 ≤ p2 when i1 < i2,
and q1 ≤ q2 when j1 < j2.

In Figure 6, we show examples for the defini-
tion of corners. Suppose the element ai1,j1 is of
character α, ai2,j2 is marked by dark in matrix
A. In matrix B, the allowed positions of element
bp2,q2 are illustrated by dark cells if (i1, j1, p1, q1),
(i2, j2, p2, q2) ∈ U .

For the definition of side, if i1 = i2 and j1 < j2,
then we need keep only the column orientation
because we could say that the element (i1, j1) is on
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Figure 7: Two examples for illustrating the defi-
nition of sides.

the left side of (i2, j2). There are also two possible
side rules, less than (L) and less than or equal to
(E). In addition, we also define rule A for Amir et
al.

Definition 5. Side: Let two elements ai1,j1 and
ai2,j2 be in matrix A where i1 = i2 or j1 = j2.
And let two elements bp1,q1 and bp2,q2 be in matrix
B. (i1, j1, p1, q1), (i2, j2, p2, q2) ∈ U .
Less than (L): p1 < p2 when i1 < i2 and j1 = j2.
q1 < q2 when i1 = i2 and j1 < j2.
Less than or Equal to (E): p1 ≤ p2 when i1 < i2
and j1 = j2. q1 ≤ q2 when i1 = i2 and j1 < j2.
Amir’s rule (A): p1 < p2 and q1 = q2 when i1 < i2
and j1 = j2. p1 = p2 and q1 < q2 when i1 = i2
and j1 < j2.

Figure 7 shows two examples for the definition
of sides. Suppose ai1,j1 is of character α and ai2,j2
is marked by dark in matrix A. In matrix B, the
allowed positions of element bp2,q2 are presented
by dark cells if (i1, j1, p1, q1), (i2, j2, p2, q2) ∈ U .

3.2 Problem Definitions

When we define a TLCS problem, we parti-
tion the definitions into three parts and denote
the TLCS problem as P (corner, operator, side),
where operator denotes the logical operator for
dealing with the relationship between the row in-
dex and column index, corner and side represent
the row and column relationship. Accordingly,
there are 2 × 2 × 2 different versions of problems,
two possible values (L,E) for corner, two possible
values (And,Or) for operator, and two possible
values (L,E) for side. Besides, the TLCS problem
defined by Amir et al. is expressed as P (LNA).
Let ai1,j1 and ai2,j2 be in matrix A, and bp1,q1

and bp2,q2 be in matrix B, where (i1, j1, p1, q1),
(i2, j2, p2, q2) ∈ U . Then we present the matching

rules of the eight versions of the TLCS problem in
the following.

P(LNL): P(Less than, aNd, Less than)

(i) i1 < i2, j1 < j2 → p1 < p2 and q1 < q2
(ii) i1 < i2, j1 > j2 → p1 < p2 and q1 > q2
(iii) i1 < i2, j1 = j2 → p1 < p2
(iv) i1 = i2, j1 < j2 → q1 < q2

P(LNE): P(Less than, aNd, less than or Equal
to)

(i) i1 < i2, j1 < j2 → p1 < p2 and q1 < q2
(ii) i1 < i2, j1 > j2 → p1 < p2 and q1 > q2
(iii) i1 < i2, j1 = j2 → p1 ≤ p2
(iv) i1 = i2, j1 < j2 → q1 ≤ q2

P(ENL): P(less than or Equal to, aNd, Less
than)

(i) i1 < i2, j1 < j2 → p1 ≤ p2 and q1 ≤ q2
(ii) i1 < i2, j1 > j2 → p1 ≤ p2 and q1 ≥ q2
(iii) i1 < i2, j1 = j2 → p1 < p2
(iv) i1 = i2, j1 < j2 → q1 < q2

P(ENE): P(less than or Equal to, aNd, less
than or Equal to)

(i) i1 < i2, j1 < j2 → p1 ≤ p2 and q1 ≤ q2
(ii) i1 < i2, j1 > j2 → p1 ≤ p2 and q1 ≥ q2
(iii) i1 < i2, j1 = j2 → p1 ≤ p2
(iv) i1 = i2, j1 < j2 → q1 ≤ q2

P(LOL): P(Less than, Or, Less than)

(i) i1 < i2, j1 < j2 → p1 < p2 or q1 < q2
(ii) i1 < i2, j1 > j2 → p1 < p2 or q1 > q2
(iii) i1 < i2, j1 = j2 → p1 < p2
(iv) i1 = i2, j1 < j2 → q1 < q2

P(LOE): P(Less than, Or, less than or Equal
to)

