
Exact Multiple String Matching

Problem for DNA Alphabet

Yi-Kung Shieh, Shyong Jian Shyu and

Richard Chia-Tung Lee

Department of Computer Science

Nation Tsing Hua University, Hsinchu,

Taiwan

d9762814@oz.nthu.edu.tw,

sjshyu@mail.mcu.edu.tw and

rctlee@rctlee.cyberhood.net.tw

Abstract
Given a text T = t1t2 … tn and a set of patterns P =

{P1, P2, …, Pr}, the exact multiple string matching

problem (EMSMP) finds the ending positions of all

sub-strings in T which is equal to Pi for 1  i  r. We

regard all substrings in T and patterns in P as data

points in an edit distance-based metric space. The

data points in T are constructed into a vantage point

tree (vp-tree) T. Then, EMSMP can be resolved by

searching all points of P in T. We further enhance T

into vpac-tree C (vp-tree with alliance cut capability),

based on which more unnecessary branches might be

cut off so that the searching efficiency could be

improved. Experiments consisting of long texts and

short patterns of DNA alphabet are conducted using

the two proposed schemes and m-BNDM (the

multiple pattern version of the well known BNDM

approach). The computational results demonstrate

the effectiveness and efficiency of our schemes.

1. Introduction

Consider an alphabet set  consisting of 

symbols and strings whose constituent members are

from the symbols of . Let T = t1t2 ... tn be a text

string and P = {P1, P2, ... , Pr} be a set of patterns

where Pi = p
i

1p
i

2 ... p
i

mi
, mi (= ||Pi||) is the length of Pi

and tj, p
i

s for 1jn, 1ir and 1smi. Let T[i, j]

be the sub-string staring at i and ending at j of T (i.e.,

T[i, j] = titi+1 ... tj1tj) where 1ijn. The exact

multiple string matching problem (EMSMP) is to

find all ending positions i’s in T such that T[imi+1,

i] = Pi (i.e., timi+1timi+2 ... ti = p
i

1p
i

2 ... p
i

mi
) for 1ir.

Assume that T = “thoseeasycasesmaynotbeeasy” and

P = {“those”, “easy”, “test”, “se”}. The answer

should be {{5}, {9,26}, , {5,13}} because P1 =

“those” = t1t2t3t4t5, P2 = “easy” = t6t7t8t9 = t23t24t25t26

and P4 = “se” = t4t5 = t12t13. EMSMP is significant in

many applications such as search engine, speech

reorganization, computer virus detection, pattern

finding in biological sequences, just to name a few.

Aho and Corasick proposed a linear time method

to solve this problem [1], referred to as the AC

algorithm, which applies the concept of the KMP

algorithm [5] to pre-process the patterns in P.

Commentz-Walter presented another linear time

(called the CW) algorithm [3], which combines the

Boyer-Moore algorithm [2] with the AC algorithm.

The performance of the CW algorithm is better than

that of the AC algorithm. Wu and Manber also

applied and refined the idea of the Boyer-Moore

algorithm for this problem [10], and the resultant

WM algorithm is more effective than the CW

algorithm. All of these algorithms find the shortest

length, denoted as lmin, among the patterns in P and

set a window W with length lmin to compare with

those patterns. They developed several skills to slide

the window efficiently along the text to skip

unnecessary comparisons. Whenever a match

happens in the window, further checking for the rest

of Pi (i.e., Pi[lmin+1, mi]) should be compared with

the proper sub-string in T to ensure that an exact

match does occur.

Later, Navarro and Raffinot proposed the so called

backward non-deterministic dawg matching (BNDM)

algorithm [7] to solve the exact string matching

problem with single pattern (ESMP). It also utilizes

the sliding window technologies and has the

reputation of being a fast algorithm for ESMP.

Navarro and Raffinot further extended the BNDM

algorithm to solve EMSMP [8], referred to as

m-BNDM (where “m” is for multiple string).

In this study, we propose two schemes relying on

the vantage point tree (vp-tree) [11] to solve EMSMP

for the DNA alphabet. Surely, the proposed schemes

are applicable for any alphabet. Originally, the

vp-tree was devised to organize the data points in a

metric space in order to answer the range query

problem. Our first scheme regards the sub-strings in

T and the patterns in P as the data points in an edit

distance-based metric space. The data points in T

would be constructed into vp-tree T and those in P

are regarded as queries. EMSMP can thus be solved

by searching all points of P in T. The second scheme

further explores the possibility to cut more

unnecessary branches in T to enhance the searching

efficiency.

The rest of this paper is organized as follows. In

Section 2, we briefly introduce the concept of the

m-BNDM algorithms, and the structure of vp-tree in

dealing with the range query problem. In Section 3,

we propose two schemes relying on vp-tree for

solving EMSMP. Section 4 compares the

experimental results of the proposed schemes against

those of m-BNDM on several simulate DNA datasets.

Finally, Section 5 gives some concluding remarks.

19

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

2. Previous Study

The elegant m-BNDM, which is the comparison

basis of our algorithms, is briefly introduced in

Section 2.1. The originality of vp-tree, based on

which the text and the patterns in the problem

considered would be transformed, is examined in

Section 2.2.

2.1 m-BNDM

m-BNDM first finds the shortest length lmin among

all patterns. Let the prefix with length lmin of Pi be P'i.

It reverses all P'i’s which are denoted as P
R

i ’s, and

then concatenates them to a long pattern P' (i.e.: P' =

P
R

1 P
R

2 …P
R

r). An auxiliary 0/1 ||P'||/ storage B is

used to record the positions of all characters of  in

P'. Specifically, if the character of i
th

 position in P' is

x, the i
th

 bit of B[x] is 1; otherwise 0. Note that we

use ||P'||/’s computer words to record B[x], where

 is the size of a word in computer (i.e. 32 or 64 bits).

It searches text T by considering window W at

position i where W = T[i, i+lmin1] and W = T[1, lmin]

initially. The purpose is to find the longest suffix in

W which is equal to the prefix of at least one pattern.

