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Abstract

Given a metric graph G = (V,E,w) and a pos-
itive integer k, the Single Allocation k-Hub
Center problem is to find a spanning subgraph
H∗ of G such that (i) C∗ ⊂ V is a clique of size
k in H∗; (ii) V \ C∗ forms an independent set in
H∗; (iii) each v ∈ V \C∗ is adjacent to exactly one
vertex in C∗; and (iv) the diameter D(H∗) is min-
imized. The vertices selected in C∗ are called hubs
and the rest of vertices are called non-hubs. The
Single Allocation k-Hub Center problem is
NP-hard in metric graphs. In this paper, we show
that for any ǫ > 0, it is NP-hard to approximate
the Single Allocation k-Hub Center problem
to a ratio 4

3−ǫ. Moreover, we give two approxima-
tion algorithms for solving this problem. One is a
2-approximation algorithm running in time O(n)
and the other is a 5

3 -approximation algorithm run-
ning in time O(kn3).
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1 Introduction

The Single Allocation k-Hub Center
problem is to choose a fixed number k of ver-
tices as hubs and to assign each non-hub vertex
to exactly one of the chosen hubs in such a way
that the maximum distance/cost between origin-
destination pairs is minimized. It has applications
in airline [3] and cargo delivery systems [7]. The
Single Allocation k-Hub Center problem is
introduced in [7, 2]. Unlike the goal of classical
hub location problems is to minimize the total
cost of all origin-destination pairs (see e.g., [10]),
the Single Allocation k-Hub Center prob-
lem is to minimize the poorest service quality. The
minmax criterion of the Single Allocation k-
Hub Center is able to avoid the drawback that
sometimes minimizing the total cost would lead
to the result that the poorest service quality is
extremely bad.

We consider a graph G = (V,E,w) with a dis-
tance function w(·, ·) being a metric on V such
that w(v, v) = 0, w(u, v) = w(v, u), and w(u, v) +
w(v, r) ≥ w(u, r) for all u, v, r ∈ V .

Single Allocation k-Hub Center (SAkHC)

Input: A metric graph G = (V,E,w) and a posi-
tive integer k.

Output: A spanning subgraph H∗ of G such that
(i) vertices (hubs) in C∗ ⊂ V form a clique of
size k in H∗; (ii) vertices (non-hubs) in V \ C∗

form an independent set in H∗; (iii) each non-hub
v ∈ V \ C∗ is adjacent to exactly one hub in C∗;
and (iv) the diameter D(H∗) is minimized.
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Figure 1: An example of single allocation k-hub
center networks with k = 4 where the circle nodes
and the square nodes denote hubs and non-hubs,
respectively.

The Single Allocation k-Hub Center
problem is NP-hard in metric graphs [4]. Sev-
eral linearizations of the integer program and
quadratic program were proposed in the litera-
ture [2, 4, 3, 6]. Many research efforts for solving
the Single Allocation k-Hub Center prob-
lem are focused on the development of heuristic
algorithms, e.g., [8, 11, 12, 13, 9, 1].

In this paper, we investigate the approximabil-
ity of the Single Allocation k-Hub Center
problem. The paper is organized as follows: In
Section 2, we prove that for any ǫ > 0, it is NP-
hard to approximate the Single Allocation k-
Hub Center problem to a ratio 4

3 − ǫ. In Sec-
tion 3, we give a 2-approximation algorithm run-
ning in time O(n) for the Single Allocation
k-Hub Center problem where n is the number
of vertices in the input graph. In Section 4, we
give a 5/3-approximation algorithm for the same
problem running in time O(kn3).

We close this section with some notation def-
initions. For a vertex v in a graph H , we use
NH(v) to denote the set of vertices adjacent to
v and NH [v] = NH(v) ∪ {v}. For a vertex set
X , we use NH(X) =

⋃

v∈X NH(v) \ X . For u, v
in graph H , let dH(u, v) denote the distance be-
tween u and v in H . For a graph H , we use
D(H) = maxu,v∈HdH(u, v) to denote the diam-
eter of H .

2 Inapproximability results

In this section, we show that unless P = NP ,
for any ǫ > 0, there is no (43 − ǫ)-approximation
algorithm running in polynomial time for the Sin-
gle Allocation k-Hub Center problem.