(i) i1 < i2, j1 < j2 → p1 < p2 or q1 < q2
(ii) i1 < i2, j1 > j2 → p1 < p2 or q1 > q2
(iii) i1 < i2, j1 = j2 → p1 ≤ p2
(iv) i1 = i2, j1 < j2 → q1 ≤ q2

P(EOL): P(less than or Equal to, Or, Less
than)

(i) i1 < i2, j1 < j2 → p1 ≤ p2 or q1 ≤ q2
(ii) i1 < i2, j1 > j2 → p1 ≤ p2 or q1 ≥ q2
(iii) i1 < i2, j1 = j2 → p1 < p2
(iv) i1 = i2, j1 < j2 → q1 < q2

P(EOE): P(less than or Equal to, Or, less than
or Equal to)

(i) i1 < i2, j1 < j2 → p1 ≤ p2 or q1 ≤ q2
(ii) i1 < i2, j1 > j2 → p1 ≤ p2 or q1 ≥ q2
(iii) i1 < i2, j1 = j2 → p1 ≤ p2

6
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(iv) i1 = i2, j1 < j2 → q1 ≤ q2

In the eight matching rules, we can find that
P (ENE) is exactly the same as the type-0 relation
of 2D strings [7, 11] and P (LNA), defined by Amir
et al., is exactly the same as the type-1 relation
[7, 11]

In the above definitions, not all matching rules
can form a valid TLCS problem. A valid matching
rule should be symmetric. That is, the optimal
solution of two matrices A and B should also be
the optimal solution of matrices B and A.

Let Rx denote the binary relation for satisfy-
ing P (x) matching rule, where x ∈ { LNL, LNE,
ENL, ENE, LOL, LOE, EOL, EOE }. Let
ai1,j1 and ai2,j2 be two distinct elements in ma-
trix A, and bp1,q1 and bp2,q2 be two distinct ele-
ments in matrix B. We say that (i1, j1, i2, j2) Rx

(p1, q1, p2, q2) if they satisfy the matching rule x.
Furthermore, the TLCS problem with matching
rule x is a valid problem if and only if the binary
relation Rx is symmetric.

Lemma 1. The binary relation RENL is symmet-
ric.

Proof. Suppose (i1, j1, i2, j2) RENL (p1, q1, p2, q2).
Here, we want to prove that (p1, q1, p2, q2) RENL

(i1, j1, i2, j2) is true.
To prove the symmetry of RENL, four cases are

considered as follows.

Case 1: ai1,j1 and ai2,j2 are corner, bp1,q1 and
bp2,q2 are corner.

Case 2: ai1,j1 and ai2,j2 are side, bp1,q1 and
bp2,q2 are side.

Case 3: ai1,j1 and ai2,j2 are corner, bp1,q1 and
bp2,q2 are side.

Case 4: ai1,j1 and ai2,j2 are side, bp1,q1 and
bp2,q2 are corner.

In cases 1 and 2, the condition of the orientation
of the ai1,j1 , ai2,j2 and bp1,q1 , bp2,q2 are the same.
Hence, if (i1, j1, i2, j2) RENL (p1, q1, p2, q2), then
(p1, q1, p2, q2) RENL (i1, j1, i2, j2). In rule (i) of
P (ENL), p1 ≤ p2 and q1 ≤ q2 when i1 < i2 and
j1 < j2. Hence, in case 3, it should be: (1) p1 < p2,
q1 = q2; or (2) p1 = p2, q1 < q2. In these two con-
ditions, according to P (ENL) rules (iii) and (iv)
respectively, (p1, q1, p2, q2) RENL (i1, j1, i2, j2) is
true. Consequently, RENL is symmetric in case
3. Similarly, case 4 is symmetric. Thus RENL is
symmetric.

With similar proofs (omitted here), we have the
following lemma.

Figure 8: Examples of valid matching rules
for P (ENL). (a) The definition of corner for
P (ENL). (b) The definition of side for P (ENL).
(c) An example for P (ENL). (d) Another exam-
ple for P (ENL).

Lemma 2. The binary relations RENE, RLOL

and RLOE are symmetric.

By the above two lemmas, the following theo-
rem can be obtained.

Theorem 1. Each of the TLCS problem with
P (ENL), P (ENE), P (LOL) and P (LOE) is
valid.

In Figure 8 we present an example for showing
that RENE is symmetric. In Figure 8 (a) and (b),
suppose ai1,j1 = α and ai2,j2 is marked by dark
in matrix A. In matrix B, the allowed positions
of element bp2,q2 are illustrated by dark cells. In
Figure 8 (c) and (d), we can find that (2, 2, 2, 3)
RENE (2, 2, 3, 3) and (2, 2, 3, 3) RENE (2, 2, 2, 3).
This example can also be applied to RENL, RLOL

and RLOE .