There are two variables D and last where the size of

D is also ||P'||/ computer words. If D  0, we have

to move W with last steps to the right. Before each

movement of W, D = 1
||P'||

 and last = lmin. Then the

characters in W are read from right to left and one by

one. When the character y of j
th

 position in W is read,

D' = D & B[y] where & is the AND operation, which

means the information of the character y in j
th

position is superposed into D'. Let DF = (10
lmin1

)
r
. If

D'&DF  0, there is a suffix with length lminj+1

which is equal to the prefix of at least one pattern.

Hence, if D'&DF  0 and j = 1, the length of suffix is

lmin. This applies that the string in W is equal the

suffix of some pattern(s). By checking whether

D'&0
||P||lmini

10
lmin1

0
lmin(i1)

 is zero for 1ir, we

know the prefix belongs to Pi; further checking

whether Pi[lmin, mi] = T[i+lmin, i+lmin1] lead us to

report an exact match with ending position i+lmin1.

If D'&DF  0 and j  1, last is updated to be j1.

After testing D'&DF, we set D = (D'<<1)&(1
lmin1

0)
r

where << is the left shift operation. If D  0, the

character of (j1)
th

 is read and it continuously utilizes

the above method. Otherwise, in order to align the

suffix (with length lminlast) with the prefix of a

pattern, W is moved last steps to the right. In short,

m-BNDM reads characters in W, tests D' to collect

matches, operates D and moves W until all text has

been considered to resolve EMSMP.

2.2 Vp-tree

A metric space is an order pair (A, d) where A is a

set of data points and d is a metric/function on A such

that for any x, y, zA, the following holds [9]:

(i) d(x, y) = d(y, x);

(ii) d(x, y) = 0 when x = y;

(iii) 0<d(x y)<∞ when x  y;

(iv) d(x, y)≤ d(x, z) + d(z, y) (triangle inequality).

The vp-tree, initially invented by Yianilos [11],

aims at organizing all input data points in a metric

space into a balanced binary tree to facilitate the

range query problem. Given a query point q, a

distance  and a set of data points X = {x1, x2, ... , xn}

from a metric space with function d, the range query

problem finds out all data points xj’s such that the

distance between q and xi is no more than  (i.e., d(q,

xj)  ) for xjX. Once vp-tree T with respect to X is

built, the query specified by (q, ) could be easily

answered by searching points in T whose distance

from q is within the range .
The construction of vp-tree T with respect to X is

a recursive process involving a ball partition

procedure. This procedure starts from choosing a

point, say xv, which is called the vantage point,

randomly from X. All distances between xv and those

in X\{xv} (i.e., d(xv, xj)’s for xjX\{xv}) are computed.

Let e be the median of all d(xv, xj)’s. Then, X\{xv}

would be evenly partitioned into XL and XR such that

XL = { xl | d(xv, xl)  e for xlX\{xv}} and

 XR = { xr | d(xv, xr)  e for xrX\{xv}}. (1)

Conceptually, such data decomposition can be

regarded as the partitioning result of ball B(xv, e)

centered at vantage point xv with radius e such that XL

and XR locate inside and outside B, respectively.

That’s why we call it the ball partition. After XL and

XR are recursively constructed as left and right

sub-trees TL and TR, respectively. We could build a

node N consisting of (xv, e, TL, TR) to be the root of

the vp-tree T with respect to X. Surely, the recursion

returns an empty tree when the input set of data

points becomes empty. Since at each node the data

points are evenly partitioned, T is a balanced binary

tree.

When facing a query (q, ), we simply search T as

follows. The search begins from the root of T. Let

the node being searched be N = (xv, e, TL, TR). We

compute the distance between vantage point xv and

query point q:  = d(xv, q). If   , xv is surely one

of the solution for query (q, ). Then,  is compared

against e+ and e: If ( > e+), TL can be cut

(since there is no solution candidate) and only TR

would be further searched; if ( < e), TR is pruned

away and only TL is searched; otherwise (e   

e+), both TL and TR would be searched. The search

goes onto TL or/and TR in a recursive way and all

the vantage points in the searched nodes whose

20

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

distances from q are no greater than  would be

collected and reported as the final solution set. The

simple computation of  and the possibility of

pruning away one sub-tree at each node give rise to

an optimism for efficiently answering the range

query problem by searching in the vp-tree.

Our designs of applying vp-tree and its refined

version with additional branch-cutting capability to

resolve EMSMP are proposed in the following

section.

3. Peoposed Schemes for Solving EMSMP

Our strategy for coping with EMSMP is

constructing the substrings in text T as vp-tree T and

then reporting the matches of patterns in P by

searching them in T. In essence, we measure the

distance between two strings by way of the edit

distance [6]. Let a and b be two strings. The edit

distance between a and b, denoted as (a, b), is the

minimum number of edit operations needed to

convert b into a where an edit operation can be an

insertion, deletion or substitution of a character. Thus,

pattern p is found in text T if and only if (p, t) = 0

for some sub-string t in T with ||t|| = ||p||. The edit

distance function is metric because it satisfies the

aforementioned conditions (i)-(iv) in Section 2.2 [9].

Therefore, applying the idea of vp-tree for

indexing data points with edit distance in a metric

space is promising in our research. In the following,

we present a simple realization of mapping text T

into vp-tree T in Section 3.1. The algorithm for

searching Pi in T for 1ir is designed in Section

3.2. A brilliant refinement on the vp-tree with

additional capabilities to cut off impossible sub-trees

more efficiently while searching is explained in

Section 3.3. The corresponding searching algorithm

is presented in Section 3.4.

3.1 Basic vp-tree

Consider EMSMP with text T and pattern set P.

Let lmin be the shortest length among the set of

patterns, i.e., lmin = min(||P1||, ||P2||, ... , ||Pr||) (= (m1,

m2, ... , mr)). Let xj denote the substring in T starting

at j and ending at j+lmin1, i.e., xj = T[j, j+lmin−1] for

1jn−lmin+1. Let X = {x1, x2, ... , xn−lmin+1} be the data

point set (consisting of substrings in T of length lmin)

and Q = {q1, q2, ... , qr} where qi = Pi[1, lmin] for

1ir be the query point set (containing prefixes in P

of length lmin). We shall build vp-tree T for X and

search all members of Q in T.

For each pair of xj and qi, if (qi, xj)  0 (or xj  qi),

there is no chance for pattern Pi finds a match with

the substring staring at j in T. On the other hand, Pi

might attain a match in T staring at j (i.e., Pi = T[j,

j+mi1]) only if (qi, xj) = 0. These are so

informative that we address them as a property as

follows.

