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Abstract 
Given a text T = t1t2 … tn and a set of patterns P = 

{P1, P2, …, Pr}, the exact multiple string matching 

problem (EMSMP) finds the ending positions of all 

sub-strings in T which is equal to Pi for 1  i  r. We 

regard all substrings in T and patterns in P as data 

points in an edit distance-based metric space. The 

data points in T are constructed into a vantage point 

tree (vp-tree) T. Then, EMSMP can be resolved by 

searching all points of P in T. We further enhance T 

into vpac-tree C (vp-tree with alliance cut capability), 

based on which more unnecessary branches might be 

cut off so that the searching efficiency could be 

improved. Experiments consisting of long texts and 

short patterns of DNA alphabet are conducted using 

the two proposed schemes and m-BNDM (the 

multiple pattern version of the well known BNDM 

approach). The computational results demonstrate 

the effectiveness and efficiency of our schemes.  

 
 
1. Introduction 
 

Consider an alphabet set  consisting of  

symbols and strings whose constituent members are 

from the symbols of . Let T = t1t2 ... tn be a text 

string and P = {P1, P2, ... , Pr} be a set of patterns 

where Pi = p
i 

1p
i 

2 ... p
i 

mi
, mi (= ||Pi||) is the length of Pi 

and tj, p
i 

s for 1jn, 1ir and 1smi. Let T[i, j] 

be the sub-string staring at i and ending at j of T (i.e., 

T[i, j] = titi+1 ... tj1tj) where 1ijn. The exact 

multiple string matching problem (EMSMP) is to 

find all ending positions i’s in T such that T[imi+1, 

i] = Pi (i.e., timi+1timi+2 ... ti = p
i 

1p
i 

2 ... p
i 

mi
) for 1ir. 

Assume that T = “thoseeasycasesmaynotbeeasy” and 

P = {“those”, “easy”, “test”, “se”}. The answer 

should be {{5}, {9,26}, , {5,13}} because P1 = 

“those” = t1t2t3t4t5, P2 = “easy” = t6t7t8t9 = t23t24t25t26 

and P4 = “se” = t4t5 = t12t13. EMSMP is significant in 

many applications such as search engine, speech 

reorganization, computer virus detection, pattern 

finding in biological sequences, just to name a few.  

Aho and Corasick proposed a linear time method 

to solve this problem [1], referred to as the AC 

algorithm, which applies the concept of the KMP 

algorithm [5] to pre-process the patterns in P. 

Commentz-Walter presented another linear time 

(called the CW) algorithm [3], which combines the 

Boyer-Moore algorithm [2] with the AC algorithm. 

The performance of the CW algorithm is better than 

that of the AC algorithm. Wu and Manber also 

applied and refined the idea of the Boyer-Moore 

algorithm for this problem [10], and the resultant 

WM algorithm is more effective than the CW 

algorithm. All of these algorithms find the shortest 

length, denoted as lmin, among the patterns in P and 

set a window W with length lmin to compare with 

those patterns. They developed several skills to slide 

the window efficiently along the text to skip 

unnecessary comparisons. Whenever a match 

happens in the window, further checking for the rest 

of Pi (i.e., Pi[lmin+1, mi]) should be compared with 

the proper sub-string in T to ensure that an exact 

match does occur. 

Later, Navarro and Raffinot proposed the so called 

backward non-deterministic dawg matching (BNDM) 

algorithm [7] to solve the exact string matching 

problem with single pattern (ESMP). It also utilizes 

the sliding window technologies and has the 

reputation of being a fast algorithm for ESMP. 

Navarro and Raffinot further extended the BNDM 

algorithm to solve EMSMP [8], referred to as 

m-BNDM (where “m” is for multiple string). 

In this study, we propose two schemes relying on 

the vantage point tree (vp-tree) [11] to solve EMSMP 

for the DNA alphabet. Surely, the proposed schemes 

are applicable for any alphabet. Originally, the 

vp-tree was devised to organize the data points in a 

metric space in order to answer the range query 

problem. Our first scheme regards the sub-strings in 

T and the patterns in P as the data points in an edit 

distance-based metric space. The data points in T 

would be constructed into vp-tree T and those in P 

are regarded as queries. EMSMP can thus be solved 

by searching all points of P in T. The second scheme 

further explores the possibility to cut more 

unnecessary branches in T to enhance the searching 

efficiency.  

The rest of this paper is organized as follows. In 

Section 2, we briefly introduce the concept of the 

m-BNDM algorithms, and the structure of vp-tree in 

dealing with the range query problem. In Section 3, 

we propose two schemes relying on vp-tree for 

solving EMSMP. Section 4 compares the 

experimental results of the proposed schemes against 

those of m-BNDM on several simulate DNA datasets. 