Lemma 3. The binary relations RLNL, RLNE,
REOL and REOE are not symmetric.

Proof. For each binary relation, we give an ex-
ample to show that it is not symmetric. It is
clear that (2, 2, 2, 3) RLNL (2, 2, 3, 3). However,
(2, 2, 3, 3) RLNL (2, 2, 2, 3) is not true. Hence,
RLNL is not symmetric.

Similarly, (2, 2, 2, 3)RLNE (2, 2, 3, 3). However,
(2, 2, 3, 3) RLNE (2, 2, 2, 3) is not true. (2, 2, 3, 3)
REOL (2, 2, 2, 1). Rule (iv) of P (EOL) can be
rewritten as [i1 = i2, j1 > j2 → q1 > q2]. Thus,
(2, 2, 2, 1) REOL (2, 2, 3, 3) is not true. (2, 2, 3, 3)
REOE (2, 2, 2, 1). Rule (iv) of P (EOE) can be
rewritten as [i1 = i2, j1 > j2 → q1 ≥ q2]. However,
(2, 2, 2, 1) REOE (2, 2, 3, 3) is not true.

Thus, this lemma holds.

7

The 33rd Workshop on Combinatorial Mathematics and Computation Theory



Figure 9: An example of the invalid matching
rule for P (LNE). (a) The definition of corner for
P (LNE). (b) The definition of side for P (LNE).
(c) An example for the valid P (LNE) matching
rule. (d) An example of an invalid matching rule
for P (LNE), which shows that RLNE is not sym-
metric with respect to (c).

Figure 9 illustrates an example that RLNE is
not symmetric. In Figure 9 (a) and (b), suppose
ai1,j1 = α and ai2,j2 is marked by dark in matrix
A. In matrix B, the allowed positions of element
bp2,q2 are illustrated by dark cells. It is clear that
Figure 9 (c) (2, 2, 2, 3)RLNE (2, 2, 3, 3), but in Fig-
ure 9 (d) (2, 2, 3, 3) RLNE (2, 2, 2, 3) is not true.

With Lemma 3, we get the following result.

Theorem 2. The problems P (LNL), P (LNE),
P (EOL) and P (EOE) are not valid.

We summarize the possible TLCS problems
with various matching rules in Table 1. In the
table, (i1, j1) and (i2, j2) are in matrix A, and the
relation inside each cell indicates the relation be-
tween (p1, q1) and (p2, q2) in matrix B. Taking
P (ENL) as an example, two matching elements in
the corner positons of matrix A with i1 < i2 and
j1 < j2 means that p1 ≤ p2 and q1 ≤ q2 in matrix
B, respectively. And two matching elements in the
side positons of matrix A with i1 < i2 and j1 = j2
means that p1 < p2in matrix B. RA and CA
represent that row alignment and column align-
ment, respectively. Row alignment means that
the two-dimensional matrix is mapped into one-
dimensional by the row-major scheme. Hence, the
row alignment only considers the order of the rows.
Similarly, the column alignment corresponds to
the column-major scheme.

Definition 6. Let CUx denote the largest com-
mon substructure (optimal solution) of P (x), x ∈
{ENL, ENE,LOL,LOE,RA,CA,LNA}, where
RA and CA denote the problem with the row align-
ment and column alignment, respectively. And, let
|CUx| denote its size.

Table 1: The TLCS problems with various match-
ing rules. Here, (i1, j1) and (i2, j2) are in matrix
A, and each cell in column (i1, i2) indicates the re-
lation between (p1, p2) of matrix B and in column
(j1, j2) indicates the relation between (q1, q2).

Problem Operator
Corner Side

Valid
i1 < i2 j1 < j2 i1 < i2 j1 > j2 i1 < i2 j1 = j2 i1 = i2 j1 < j2

RA

and

< < < = < Y
CA < > < = < Y
LNA < < < > < = = < Y
LNL < < < > < < N
LNE < < < > ≤ ≤ N
ENL ≤ ≤ ≤ ≥ < < Y
ENE ≤ ≤ ≤ ≥ ≤ ≤ Y
LOL

or

< < < > < < Y
LOE < < < > ≤ ≤ Y
EOL ≤ ≤ ≤ ≥ < < N
EOE ≤ ≤ ≤ ≥ ≤ ≤ N

Figure 10: Comparison of solution sizes of various
TLCS problems. (a) Matrices A and B. (b)-(h)
The solutions of various TLCS problems.