Property 1. For each pair of xj and qi, 1  j 

nlmin+1 and 1  i  r,

(a) if (qi, xj)  0, Pi  T[j, j+mi1];

(b) Pi = T[j, j+mi1], only if (qi, xj) = 0.

Our basic idea is clear now. The query of qi in

vp-tree T results in all possible match candidates in

T and, meanwhile, filters out impossible sub-strings

aggressively for 1  i  r. Surely, before we report

that Pi receives a match in T starting at position j

(ending at j+mi1) when (qi, xj), we need to verify

whether Pi[lmin+1, mi] = T[j+lmin, j+lmin+mi1], which

is called the tail checking.

To construct vp-tree T for X = {x1, x2, ... , xnlmin+1},

we perform a refined ball partition procedure first. A

data point, namely xv, is randomly selected from X to

be the vantage point. We delete xv from X and

initialize a set V to hold xv (i.e., X = X\{xv} and V =

{xv}). All edit distances between xv and xj’s ((xv, xj)’s)

are computed for xjX and once we find (xv, xj) = 0,

which means xj is the same as the vantage point xv (or

equivalently, a match candidate occurs), we remove

xj from X and add it into V. That is, V collects all data

points that are the same as the vantage point. In

EMSMP, it is quite often for a substring to appear

several times in T. It is noticed that no such V exists

in the original design of vp-tree. Let e be the median

of all (xv, xj)’s. We partition X evenly into two

subsets XL and XR such that

XL = {a | (xv, a)  e and aX} and

 XR = {b | (xv, b)  e and bX} (2)

where |XL|−|XR|  1.

After the refined ball partition, we recursively

build sub-trees TL and TR with respect to XL and XR.

The recursion returns an empty tree when the size of

the input data points is 0. As long as TL and TR are

built, we create a node N consisting of V, e, TL and

TR as the root node of T. The basic structure of

node N in T is illustrated in Figure 1. Note that,

without ambiguity, we refer to T (TL or TR) as a

tree (sub-tree) or its corresponding pointer in

physical implementation interchangeably, and N (NL

or NR) as its root node consisting of V and e (VL and

eL or VR and eR, if not empty).

V e
N

NL
N

R
VL eL

V

R
eR

T

TL TR

21

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

Figure 1. Structure of node N and its sub-trees in

our vp-tree for EMSMP

The whole idea of constructing the vp-tree with

respect to X (T) for EMSMP is formally presented in

Algorithm 1. The computation of the edit distance

between two strings with length lmin is in time

O(lmin/lmin) by applying the bit-vector algorithm

[4], were  is the size of a computer word. The

determination of median e can be achieved in O(n)

using the median of median algorithm (in the kth

selection problem) or the bucket-sort. The height of

vp-tree is O(log2n) owing to the evenly partitioning

at each node recursively, which causes it a balanced

binary search tree. Hence, the time complexity of

Algorithm 1 is O(lmin/lminnlog2n).

Algorithm 1. Constructing a vp-tree

Input: Data point set X = {x1, x2, … , xn−lmin+1}

corresponding to text T = t1t2 … tn

Output: Vp-tree T with respect to X (T)

RefinedBallPartition(X, xv)

1. X = X\{xv} and V = {xv}

2. for (each xjX) do

 Calculate (xv, xj)

 if ((xv, xj) = 0) then

 X = X\{xj} and V = V{xj}

 endfor

3. e = median of {(xj, xv) | xjX}

4. Evenly divide X into XL and XR such that XL = {xl |

(xv, xl)  e and xlX} and XR = {xr | (xv, xr)  e

and xrX} where |XL|−|XR|  1

5. return (V, e, XL, XR)

ConstructVP-tree(X)

1. if (X = ) then return an empty vp-tree

2. Arbitrarily choose a point from X, say xv, to be

the vantage point

3. (V, e, XL, XR) = RefinedBallPartition(X, xv)

4. TL = ConstructVP-tree(XL)

5. TR = ConstructVP-tree(XR)

6. Create node N = (V, e, TL, TR) with pointer T

7. return T

(a)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

(b)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

(c)

N1

{a} e1

{b} e2

{d} e3

 {h} e4

 {i} e5

 {j} e7

 {k} e8

 {l} e11

 {m}e12

 e14{n}

 e15{o}

{e} e6 {f} e10

{c} e9

{g} e13

N2 N9

N3 N6 N10 N13

N4

N5

N7

N8

N11

N12

N14

N15

　1TL

　2TL 　2TR

　1TR

　9TL 　9TR

　3TL 　3TR 　6TL 　6TR 　10TL 　10TR 　13TL 　13TR

Figure 2. Vp-tree T in Example 1

Example 1

Assume that there are 15 points, X = {a, b, c, d, e, f, g,

h, i, j, k, l, m, n, o} as shown in Figure 2(a) in which

every point represents a sub-string in T. The final

result of refined ball partitions is illustrated in Figure

2(b) and vp-tree T with respect to X is presented in

(c). The construction details are exhibited and

explained in Appendix A. Note that in root nor N1 the

vantage point is a and median distance e1 = (a, e) =

(a, j) = (a, m); that is, there are three points e, j and

m whose distance from a are the same. To highlight

these three points, we use red triangles to represent

them in Figure 2(b).

3.2 Searching in basic vp-tree

To answer whether a pattern, say Pi where 1ir,

receives matches in T, we regard Pi[1, lmin], the prefix

with length lmin of Pi, as a query point qi and search qi

in T constructed by Algorithm 1. For all the possible

match candidates, we ought to perform a trail

checking procedure one by one. Note that our goal is

to find exact matches, thus there is no range distance

 (adopted in a traditional range query problem) for a

query.

Since T is a balanced binary search tree, searching

qi in T is quite easy. Starting from the root node N

(consisting of (V, e, TL, TR)), we compute  = (xv,

qi) for a certain xvV. On condition that  = 0 (that is,

xv = T[v, v+lmin−1] = Pi[1, lmin] = qi), we realize that

all the points in V are solution candidates by Property

1 (b). A further tail checking procedure for each

candidate xv (V) goes on: If Pi[lmin+1, mi] = T[v+lmin,

v+mi−1], position v+mi−1 of T is in the solution set;

otherwise, ignore xv. When all xv’s in V are checked,

the search corresponding to this node can be

terminates (that is, no need to search the sub-trees

since all points equal to qi in the tree rooted at N have

already been collected in V during the construction of

T.