Lemma 1. For any ǫ > 0, it is NP-hard to ap-
proximate the Single Allocation k-Hub Cen-
ter problem to a ratio 4

3 − ǫ.

Proof. We reduce the Single Allocation k-
Hub Center problem to the following Set
Cover problem.

Set Cover

Input: A universe U of elements, |U| = n and a
collection S of subsets of U .

Output: A subset S∗ ⊆ S of minimum cardinal-
ity such that

⋃

si∈S∗ si = U .

Let (U ,S) be an input instance of Set Cover.
We construct a metric graph G = (V = U ∪
S ∪{p}, E, w) of the Single Allocation k-Hub
Center problem according to (U ,S). We define
the cost of edges as follows.

• For u, v ∈ U , w(u, v) = 2.

• For v ∈ U and s ∈ S, if v ∈ s, w(v, s) = 1;
otherwise w(v, s) = 2.

• For si, sj ∈ S, w(si, sj) = 1.

• For s ∈ S, w(p, s) = 2.

• For v ∈ U , w(p, v) = 3.

It is not hard to see that G is a metric graph.
Let H∗ be an optimal solution of Single Allo-
cation k-Hub Center problem in G and C∗ be
the set of k hubs in H∗. Suppose that S∗ ⊂ S is
an optimal solution of Set Cover satisfying that
1 < |S∗| = k′ = k − 1 < n. We now construct a
spanning subgraph H by choosing vertices in S∗

and p as hubs, i.e., C = S∗ ∪{p}. For each v ∈ U ,
connect v to a set s ∈ S∗ such that v ∈ s and
w(v, s) = 1. Notice that such set s must exist
since S∗ is a set cover. Connect all vertices in
S \ S∗ to a vertex in S∗. We see that D(H) = 3
and D(H∗) ≤ 3.

Notice that for v ∈ U , dH∗(p, v) ≥ w(p, v) =
3. Thus, D(H∗) ≥ 3. Since D(H∗) ≤ 3 and
D(H∗) ≥ 3, we have D(H∗) = 3.

Suppose that there exists an approximation al-
gorithm that finds a solution H of Single Al-
location k-Hub Center problem in G and
D(H) < 4. Let C be the set of the chosen k hubs
in H . Let U ′ = U ∩ C and S ′ = S ∩ C.

Claim 1. p ∈ C.

Proof of Claim. Suppose that p 6∈ C. Let
f(p) ∈ C be the unique neighbor of p in C.
If f(p) ∈ U ′, then for v ∈ V \ (C ∪ {p, f(p)},
dH(p, v) ≥ 4, a contradiction to the assumption
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that D(H) < 4. If f(p) ∈ S ′, then all ver-
tices in V \ C must be adjacent to f(p); oth-
erwise D(H) ≥ 4. Moreover, for each v ∈ U ,
w(v, f(p)) = 1. Thus {f(p)} forms a set cover
of (U ,S). This contradicts to the assumption
that the optimal solution of Set Cover is of size
k′ > 1. Hence, p ∈ C. �

Claim 2. NH(p) \ C = ∅.

Proof of Claim. Suppose that NH(p) \ C 6= ∅.
Let v ∈ NH(p) \ C. If v ∈ U , we see that for
u ∈ U \ {v},

dH(u, v) = w(v, p) + dH(u, p)

= 3 + dH(u, p) ≥ 6.

If v ∈ S, we see that for u ∈ U ,

dH(u, v) = w(v, p) + dH(u, p)

= 2 + dH(u, p) ≥ 5.

Both cases are contradicted to the assumption
that D(H) < 4. This shows that NH(p) \ C = ∅.

�

Claim 3. NH(U ′) \ C = ∅.

Proof of Claim. By Claim 1, p ∈ C. If there
exists v ∈ NH(U ′)\C, then dH(p, v) ≥ 4, a contra-
diction to the assumption that D(H) < 4. Thus,
NH(U ′) \ C = ∅. �

Claim 4. If D(H) < 4, then there exists a set
cover of (U ,S) of size at most k′ where k′ = k−1.