In the above definition, for example, CUENL

denotes the largest common substructure of
P (ENL), and |CUENL| denotes its size. CUENL

is represented by the maximal set of the four-
tuples of the matching index pairs {(i, j, p, q)|
ai,j = bp,q, and the P (ENL) matching rule is
obeyed.}. The solution sizes of these TLCS prob-
lems can be partially ordered. Figure 10 illustrates
the solutions with two input matrices A and B
shown in Figure 10 (a). We can see that with
different matching rules, it is possible to obtain a
different solution with the same input. We have
the following Theorem.

Theorem 3. |CULNA| ≤ |CUENL| ≤ (|CUENE |,
|CULOL|) ≤ |CULOE |, and |CULNA| ≤ (|CURA|,
|CUCA|) ≤ |CULOL| ≤ |CULOE |.

Here, we do not give the formal proof. With
the definitions of these TLCS problems, one can
easily show the correctness of the above theorem.
We illustrate the conceptual solutions in Figure 11,
from which the above theorem can also be verified.
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Figure 11: The illustration of conceptual solutions
of various TLCS problems. (a) The solution of cor-
ners for various TLCS problems. (b) The solution
of sides for various TLCS problems.

4 NP-hardness Proof

In 2000, Guan et al. [11] used the same proof
technique to show that the problems of finding
maximum similar subpictures of relations type-0
and type-1 are NP-hard by reducing from the
Boolean satisfiability problem (SAT). In 2008,
Amir et al. [1] proved that P (LNA) is NP-hard
by reducing from the clique problem. Note that re-
lation type-1 is exactly the same as P (LNA), and
type-0 is exactly the same as P (ENE). The proof
technique of type-0 can also applied to P (ENL).
But, the proof technique of P (LNA) cannot be
directly applied to P (ENL) nor P (ENE).

Inspired by Amir et al., we provide another way
to show that P (ENL) isNP-hard by reducing the
k-clique decision problem to it. The transforma-
tion ΓENL for P (ENL) is described in the follow-
ing. The input instance of the k-clique problem
is an undirected graph G = (V,E) and a constant
integer k, where V = {v1, v2, · · · , vn}, |V | = n.
We can construct two matrices from graph G and
constant k. Matrix A (size 3k×3k) is transformed
from a k-clique, and matrix B (size 3n× 3n) from
graph G. Matrices A and B are defined as follows.

ai,j =







































{

2 if i = j
1 otherwise

if i mod 3 = 2 and j mod 3 = 2
{

α if i− j = −2, 0, 2
β otherwise

if i mod 3 = 0, 1 and j mod 3 = 0, 1
γ otherwise.

(7)

bi,j =





















































2 if i = j
1 if (v i

3
+1, v j

3
+1) ∈ E

0 if (v i
3
+1, v j

3
+1) /∈ E

if i mod 3 = 2 and j mod 3 = 2
{

α if i− j = −2, 0, 2
β otherwise

if i mod 3 = 0, 1 and j mod 3 = 0, 1
δ otherwise.

(8)
Figure 12 illustrates an example of ΓENL. Ev-

ery submatrix of size 3×3 in A and B corresponds
to one edge of the graph. The center of each sub-
matrix in A or B is set to 1 if and only if the cor-
responding edge exists in a k-clique or the graph
G. Note that in A, no element is set to 0, since a
k-clique is a complete graph with k vertices. It is
obvious that in ΓENL, the required time for pro-
ducing matrices A and B is O(k2) and O(n2), re-
spectively.

It is clear that |CUENL| ≤ Min(|A|, |B|) = |A|.
Furthermore, ax,y 6= bx′,y′ when (x, y), (x′, y′) ∈
{(3i− 2, 3j − 1), (3i, 3j − 1), (3i− 1, 3j − 2), (3i−
1, 3j)|1 ≤ i, j ≤ n}. Only other elements may
be matched between A and B. Thus, |CUENL| is
bounded by 5k2.

In the following, we will prove that there
|CUENL| = 5k2 if and only if there exists a k-
clique in graph G. More precisely, if |CUENL| =
5k2 and element bp,p = 2 of B is one common ele-
ment in CUENL, then vertex vp should be picked
as one vertex of the k-clique. The following lem-
mas prove the above statement.

Lemma 4. Suppose (ai,i, bp,p) ∈ CUENL with
ai,i = bp,p = 2. If |CUENL| = 5k2, then (i− 1, i+
1, p− 1, p+1), (i+1, i− 1, p+1, p− 1) ∈ CUENL.