22

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

On the contrary, when   0, we compare  with e.

If  > e, left sub-tree TL could be cut off; while  <

e, right sub-tree TR could be pruned away. We call

this a b-cut owing to the merit of binary search.

Property 2 emphasizes this.

Property 2. If  (=(xv, qi)) > e in N = (V, e, TL,

TR), TL can be b-cut; and if  < e, TR can be b-cut.

In short, if (xv, qi)  e, the left sub-tree TL will be

searched; in addition, if (xv, qi)  e, the right

sub-tree TR will be searched in a recursive manner.

Surely, the search returns an empty set when the

sub-tree searched becomes empty.

The details of matching patterns P1, P2, ... , Pr in P

in text T via searching qi in T is shown in Algorithm

2 where 1ir. Because the height of vp-tree is

O(log2n), the excepted time complexity of Algorithm

2 is O(lmin/lminlog2n).

Algorithm 2. Searching patterns in a vp-tree

Input: Text T = t1t2 ... tn, T with respect to X (T), lmin

and pattern set P = {P1, P2, ... , Pr}

Output: S = {S1, S2, ... Sr} in which Si consists of the

ending positions of the substrings in T

which are exactly equal to Pi for 1ir

QueryVP(T, T, lmin, Pi)

1. if (T = ) then return 

2. Obtain (V, e, TL, TR) from the node pointed

by T

3. Let qi = Pi[1, lmin]

4. Choose any point, say xv, in V as the vantage

point

5. Compute  = (xv, qi) and set S = 

6.a if ( = 0) then

6.a.1 for (each xvV) do // tail checking

 if (T[v+lmin, v+mi−1] = Pi[lmin+1, mi]) then

 S = S{v+mi−1}

 endif

 endfor

6.b else

6.b.1 if ((xv, qi)  e) then

 S = SQueryVP(T, TL, lmin, Pi)

6.b.2 if ((xv, qi)  e) then

 S = SQueryVP(T, TR, lmin, Pi)

 endif

 endif

7. return S

SolveEMSMP(T, P)

1. X = {x1, x2, ... , xn+lmin1} where xj = T[j, j+lmin1]

for 1jn+lmin1

2. T = ConstructVP-tree(X)

3. lmin = min{||Pi|| | PiP}

4. for (each i, 1ir) do

 Si = QueryVP(T, T, lmin, Pi)

 endfor

5. return S = {S1, S2, ... Sr}

The effectiveness of collecting all data points

having the same distance with the selected vantage

point in V for each node is evident in Algorithm 2.

Whenever (xv, qi) = 0 occurs for some xvV in node

N, we stop further searching N’s descendants, since

all possible solution candidates in the tree rooted at N

are assessable in the current V.

Example 2

Following Example 1 where vp-tree T is shown in

Figure 2, consider a query qi that is exactly equal to

point j (i.e., qi = j). We search T and start from root

N1. In N1 (= ({a}, e
1
, T 1

L , T 1

R)), (a, qi) = (a, j)  0

and (a, qi) = e1 where e1 is the median distance of N1.

Hence, we have to search both T 1

L and T 1

R (rooted

at N2 and N9, respectively). In N2, because (b, qi)  0

and (b, qi) = e2, both T 2

L and T 2

R need to be

considered. In N3, since (d, qi)  0 and (d, qi) > e3,

only N5 (but not N4 by Property 2) would be searched.

In leaf N5, we find that (i, qi)  0 and no more child

node would be searched. Hence, there is no solution

in sub-tree T 2

L . Let us consider T 2

R . In N6. owing to

(e, qi)  0 and (e, qi) = e3, N7 and N8 need to be

considered. In leaf N7, we find that (j, qi) = 0 so that

S = {j} and stop searching any descendant node of N7.

In leaf N8, (j, qi)  0 and no child node would be

searched. By now, the whole left sub-tree T 1

L has

been searched and we go on searching T 1

R rooted at

N9. In N9, (c, qi)  0 and (c, qi) < e9 so that only

sub-tree T 9

L (but not T 9

R by Property 2) need to be

considered. In N10, since (f, qi)  0 and (f, qi) > e10,

only T 10

L (instead of T 10

R) need to be considered. In

leaf N12, (m, qi)  0 and no more child node could

be searched. Finally, we obtain Si = {j}. Note that in

this case ten out of the fifteen nodes are searched.

3.3 Vp-tree with alliance cut

When querying qi in T rooted at N, we may

encounter a situation that both TL and TR need to be

queried further. For instance, both sub-trees in N1, N2

and N6 of Example 2 ought to be searched owing to

(a, qi) = e1, (b, qi) = e2 and (e, qi) = e6,

respectively. Concerning such situation ((xv, qi) = e

in N consisting V and e where xvV), we shall

introduce a skill, referred to as the alliance cut, to

determine whether NL’s (or NR’s) sub-trees could be

cut because there is no chance to gather exact

matches any more.

Let us observe a feature on the distance

relationship in our scenario. Consider two data points

a and b, and one vantage point v. On condition that

(v, a)  (v, b), it is impossible to have a = b. On

the contrary, a = b only if (v, a) = (v, b). We

summarize these in Property 3.

23

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

Property 3. For any pair of data points a and b,

and vantage point v,

(a) if (v, a)  (v, b), a  b; and

(b) a = b only if (v, a) = (v, b).