Proof of Claim. By Claims 1–3, we see that
p ∈ C, NH(p) \ C = ∅, and NH(U ′) \ C = ∅. If
D(H) < 4, then for v ∈ V \ C, w(v, f(v)) = 1.
Thus, for v ∈ U \U ′, f(v) must be a set in S ′ such
that v ∈ f(v). We have S ′ is a set cover of U \U ′.
For each u ∈ U ′, we pick exactly one set s ∈ S
satisfying u ∈ s in S ′′. Note that |S ′|+ |U ′| = k−1
and |U ′| = |S ′′|. We obtain a set cover S ′ ∪ S′′

of size at most k′ = k − 1. This shows that if
D(H) < 4, there exists a set cover of (U ,S) of size
at most k′ where k′ = k − 1. �

By Claims 1–4, if a solution H of Single Al-
location k-Hub Center problem of diameter
D(H) < 4 can be found in polynomial time, then
Set Cover can be solved in polynomial time.
However, Set Cover is a well-known NP-hard
problem in the literature [5]. Therefore, for any
ǫ > 0, to approximate the Single Allocation
k-Hub Center problem to a ratio 4

3 − ǫ is NP-
hard.

3 A 2-approximation algorithm

In this section, we give a 2-approximation algo-
rithm for the Single Allocation k-Hub Cen-
ter problem.

Algorithm BasicAPXSAkHC

Let U := V . Initially, C = ∅. Construct a span-
ning subgraph H of G by the following steps.

Step 1: Pick k vertices {v1, v2, . . . , vk} in U . Let
C := C ∪ {v1, v2, . . . , vk} and U := U \
{v1, v2, . . . , vk}.

Step 2: Connect all vertices in U to v1.

Step 3: Return H .

Theorem 1. There is a 2-approximation algo-
rithm for the Single Allocation k-Hub Cen-
ter problem running in time O(n).

Proof. It is easy to see that in time O(n) Algo-
rithm BasicAPXSAkHC returns a spanning sub-
graph of G satisfying that C is a clique of size k in
H ; V \C forms an independent set in H ; and each
vertex in V \ C is adjacent to exactly one vertex
in C.

We now show that H is a 2-approximate solu-
tion. Let H∗ denote an optimal solution of the
Single Allocation k-Hub Center problem
and D(H∗) is the diameter of H∗. For v ∈ V \C,
we use f(v) to denote its unique neighbor in C.

Note that for u, v ∈ V , w(u, v) ≤ D(H∗). We
have the following cases.

• For u, v ∈ C, we see that

dH(u, v) = w(u, v) ≤ D(H∗).

• For u ∈ V \ C and v ∈ C, we see that

dH(u, v) = w(u, v1) + w(v1, v)

≤ 2 ·D(H∗).

• For u, v ∈ V \ C, we see that

dH(u, v) = w(u, v1) + w(v, v1)

≤ 2 ·D(H∗).

Thus, for u, v ∈ V ,

dH(u, v) ≤ 2 ·D(H∗).

This completes the proof.
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4 A 5/3-approximation algorithm

In this section, we give a 5/3-approximation al-
gorithm for Single Allocation k-Hub Center
problem.

Let H∗ be an optimal solution of Single Al-
location k-Hub Center problem in G. We use
C∗ to denote the size-k clique in H∗. For each
v ∈ V \ C∗, let f∗(v) denote its unique neighbor
in C∗ in H∗, i.e., NH∗(v) = {f∗(v)}. Let z =
argmaxv∈V \C∗{w(v, f∗(v))} and ℓ = w(z, f∗(z)).

Algorithm APXSAkHC

Step 1: Run Algorithm A.

Step 2: Run Algorithm B.

Step 3: Return a best solution found by Algo-
rithm A and Algorithm B.

Algorithm A

For y, z ∈ V , let ℓ = w(y, z), U = V \ {y, z}, and
C = {y}. Construct a spanning subgraph H of G
by the following steps and return a best solution
with minimum diameter.

Step 1: Let c1 = y and connect z to c1 in H .

Step 2: For each v ∈ U , if w(v, c1) ≤ ℓ, connect v
to c1, and U := U \ {v}.