Finally, Section 5 gives some concluding remarks. 
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2. Previous Study 
 

The elegant m-BNDM, which is the comparison 

basis of our algorithms, is briefly introduced in 

Section 2.1. The originality of vp-tree, based on 

which the text and the patterns in the problem 

considered would be transformed, is examined in 

Section 2.2. 

 

2.1 m-BNDM 

 

m-BNDM first finds the shortest length lmin among 

all patterns. Let the prefix with length lmin of Pi be P'i. 

It reverses all P'i’s which are denoted as P
R 

i ’s, and 

then concatenates them to a long pattern P' (i.e.: P' = 

P
R 

1 P
R 

2 …P
R 

r ). An auxiliary 0/1 ||P'||/ storage B is 

used to record the positions of all characters of  in 

P'. Specifically, if the character of i
th

 position in P' is 

x, the i
th

 bit of B[x] is 1; otherwise 0. Note that we 

use ||P'||/’s computer words to record B[x], where 

 is the size of a word in computer (i.e. 32 or 64 bits). 

It searches text T by considering window W at 

position i where W = T[i, i+lmin1] and W = T[1, lmin] 

initially. The purpose is to find the longest suffix in 

W which is equal to the prefix of at least one pattern. 

There are two variables D and last where the size of 

D is also ||P'||/ computer words. If D  0, we have 

to move W with last steps to the right. Before each 

movement of W, D = 1
||P'||

 and last = lmin. Then the 

characters in W are read from right to left and one by 

one. When the character y of j
th

 position in W is read, 

D' = D & B[y] where & is the AND operation, which 

means the information of the character y in j
th

 

position is superposed into D'. Let DF = (10
lmin1

)
r
. If 

D'&DF  0, there is a suffix with length lminj+1 

which is equal to the prefix of at least one pattern. 

Hence, if D'&DF  0 and j = 1, the length of suffix is 

lmin. This applies that the string in W is equal the 

suffix of some pattern(s). By checking whether 

D'&0
||P||lmini

10
lmin1

0
lmin(i1)

 is zero for 1ir, we 

know the prefix belongs to Pi; further checking 

whether Pi[lmin, mi] = T[i+lmin, i+lmin1] lead us to 

report an exact match with ending position i+lmin1. 

If D'&DF  0 and j  1, last is updated to be j1. 

After testing D'&DF, we set D = (D'<<1)&(1
lmin1

0)
r
 

where << is the left shift operation. If D  0, the 

character of (j1)
th

 is read and it continuously utilizes 

the above method. Otherwise, in order to align the 

suffix (with length lminlast) with the prefix of a 

pattern, W is moved last steps to the right. In short, 

m-BNDM reads characters in W, tests D' to collect 

matches, operates D and moves W until all text has 

been considered to resolve EMSMP. 

 

 

2.2 Vp-tree 

 

A metric space is an order pair (A, d) where A is a 

set of data points and d is a metric/function on A such 

that for any x, y, zA, the following holds [9]: 

(i) d(x, y) = d(y, x); 

(ii) d(x, y) = 0 when x = y; 

(iii) 0<d(x y)<∞ when x  y; 

(iv) d(x, y)≤ d(x, z) + d(z, y) (triangle inequality). 

The vp-tree, initially invented by Yianilos [11], 

aims at organizing all input data points in a metric 

space into a balanced binary tree to facilitate the 

range query problem. Given a query point q, a 

distance  and a set of data points X = {x1, x2, ... , xn} 

from a metric space with function d, the range query 

problem finds out all data points xj’s such that the 

distance between q and xi is no more than  (i.e., d(q, 

xj)  ) for xjX. Once vp-tree T with respect to X is 

built, the query specified by (q, ) could be easily 

answered by searching points in T whose distance 

from q is within the range . 
The construction of vp-tree T with respect to X is 

a recursive process involving a ball partition 

procedure. This procedure starts from choosing a 

point, say xv, which is called the vantage point, 

randomly from X. All distances between xv and those 

in X\{xv} (i.e., d(xv, xj)’s for xjX\{xv}) are computed. 

Let e be the median of all d(xv, xj)’s. Then, X\{xv} 

would be evenly partitioned into XL and XR such that 

XL = { xl | d(xv, xl)  e for xlX\{xv}} and  

 XR = { xr | d(xv, xr)  e for xrX\{xv}}. (1) 

Conceptually, such data decomposition can be 

regarded as the partitioning result of ball B(xv, e) 

centered at vantage point xv with radius e such that XL 

and XR locate inside and outside B, respectively. 