Figure 3 illustrates some examples for Property 3:

(a) (v, a)  (v, b), thus a  b; (b) (v, a) = (v, b),

but a  b, and (c) a = b so that (v, a) = (v, b).

a

b

v
e

a

b

v
e

ab

v
e

(a) (b) (c)

Figure 3. Some examples for Property 3

The concept of the proposed alliance cut (a-cut,

for short) utilizes Property 3 and is informally

explained via Examples 1 and 2 (see Figure 2). When

searching qi (= j) in N1 with vantage point a and

medium distance e1, we find thee points e, j and m

such that (a, e) = (a, j) = (a, m) = e1. By

Algorithm 2, we know that both sub-trees T 1

L and

T 1

R should be searched. However, we could obtain

more clues from this case: (1) These three points are

solution candidates since they may be equal to qi by

Property 3 (b); and (2) the other points would not be

the same as qi any more by Property 3 (a). Let us

check where these three points locate after the

revised ball partition in N1. Observing T 1

L rooted at

N2 in Figure 2 (b), we know that N2 classifies e and j

into T 2

R . It means that there is no need to search T 2

L

(in which no solution candidate exists). In addition,

observing T 1

R rooted at N9, we find that m is

classified into T 9

L . It means that there is no need to

search T 9

R (since there is no solution candidate).

Algorithm 2 could detect the latter (no need to search

T 9

R) by b-cut at N9, but it could not explore the

former (so that T 2

L would be searched in Algorithm

2). Our a-cut aims at cutting off such T 2

L (and T 9

R).

Let N denote a certain node in T, N
f
 be its father,

N
b
 be its brother, TL and TR be its two sub-trees

rooted at NL and NR where N = (V, e, TL, TR), N
f
 =

(V
f
, e

f
, T f

L , T f

R) and N
b
 = (V

b
, e

b
, T b

L , T b

R). The

alliance cut decision in N (N
b
) about cutting TL or

TR (T b

L or T b

R) relies on N
f
’s detection about E

f
 

 where E
f
 = { x

f

v | (x
f

v, qi) = e
f
 for x

f

vX
f
}. We call it

an alliance cut for the reason that father’s (N
f
’s)

knowledge is alliance with its son N (N
b
) and after N

(N
b
) finishes the revised ball partition, such

knowledge is capable of judging whether some

sub-tree(s) TL or TR (T b

L , T b

R) may be cut off.

Property 4. If (x
f

v, qi) = e
f
 and E

f
   in N

f
 = (V

f
,

e
f
, TL, TR) with respect to X

f
, TL or TR (T b

L , T b

R)

in N (N
b
) which contains no member of E

f
 can be

a-cut by the alliance of (x
f

v, xv) where E
f
 = { x

f

v | (x
f

v,

qi) = e
f
 for x

f

vX
f
}.

Figure 4 gives a general case that a-cuts do occur

where (a) depicts a situation that six points xj’s (in

red) are detected with (x
f

v, xj) = e
f
 (i.e. |E

f
| = 6) in N

f

and (b) tells that three of the six are decomposed into

TR in N (in red triangles) and the other three into T b

L

in N
b
. Then, TL and T b

R , which contain no member

of E
f
, can be pruned by a-cuts in N from the alliance

of vantage points xv and x
f

v.

xv
f

xv

ef

e

xv
b

eb

Nf

{ } ef

N

xv
f, ...

Nb

{ } exv, ... { } ebxv
b, ...

TR
fTL

f

TL
b TR

bTL TR

(a) (b)

Figure 4. Example of alliance cuts in vp-tree

The alliance cut is considered at N (N
b
) only when

E
f
   in its father N

f
. On condition that E

f
 =  in N

f
,

we simply follow the rules of searching descendants

in Algorithm 2 where b-cuts may happen.

To fulfill the idea of alliance cut, we enhance our

vp-tree and refer to the refined result as the vp-tree

with alliance cut capability (vpac-tree for short),

denoted as C. The construction of C has the similar

structure as that of T. Additionally, we maintain an

equal-distance-to-e set E in each node (consisting of

V and e) with respect to X such that

E = { xj | (xv, xj) = e for some xvV and all xj’sX } (3)

to include those xj’s(X) whose (xv, xj) = e.

Consider again node N, its father N
f
, brother N

b
,

two sub-trees CL and CR. N
f
 with data point set X

f
 has

its own E
f
 vector, which would be decomposed as EL

f

and E
f

R according to X
f

L and X
f

R, respectively. During

the construction of N, N inherits X (either X
f

L or X
f

R,)

and E' (either E
f

L or E
f

R, respectively) from Nf. N

performs the refined ball partition procedure to

obtain (V, e, XL, XR) and decides the go-on flags by:

GL =


 

 otherwise, 0

;any for ' if 1 Laa XxEx
 and

 GR =


 

 otherwise, 0

;any for ' if 1 Rbb XxEx
 (4)

That is, GL = 1 means sub-tree CL contains at least

one data point, say xa, satisfying (x
f

v, xa) = e
f
 in N

f

(or xaE
f
); otherwise, CL does not contain any

member in E
f
. Thus, CL could be a-cut when (x

f

v, qi)

= e
f
 and GL = 0 occur for some qi by Properties 3 and

4. The same reasoning applies for GR. Surely, N

establishes its own E with respect to X using Eq. (3).

It would be further decomposed into EL and ER

according to XL and XR. Recursively, CL (CR) is built

with respect to XL and EL (XR and ER). The recursion

24

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

returns an empty node on condition that the input

data point set is empty. After the construction of CL

and CR, we establish N = (V, e, CL, CR, (GL, GR)) as

the root of C. Initially, owing to no parent for the

root node, E' at the root is merely an empty set.

Our approach for constructing vpac-tree is shown

in Algorithm 3.

Algorithm 3. Constructing a vpac-tree

Input: Data point set X = {x1, x2, … , xn−lmin+1}

corresponding to text T = t1t2 … tn and

equal-distance-to-e set E' (initially E' = )

Output: Vpac-tree C of X (T)

ConstructVPAC-tree(X, E')

1. if (X = ) then return an empty vp-tree

2. Arbitrarily choose a point from X, say xv, to be

the vantage point

3. (V, e, XL, XR) = RefinedBallPartition(X, xv)

4. GL = 0 and GR = 0

5. if (xaE' for any xaXL) then GL = 1

6. if (xbE' for any xbXR) then GR = 1

7. EL =  and ER = 

8. for (each a, xaXL) do

 if ((xv, xa) = e) then EL = EL{xa}

9. for (each b, xbXR) do

 if ((xv, xb) = e) then ER = ER{xb}

10. CL = ConstructVPAC-tree(XL, EL)

11. CR = ConstructVPAC-tree(XR, ER)

12. Create a node N = (V, e, CL, CR, G) with pointer

C where G = (GL, GR)

13. return C

3.4 Searching in basic vpdc-tree

When dealing with a query point qi (= Pi[1, lmin])

at node N containing V and e in C, we simply

compute  = (xv, qi) where 1≤i≤r and xvV. If  = 0,

a subsequent tail checking is performed for each

members in V to gather matches into the solution set.