Step 3: While i = |C| + 1 ≤ k and U 6= ∅, do the
following steps:

• choose v ∈ U , let ci = v, and let
U := U \ {v} and let C := C ∪ {ci};

• for u ∈ U , if w(u, ci) ≤ 2ℓ, then con-
nect u to ci in H and U := U \ {u}.

Step 4: If |C| < k and U = ∅, select k−|C| vertices
closest to y from V \C to be hubs, call the
new spanning subgraph H ′; otherwise let
H ′ := H .

Algorithm B

For y, z ∈ V , let ℓ := w(y, z) and C := {y}. Con-
struct a spanning subgraph H ′′ of G by the follow-
ing steps and return a best solution with minimum
diameter.

Step 1: Pick k− 1 vertices {v1, v2, . . . , vk−1} from
V \ {y, z} that are closest to y. Let C :=
C ∪ {v1, v2, . . . vk−1}.

Step 2: Connect y to each vertex in V \ C.

Lemma 2. Algorithm A finds a (1 + 4δ)-
approximation solution of Single Allocation
k-Hub Center problem in time O(kn3) where
δ = ℓ

D(H∗) .

Proof. Let H∗ be an optimal solution of Single
Allocation k-Hub Center problem in G. We
use C∗ to denote the size-k clique in H∗. For each
v ∈ V \ C∗, let f∗(v) denote its unique neighbor
in C∗ in H∗, i.e., NH∗(v) = {f∗(v)}. Let z =
argmaxv∈V \C∗{w(v, f∗(v))} and ℓ = w(z, f∗(z)).
Let c1 = f∗(z). Suppose the algorithm guesses
correct y, z and w(y, z) = ℓ.

In H∗, if we remove edges with both end ver-
tices in C∗ = {s1, s2, . . . , sk}, then the remaining
graph consists of k components and each com-
ponent is a star. Let S1, S2, . . . , Sk be the k
stars. Note that si is the center of star Si for
i = 1, 2, . . . , k. W.l.o.g., assume that c1 = s1.
Since for each v ∈ V \ C∗, w(v, f∗(v)) ≤ ℓ, for
u, v ∈ Si, dH∗(u, v) ≤ 2ℓ. Since the algorithm
adds edges (v, c1) in H if w(v, c1) ≤ ℓ, we see
that S1 ⊂ NH [c1] \ C. Notice that for each Sj ,
j ≥ 2, if there exists v ∈ Sj specified as ci ∈ C,
then all the other vertices in Sj are connected to
one of c1, c2, . . . , ci in H . Moreover, for each ci,
1 < i ≤ |C|, there exists Sj , 1 < j ≤ k, such that
ci ∈ Sj and Sj ∩ C = {ci}. Notice that if there
exists Sj , 1 < j ≤ k, Sj ∩ C = ∅, then all vertices
of Sj must be connected to one of vertices in C in
H and |C| < k. We see that if |C| = k, then H
is a feasible solution. Suppose that |C| < k and
we select k − |C| vertices closest to y from V \ C
to be hubs. Call the new spanning subgraph H ′

and let C′ be the set of new hubs. Notice that
|C ∪ C′| = k, C ∩ C′ = ∅, and vertices in C′ are
not adjacent to any vertex in V \ (C ∪C′). We see
that H ′ is a feasible solution.

Now we show that D(H ′) ≤ D(H∗)+4ℓ. There
are three cases.

Case 1. For u, v ∈ C ∪C′,

dH′ (u, v) = w(u, v) ≤ dH∗(u, v) ≤ D(H∗).

Case 2. For u ∈ V \ (C ∪ C′) and v ∈ C ∪ C′,

dH′(u, v) = w(u, f(u)) + w(f(u), v)

≤ D(H∗) + 2ℓ

where f(u) denotes the unique neighbor
of u in C in both H and H ′.
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Case 3. For u, v ∈ V \ (C ∪ C′),

dH′ (u, v) = dH(u, v)

= w(u, f(u)) + w(f(u), f(v))

+w(v, f(v))

≤ D(H∗) + 4ℓ

where f(u), f(v) ∈ C denote the neigh-
bors of u and v in both H and H ′, re-
spectively.