That’s why we call it the ball partition. After XL and 

XR are recursively constructed as left and right 

sub-trees TL and TR, respectively. We could build a 

node N consisting of (xv, e, TL, TR) to be the root of 

the vp-tree T with respect to X. Surely, the recursion 

returns an empty tree when the input set of data 

points becomes empty. Since at each node the data 

points are evenly partitioned, T is a balanced binary 

tree. 

When facing a query (q, ), we simply search T as 

follows. The search begins from the root of T. Let 

the node being searched be N = (xv, e, TL, TR). We 

compute the distance between vantage point xv and 

query point q:  = d(xv, q). If   , xv is surely one 

of the solution for query (q, ). Then,  is compared 

against e+ and e: If ( > e+), TL can be cut 

(since there is no solution candidate) and only TR 

would be further searched; if ( < e), TR is pruned 

away and only TL is searched; otherwise (e    

e+), both TL and TR would be searched. The search 

goes onto TL or/and TR in a recursive way and all 

the vantage points in the searched nodes whose 
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distances from q are no greater than  would be 

collected and reported as the final solution set. The 

simple computation of  and the possibility of 

pruning away one sub-tree at each node give rise to 

an optimism for efficiently answering the range 

query problem by searching in the vp-tree. 

Our designs of applying vp-tree and its refined 

version with additional branch-cutting capability to 

resolve EMSMP are proposed in the following 

section.  

 

 

3. Peoposed Schemes for Solving EMSMP 

 

Our strategy for coping with EMSMP is 

constructing the substrings in text T as vp-tree T and 

then reporting the matches of patterns in P by 

searching them in T. In essence, we measure the 

distance between two strings by way of the edit 

distance [6]. Let a and b be two strings. The edit 

distance between a and b, denoted as (a, b), is the 

minimum number of edit operations needed to 

convert b into a where an edit operation can be an 

insertion, deletion or substitution of a character. Thus, 

pattern p is found in text T if and only if (p, t) = 0 

for some sub-string t in T with ||t|| = ||p||. The edit 

distance function is metric because it satisfies the 

aforementioned conditions (i)-(iv) in Section 2.2 [9]. 

Therefore, applying the idea of vp-tree for 

indexing data points with edit distance in a metric 

space is promising in our research. In the following, 

we present a simple realization of mapping text T 

into vp-tree T in Section 3.1. The algorithm for 

searching Pi in T for 1ir is designed in Section 

3.2. A brilliant refinement on the vp-tree with 

additional capabilities to cut off impossible sub-trees 

more efficiently while searching is explained in 

Section 3.3. The corresponding searching algorithm 

is presented in Section 3.4. 

 

3.1 Basic vp-tree 

 

Consider EMSMP with text T and pattern set P. 

Let lmin be the shortest length among the set of 

patterns, i.e., lmin = min(||P1||, ||P2||, ... , ||Pr||) (= (m1, 

m2, ... , mr)). Let xj denote the substring in T starting 

at j and ending at j+lmin1, i.e., xj = T[j, j+lmin−1] for 

1jn−lmin+1. Let X = {x1, x2, ... , xn−lmin+1} be the data 

point set (consisting of substrings in T of length lmin) 

and Q = {q1, q2, ... , qr} where qi = Pi[1, lmin] for 

1ir be the query point set (containing prefixes in P 

of length lmin). We shall build vp-tree T for X and 

search all members of Q in T. 

For each pair of xj and qi, if (qi, xj)  0 (or xj  qi), 

there is no chance for pattern Pi finds a match with 

the substring staring at j in T. On the other hand, Pi 

might attain a match in T staring at j (i.e., Pi = T[j, 

j+mi1]) only if (qi, xj) = 0. These are so 

informative that we address them as a property as 

follows. 

Property 1.  For each pair of xj and qi, 1  j  

nlmin+1 and 1  i  r, 

(a) if (qi, xj)  0, Pi  T[j, j+mi1]; 
 

(b) Pi = T[j, j+mi1], only if (qi, xj) = 0. 

Our basic idea is clear now. The query of qi in 

vp-tree T results in all possible match candidates in 

T and, meanwhile, filters out impossible sub-strings 

aggressively for 1  i  r. Surely, before we report 

that Pi receives a match in T starting at position j 

(ending at j+mi1) when (qi, xj), we need to verify 

whether Pi[lmin+1, mi] = T[j+lmin, j+lmin+mi1], which 

is called the tail checking. 