The search in the sub-tree rooted at N ends and the

solution set is returned (just as in the basic vp-tree).

While   0, we test whether  = e: If yes (a case

that possible a-cuts may occur in its sons), a flag of

equal-distance-to-e-between-query-vantange is set,

i.e., edeqv = 1; otherwise edeqv = 0. This flag would

be passed to N’s sub-trees CL and CR rooted at NL

and NR which rename it as “p_edeqv”. Of course, N

receives such p_edeqv from its father N
f
. Note that in

the root node, p_edeqv = 0 since it has no parent

node.

On condition that N gets p_edeqv = 1 from its

father N
f
, G = (GL, GR) becomes useful. If GL (GR) =

0, CL (CR) can be a-cut directly by Property 4. In fact,

CL (CR) would only be searched when   e (it is not

b-cut by vantage point xv in N) and GL = 1 (it cannot

be a-cut by the alliance of xv in N and xv
f
 in N

f
).

Otherwise (p_edeqv = 0), the conventional vantage

point tests (as in Algorithm 2) are followed to decide

which sub-trees ought to be searched. Algorithm 4

shows how to search pattern Pi in a vpac-tree for

1≤i≤r.

Algorithm 4. Searching a pattern in a vpac-tree

Input: Text T, vpac-tree C of T, length lmin, pattern Pi

and flag p_edeqv (initially, p_edeqv = 0)

Output: S consisting of the ending positions of the

substrings in T which are exactly equal to Pi

QueryVPAC-tree(T, C, lmin, Pi, p_edeqv)

1. if (C = ) then return 

2. Obtain (V, e, CL, CR, (GL, GR)) in the node

pointed by C

3. Let qi = Pi[1, lmin]

4. Choose any point, say xv, in V as the

vantage point

5. Compute  = (xv, qi) and set S = 

6.a if ( = 0) then

6.a.1 for (each xvV) do // tail checking

 if (T[v+lmin, v+mi−1] = Pi[lmin+1, mi])

then S = S{v+mi−1}

 endfor

6.b else

6.b.1 if ( = e) then edeqv = 1 else edeqv = 0

6.b.2.a if (p_edeqv = 1) then

6.b.2.a.1 if (  e and GL = 1) then

 S = SQueryVPAC-tree(T, CL, lmin,

Pi, edeqv)

6.b.2.a.2 if (  e and GR = 1) then

 S = SQueryVPAC-tree(T, CR, lmin,

Pi, edeqv)

 endif

6.b.2.b else

6.b.2.b.1 if ( ≤ e) then

 S = SQueryVPAC-tree(T, CL, lmin,

Pi, edeqv)

6.b.2.b.2 if ( ≥ e) then

 S = SQueryVPAC-tree(T, CR, lmin,

Pi, edeqv)

 endif

 endif

 endif

7. return S

Let re-examine the example in Figure 2 and

replace all notations T’s as C’s with vector E and

flag G in each node. In N1, we have e1 = (a, e) = (a,

j) = (a, m) (i.e., E1 = {e, j, m}); and, e and j are

classified into its left sub-tree C 1

L , while m into C 1

R .

In N2, we find that both e and j will be in its right

sub-tree C 2

R with G
2

L = 0 and G
2

R = 1 where G
2

L

denotes GL of N2. Consider query qi = j. We search

vpac-tree C from the root node. In N1, we find that

(a, qi) = (a, j) = e1. Hence, edeqv = 1 and both N
2

25

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

and N
9
 need to be considered. In N2, we obtain

p_edeqv = 1 from its father node N1 and find that 2

= (b, qi) = e2. Now, we have p_edeqv = 1 and G
2

L =

0 so that N2’s sub-tree C 2

L rooted at N3 could be

pruned away by a-cut. Likewise, owing to p_edeqv =

1 and G
9

L = 0, N9’s sub-tree C 9

R rooted at N13 is also

a-cut. Therefore, the nodes need to be considered in

level 3 of vpac-tree N
6
 and N

10
; while in vp-tree, we

need to consider N3, N6 and N10 in level 3.

4. Experimental Results and Discussions

To ease the discussion, the proposed schemes for

coping with EMSMP using vp-tree and vpac-tree are

referred to as vp and vpac, respectively. To evaluate

their performances, we tested them by several

datasets and compared their results against those by

the m-BNDM algorithm. Their performances may be

affected by  (the size of alphabet set ), n (length of

T), r (number of patterns in P) and mi (length of

pattern Pi) for 1ir.

Our interest focuses on DNA alphabet for a long

text and a large number of patterns so that we set  =

4, n = 1M and r = 10K. Regarding mi, we generate

five groups of lengths: 1020%, 2020%, 3020%,

4020% and 5020%. Note that the lengths of the

first group are between 8 and 12, while those of the

last one are between 40 and 60.

Our experimental platform is a personal computer

with 3.1 GHz CPU (Intel i5-2400) and 32GB main

memory. The operation system is CentOS 6.5 and all

of the three algorithms are implemented in C

language and then compiled by GNU Compiler

Collection (gcc) 4.4.7 with optimization option -O3.

The data in one test, including one text T and five

pattern sets/groups, are randomly generated from  =

{a, g, c, t}. The averaged results from 100

independent tests would be reported in the following.

We summarize the total running time (in seconds)

of the three algorithms for EMSMP under various

pattern lengths in Table 1.

Table 1 Results of total running time (in seconds)

for m-BNDM, vp and vpac

Algorithm
Pattern length

1020% 2020% 3020% 4020% 5020%

m-BNDM 37.23 16.70 14.50 13.84 13.43

vp 1.67 2.81 3.31 3.94 4.69

vpac 1.47 2.74 3.26 3.90 4.63

From Table 1, we obtain two immediate findings:

(1) the execution times spent by the proposed

schemes are better than that of m-BNDM, and

(2) vpac outperforms vp to a certain degree.