Thus, D(H ′) ≤ D(H∗) + 4ℓ. We obtain that

D(H ′)

D(H∗)
≤

D(H∗) + 4ℓ

D(H∗)
= 1 + 4δ

where δ = ℓ
D(H∗) .

The algorithm guess y, z such that y = s1 and
w(y, z) = ℓ. There are O(n2) possibilities of the
pair {y, z}. In Algorithm A, there are O(n2) span-
ning subgraphs are constructed. It is not hard to
see that it takes O(kn) to construct a spanning
subgraph H ′. Thus, the running time of Algo-
rithm A is O(kn3). This completes the proof.

Lemma 3. Algorithm B finds either an optimal
solution of the Single Allocation k-Hub Cen-
ter problem or a (2− 2δ)-approximation solution
of Single Allocation k-Hub Center problem
in time O(kn3) where δ = ℓ

D(H∗) < 1/2.

Proof. Suppose that H∗ is an optimal solution.
Let (y, z) be a longest edge among all edges with
one end vertex in C∗ and the other end vertex
in V \ C∗ and w(y, z) = ℓ where y ∈ C∗ and
z ∈ V \ C∗. Let H ′′ be the solution returned
by Algorithm B.

For v ∈ V \ {z},

dH′′ (v, y) = w(v, y)

≤ dH∗(v, z)− w(y, z)

≤ D(H∗)− ℓ.

This shows that for v ∈ V \ {z},

dH′′ (v, y) ≤ D(H∗)− ℓ.

For v ∈ V \ {z}, we have

dH′′ (z, v) ≤ w(z, y) + dH′′ (y, v)

≤ ℓ+D(H∗)− ℓ

= D∗(H).

For each u, v ∈ V \ {z}, we see that

dH′′ (u, v) = dH′′ (u, y) + dH′′ (v, y)

≤ 2 ·D(H∗)− 2ℓ.

It is easy to see that D(H ′′) ≥ D(H∗).
If D(H∗) ≤ 2ℓ, then

D(H ′′) ≤ 2 ·D(H∗)− 2ℓ ≤ D(H∗).

Thus, if D(H ′′) ≤ 2ℓ, we obtain that

D(H ′′) = D(H∗).

Suppose that D(H∗) > 2ℓ. We see that

D(H ′′)

D(H∗)
≤

2 ·D(H∗)− 2ℓ

D(H∗)
= 2− 2δ

where δ = ℓ
D(H∗) <

1
2 .

Algorithm B guess y and z, there are O(n2)
possibilities of y and z. In Algorithm B, there
are O(n2) spanning subgraphs are constructed. It
takes O(kn) time to construct a spanning sub-
graph. Thus, the running time of Algorithm B
is O(kn3). This completes the proof.

Theorem 2. There is a 5
3 -approximation algo-

rithm for the Single Allocation k-Hub Cen-
ter problem running in time O(kn3) where n is
the number of vertices in the input graph.

Proof. By Lemma 2, it takes O(kn3) time to find
a (1 + 4δ)-approximation solution for the Sin-
gle Allocation k-Hub Center problem where
δ = ℓ

D(H∗) . By Lemma 3, it takes O(kn3) time

either to find an optimal solution or to find a
(2−2δ)-approximation solution for the same prob-
lem. In Step 3 of Algorithm APXSAkHC , it takes
O(1) time to find a best solution returned by Al-
gorithm A and Algorithm B. The worst approxi-
mation ratio happens when 1 + 4δ = 2 − 2δ and
δ = 1/6. Therefore, the approximation ratio is 5/3
and the running time of Algorithm APXSAkHC is
O(kn3). This completes the proof.

5 Concluding remarks

In this paper, we give a lower bound 4
3 − ǫ and

upper bound 5
3 of the approximability of the Sin-

gle Allocation k-Hub Center problem. For
the future work, it is interesting to see whether
the gap between lower and upper bounds can be
reduced. One possibility is to show that for any
ǫ > 0, it is NP-hard to approximate the Single
Allocation k-Hub Center problem to a ratio
α − ǫ where α > 4

3 . The other possibility is to
design a γ-approximation algorithm for the Sin-
gle Allocation k-Hub Center problem and
γ < 5

3 .
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