Proof. It is evident that ai−1,i+1 = ai+1,i−1 =
bp−1,p+1 = bp+1,p−1 = α when ai,i = bp,p = 2.
If |CUENL| = 5k2, each element of α in A has to
match with one element in B. In P (ENL), rule
(ii) [i1 < i2, j1 > j2 → p1 ≤ p2 and q1 ≥ q2] forces
ai−1,i+1 to match with bp−1,p+1 when (i, i, p, p) ∈
CUENL. Thus, (i−1, i+1, p−1, p+1) ∈ CUENL.
Similarly, (i+ 1, i− 1, p+ 1, p− 1) ∈ CUENL.

Lemma 5. Suppose (ai1,i1 , bp1,p1
), (ai2,i2 , bp2,p2

)
∈ CUENL with ai1,i1 = ai2,i2 = bp1,p1

=
bp2,p2

= 2. If |CUENL| = 5k2, then (i1, i2, p1, p2),
(i2, i1, p2, p1) ∈ CUENL.

Proof. We prove it by contradiction. Suppose that
(i1, i2, p1, p2) /∈ CUENL. Without loss of general-
ity, assume that i1 ≤ i2 − 3 and p1 ≤ p2 − 3 in
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(a)

(b)

Figure 12: An example of ΓENL for proving the
NP-hardness of P (ENL). (a)A graph G. (b)
Matrix A constructed from a 3-clique and matrix
B constructed from the graph G.

ΓENL. To ensure |CUENL| = 5k2, ai1,i2 = 1 is
forced to match with one element bp′,q′ in B, where
p′ 6= p1 or q′ 6= p2.

If p′ 6= p1, there are two cases: (1) p′ ≤ p1 −
3 and (2) p′ ≥ p1 + 3 (In ΓENL, |p′ − p1| ≥ 3
because bp′,q′ = 1 and bp1,p2

= 1.). In case (1),
(i1−1, i1+1, p1−1, p1+1) ∈ CUENL (by Lemma
4). If (i1, i2, p′, q′) ∈ CUENL, then p1 − 1 ≤ p′
is got since i1 − 1 < i1 and i1 + 1 < i2 (by rule
(i) of P (ENL)). It is a contradiction. And in
case (2), (i1 + 1, i1 − 1, p1 + 1, p1 − 1) ∈ CUENL

(by Lemma 4). If(i1, i2, p′, q′) ∈ CUENL, then
p1 + 1 ≥ p′ since i1 + 1 > i1 and i1 − 1 < i2 (by
rule (ii) rewritten as [i1 > i2, j1 < j2 → p1 ≥ p2
and q1 ≤ q2]). It is a contradiction. By these two
cases, we conclude that p′ = p1.

Similarly, we can obtain that q′ = p2. Thus,
(i1, i2, p1, p2) ∈ CUENL is true. With a simi-
lar proof, we can also get that (i2, i1, p2, p1) ∈
CUENL.

Lemma 6. |CUENL| = 5k2 if and only if there
exists a k-clique in graph G.

Proof. If there is a k-clique in G, it is obvious that
in ΓENL, 5k

2 elements in B can be matched with
elements in matrix A.

If |CUENL| = 5k2, it means that we have to
pick up k elements of value 2 in matrix B be-
cause there are also k elements of value 2 in ma-
trix A. We denote these k elements in matrix B as
bp1,p1

, bp2,p2
, . . . , bpk,pk

. With Lemma 5, we know
that each bpi,pj

= 1, 1 ≤ i, j ≤ k, has to match
with one element of A. Therefore, by ΓENL, the
matches we pick up in matrix B correspond to a
k-clique in G.

With Lemma 6, we have the following result.

Theorem 4. The TLCS problem with P (ENL)
is NP-hard.

Similarly, the reduction and Lemma 6 can also
be applied to P (ENE), thus we have the following
result.

Theorem 5. The TLCS problem with P (ENE)
is NP-hard.

5 Conclusion

In this paper, we present the more general
definitions of the two-dimensional largest com-
mon substructure (TLCS) problems with various
matching rules. To meet different demands, we
present different types of corners, operators and
sides. With various combinations of corners, op-
erators and sides, we define several TLCS prob-
lems, including P (ENL) , P (ENE), P (LOL) and
P (LOE). We show that two TLCS problems
P (ENL) and P (ENE) are NP-hard by reducing
the k-clique decision problem to them.

We have tried to prove that P (LOL) and
P (LOE) are NP-hard. However, we did not
succeed. Our conjecture is that P (LOL) and
P (LOE) are NP-hard. It is worthy to discover
whether these two problems are NP-hard or not.
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