The superiority of vp and vpac over m-BNDM is

evident in this experiment. Further, the alliance cuts

are effective in vpac so that vpac is more efficient

than vp.

Let us examine the behavior of vp and vpac. The

tree construction time of vp and vpac is presented in

Table 2. It is seen that the construction time needed

by vpac-tree is slightly slower than that of vp-tree.

The reason is that each node in vpac spends extra

time to tackle set E' from its parent node, decide the

flags GL and GR and pass set E to child nodes in

every node.

Table 2 Tree construction time (in seconds) of vp

and vpac

Algorithm
Pattern length

1020% 2020% 3020% 4020% 5020%

vp 0.83 1.80 2.50 3.21 4.01

vpac 0.85 1.85 2.56 3.26 4.04

Table 3 shows the searching time of vp and vpac.

Since vpac prunes away some unnecessary branches

while searching by alliance cuts, the searching time

of vpac is faster than that of vp.

Table 3 Searching time (in seconds) of vp and vpac

Algorithm
Pattern length

1020% 2020% 3030% 4040% 5050%

vp 0.84 1.01 0.80 0.73 0.68

vpac 0.61 0.89 0.70 0.64 0.59

From Tables 2 and 3, we realize when the length

of the patterns becomes small, the tree construction

time tends to be short. A small pattern length leads

the number of data points with a same edit distance

from the vantage point and that of the members of V

in each node increases so that the number of total

nodes decreases and the height of the tree shrinks.

Such a small pattern length also raises the chance for

searching both sub-trees in a node. Thus, the

searching time tends to be long. Meanwhile, the

effect of alliance cuts in vp-tree goes vigorous. With

the similar reasoning, a larger pattern length results

in a larger total number of nodes, a relatively longer

(or unshrunk) tree height, a shorter searching time

and a weak effect of alliance cuts.

Let N denote the number of total nodes in vp-tree

and vpac-tree, nvp and nvpac be those of the searched

nodes by vp and vpac, respectively. We could

evaluate the searching effectiveness of vp and vpac

by examining the search ratios defined as

 nvp/N and nvpac/N. (4)

To measure the effectiveness of vpac in cutting

branches/nodes, we define the cut ratio as

 (nvpnvpac)/nvp. (5)

Table 4 reports N, nvp, nvpac, nvp/N, nvpac/N and

(nvpnvpac)/nvp in our experiment. Note that N =

215985 for pattern length of 1020% is very small

(as compared to that of 2020%). This is because lmin

is small in the case of 1020% and there are quite a

lot identical sub-strings with length lmin in T, which

would be collected in vantage point set V after the

26

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

vantage point is selected in each node. Therefore, N

becomes quite small.

Table 4 Results of N, nvp, nvpac and cut-ratio

Pattern length

1020% 2020% 3030% 4040% 5050%

N 215985 999934 999977 999969 999961

nvp 58973 50662 33499 26011 21421

nvpac 40789 41144 27608 21598 17896

nvp/N 27.30% 5.07% 3.35% 2.60% 2.14%

nvpac/N 18.88% 4.11% 2.76% 2.16% 1.79%

(nvpnvpac)/nvp 30.83% 18.79% 17.58% 16.96% 16.45%

It is seen from Table 4 that the search ratio tends to

decrease when pattern length increases. As we

mentioned before, when the pattern length is small,

the data points (corresponding to T) with a same edit

distance from the vantage point grow larger. Those

with the same distance as median e would be

decomposed into both sub-trees of the node.

Consequently, both sub-trees have to be searched,

when the edit distance between the query point and

the vantage point is the same as e in a node. When

pattern length is 1020%, the search ratios are

27.30% and 18.88% for vp and vpac, respectively.

On the other hand, when the pattern length is

5020%, the search-ratio is only 2.14% (1.79%) for

vp (vpac).

Regarding the cut ratio, it tends to decrease when

pattern length increases. The reason is that when

pattern length grows, the range of edit distances

becomes large. Then the chance that the edit distance

between a vantage point and a query point is median

e is declined. Therefore, the chance of searching both

sub-trees is also reduced. In the case of 1020%, the

cut ratio is 30.83%; while in the case of 5020%, it

reduces to 16.45%.

The aforementioned outcomes and discussion

explain the effectiveness of vpac in pruning away

unnecessary branches, which makes vpac more

efficient than vp.

5. Concluding Remarks

By mapping the sub-strings in T and prefixes of all

Pi’s with length lmin as data points in the edit

distance-based metric space for 1ir, we design two

schemes which construct the data points of T into

vp-tree and vpac-tree, repsectively, and search data

points of Pi in the trees, for solving EMSMP. The

expected tree constructing time is

O(lmin/lminnlog2n) and the expected searching

time is O(lmin/lminnlog2n) for either vp-tree or

vp-ac-tree.

The experimental results show that the proposed

schemes using vp-tree and vpac-tree are more

efficient than the m-BNDM algorithm. In addition,

the effectiveness of alliance cuts in vpac-tree is

significant, especially when the pattern length is

small.

In the near future, we would like to test more data

sets with other alphabets (than DNA) to see whether

the benefits obtained so far could still retain.

Furthermore, we would like to cope with the

approximate multiple string matching problem using

the ideas of vp-tree and vpac-tree.

References

[1] Aho, A.V. and Corasick, M.J. (1975) Efficient

string matching: an aid to bibliographic search.

Commun. ACM, 18, 333-340.

[2] Boyer, R. S. and Moore, J. S. (1977) A fast

string searching algorithm. Commun. ACM, 20,

762-772.

[3] Commentz-Walter, B. (1979) A string matching

algorithm fast on the average. Proc. 6th

Colloquium, Graz, Austria, July 16-20, pp.

118-132. Springer, Berlin.

[4] Hyyrö, H. (2003) A bit-vector algorithm for

computing Levenshtein and Damerau edit

distances. Nord. J. Comput., 10, 29-39.

[5] Knuth, D.E., Morris, J.H. and Pratt, V.R. (1977)

Fast pattern matching in strings. SIAM J.

Comput., 6, 323-350.

[6] Levenshtein, V. I. (1965) Binary codes capable

of correcting deletions, insertions, and

reversals. Dokl. Akad. Nauk SSSR+, 163,

845-848.

[7] Navarro, G. and Raffinot, M. (1998) A

bit-Parallel approach to suffix automata: fast

extended string matching. Proc. CPM 98,

Piscataway, NJ, USA, July 20–22, pp. 14–33.

Springer, Berlin.

[8] Navarro, G. and Raffinot, M. (2000) Fast and

flexible string matching by combining

bit-parallelism and suffix automata. ACM J.

Exper. Algorithmics, 5.

[9] Wagner, R. A. and Michael, J. F. The

string-to-string correction problem. J. ACM, 21,

168-173.

[10] Wu, S. and Manber, U. (1994) A fast algorithm

for multi-pattern searching. Technical Report

TR-94-17. Department of Computer Science,

University of Arizona, USA.

[11] Yianilos, P. N. (1993) Data structures and

algorithms for nearest neighbor search in

general metric spaces. Proc. SODA 93, Austin,

Texas, USA, September, pp. 311-321. Society

for Industrial and Applied Mathematics,

Philadelphia.

Appendix A

The construction of vp-tree with respect to X = {a,

b, c, d, e, f, g, h, i, j, k, l, m, n, o}, as shown in Figure

2(a) is illustrated level by level as follows. In the

27

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

beginning, we choose a as the first vantage point and

we have X = X\{a} and V1 = {a}. Among all (a, x)’s,

the median distance is e1 = (a, j) (= (a, e) = (a, m))

as shown in Figure A(a) where e, j and m are denoted

as red triangles. Based on median e1, we apply the

revised refined ball partition procedure to obtain X
 1

L

= {i, k, b, d, h, e, j} and X
 1

R = {m, l, c, n, f, o, g}.

The node with respect to X would be N
1
 = ({a}, e1,

T 1

L , T 1

R) where T 1

L and T 1

R are the sub-trees with

respect to X
 1

L and X
 1

R , respectively, after they are

recursively built as shown in Figure A(b). Let us

observe the left child node N
2
 of N

1
. In node N

2
, X

2

(= X
 1

L) = {i, k, b, d, h, e, j}. Assume that b is chosen

to be its vantage point with X
2
 = X

2
\{b}, V2 = {b} and

median e2 = (b, d) = (b, j). Then, we obtain X
 2

L =

{h, i, d} and X
 2

R = {j, e, k} as shown in Figure A(c)

and (d). The left child node N
3
 (of N

2
) chooses d to

be its vantage point where X
3
 = X

 2

L \{d}, V3 = {d} and

median e3 = (d, h). Hence, X
 3

L = {h} and X
 3

R = {i}

as shown in Figure A(e). In node N
4
 (N

5
) with respect

to X
4
 = X

 3

L (X
5
 = X

 3

R), h (i) is the only point and the

vantage point so that it is the leaf node without any

sub-tree (see Figure A(f)). The returned pointers T 3

L

and T 3

R after the construction of N
4
 and N

5
,

respectively, cause N
3
 to be physically built. For N

6
,

vantage point is e and e6 = (e, j) (Figure A(g)),

which makes nodes N
7
 and N

8
 (containing j and k

with pointers T 6

L and T 6

R , respectively) be built as

leaf nodes. T 6

L and T 6

R cause N
6
 to be built with T

 2

R ; and consequently, T 2

L and T 2

R (to N
3
 and N

6
,

respectively) make N
2
 be built with pointer T 1

L as

shown in Figure A(h).

The sub-tree pointed by T 1

R is constructed by the

same recursive approach. Figure A(i) and (j) depict

that c is the vantage point of N
9
 with e9 = (c, m), X

 9

L

= {f, l, m} and X
 9

R = {g, n, o}. Figure A (k) show

vantage point f (l, m) in N
10

 (N
11

, N
12

) where N
11

 and

N
12

 become leaf nodes and (l) illustrates the partially

constructed vp-tree. Figure A(m) gives vantage point

g in N
13

 and the completion of N
14

 and N
15

; and A(n)

presents the final vp-tree.

(a)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e1

(b)

N1

{a} e1

c

f

g

l

m
n

o

b

d

e

h

i

j

k

(c)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e1

e2

(d)

N1

{a} e1

{b} e2

N2

c

f

g

l

m
n

o

e
j

kd

h

i

(e)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e1

e2

e3

(f)

N1

{a} e1

{b} e2

{d} e3

 {h} e4

 {i} e5

N2

N3

N4

N5

　3TL 　3TR

c

f

g

l

m
n

o

e
j

k

(g)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e1

e2

e3

e6

(h)

N1

{a} e1

{b} e2

{d} e3

 {h} e4

 {i} e5

 {j} e7

 {k} e8

{e} e6

N2

N3 N6

N4

N5

N7

N8

　1TL

　2TL 　2TR

　3TL 　3TR 　6TL 　6TR

c

f

g

l

m
n

o

(i)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e9

28

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

(j)

N1

{a} e1

{b} e2

{d} e3

 e4

 {i} e5

 {j} e7

 {k} e8

{e} e6

{c} e9

N2 N9

N3 N6

N5

N7

N8

　1TL

　2TL 　2TR

　3TL 　3TR 　6TL 　6TR

g

n

o

fl

m

{h}

(k)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e9

e11

(l)

N1

{a} e1

{b} e2

{d} e3

 {h} e4

 {i} e5

 {j} e7

 {k} e8

 {l} e11

 {m}e12

{e} e6 {f} e10

{c} e9

N2 N9

N3 N6 N10

N4

N5

N7

N8

N11

N12

　1TL

　2TL 　2TR

　3TL 　3TR 　6TL 　6TR 　10TL 　10TR

g

n

o

(m)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

e9

e11

e13

(n)

N1

{a} e1

{b} e2

{d} e3

 {h} e4

 {i} e5

 {j} e7

 {k} e8

 {l} e11

 {m}e12

 e14{n}

 e15{o}

{e} e6 {f} e10

{c} e9

{g} e13

N2 N9

N3 N6 N10 N13

N4

N5

N7

N8

N11

N12

N14

N15

　1TL

　2TL 　2TR

　1TR

　9TL 　9TR

　3TL 　3TR 　6TL 　6TR 　10TL 　10TR 　13TL 　13TR

Figure A. The constructing vp-tree for Example 1

29

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