To construct vp-tree T for X = {x1, x2, ... , xnlmin+1}, 

we perform a refined ball partition procedure first. A 

data point, namely xv, is randomly selected from X to 

be the vantage point. We delete xv from X and 

initialize a set V to hold xv (i.e., X = X\{xv} and V = 

{xv}). All edit distances between xv and xj’s ((xv, xj)’s) 

are computed for xjX and once we find (xv, xj) = 0, 

which means xj is the same as the vantage point xv (or 

equivalently, a match candidate occurs), we remove 

xj from X and add it into V. That is, V collects all data 

points that are the same as the vantage point. In 

EMSMP, it is quite often for a substring to appear 

several times in T. It is noticed that no such V exists 

in the original design of vp-tree. Let e be the median 

of all (xv, xj)’s. We partition X evenly into two 

subsets XL and XR such that 

XL = {a | (xv, a)  e and aX} and 

 XR = {b | (xv, b)  e and bX} (2) 

where |XL|−|XR|  1. 

After the refined ball partition, we recursively 

build sub-trees TL and TR with respect to XL and XR. 

The recursion returns an empty tree when the size of 

the input data points is 0. As long as TL and TR are 

built, we create a node N consisting of V, e, TL and 

TR as the root node of T. The basic structure of 

node N in T is illustrated in Figure 1. Note that, 

without ambiguity, we refer to T (TL or TR) as a 

tree (sub-tree) or its corresponding pointer in 

physical implementation interchangeably, and N (NL 

or NR) as its root node consisting of V and e (VL and 

eL or VR and eR, if not empty). 

V e
N

NL
N

R
VL eL

V

R
eR

T

TL TR
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Figure 1. Structure of node N and its sub-trees in 

our vp-tree for EMSMP 

The whole idea of constructing the vp-tree with 

respect to X (T) for EMSMP is formally presented in 

Algorithm 1. The computation of the edit distance 

between two strings with length lmin is in time 

O(lmin/lmin) by applying the bit-vector algorithm 

[4], were  is the size of a computer word. The 

determination of median e can be achieved in O(n) 

using the median of median algorithm (in the kth 

selection problem) or the bucket-sort. The height of 

vp-tree is O(log2n) owing to the evenly partitioning 

at each node recursively, which causes it a balanced 

binary search tree. Hence, the time complexity of 

Algorithm 1 is O(lmin/lminnlog2n). 

 

Algorithm 1. Constructing a vp-tree 

Input: Data point set X = {x1, x2, … , xn−lmin+1} 

corresponding to text T = t1t2 … tn 

Output: Vp-tree T with respect to X (T) 

RefinedBallPartition(X, xv) 

1. X = X\{xv} and V = {xv} 

2. for (each xjX) do 

 Calculate (xv, xj) 

 if ((xv, xj) = 0) then  

 X = X\{xj} and V = V{xj} 

 endfor 

3. e = median of {(xj, xv) | xjX} 

4. Evenly divide X into XL and XR such that XL = {xl | 

(xv, xl)  e and xlX} and XR = {xr | (xv, xr)  e 

and xrX} where |XL|−|XR|  1 

5. return (V, e, XL, XR) 

 

ConstructVP-tree(X) 

1. if (X = ) then return an empty vp-tree 

2. Arbitrarily choose a point from X, say xv, to be 

the vantage point  

3. (V, e, XL, XR) = RefinedBallPartition(X, xv) 

4. TL = ConstructVP-tree(XL) 

5. TR = ConstructVP-tree(XR) 

6. Create node N = (V, e, TL, TR) with pointer T  

7. return T 

(a)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

 

(b)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

 

(c)

N1

{a} e1

{b} e2

{d} e3

 {h} e4

 {i} e5

 {j} e7

 {k} e8

 {l} e11

 {m}e12

 e14{n}

 e15{o}

{e} e6 {f} e10

{c} e9

{g} e13

N2 N9

N3 N6 N10 N13

N4

N5

N7

N8

N11

N12

N14

N15

　1TL

　2TL 　2TR

　1TR

　9TL 　9TR

　3TL 　3TR 　6TL 　6TR 　10TL 　10TR 　13TL 　13TR

 

Figure 2. Vp-tree T in Example 1 

Example 1 

Assume that there are 15 points, X = {a, b, c, d, e, f, g, 

h, i, j, k, l, m, n, o} as shown in Figure 2(a) in which 

every point represents a sub-string in T. The final 

result of refined ball partitions is illustrated in Figure 

2(b) and vp-tree T with respect to X is presented in 

(c). The construction details are exhibited and 

explained in Appendix A. Note that in root nor N1 the 

vantage point is a and median distance e1 = (a, e) = 

(a, j) = (a, m); that is, there are three points e, j and 

m whose distance from a are the same. To highlight 

these three points, we use red triangles to represent 

them in Figure 2(b). 

 

3.2 Searching in basic vp-tree 

 

To answer whether a pattern, say Pi where 1ir, 

receives matches in T, we regard Pi[1, lmin], the prefix 

with length lmin of Pi, as a query point qi and search qi 

in T constructed by Algorithm 1. For all the possible 

match candidates, we ought to perform a trail 

checking procedure one by one. Note that our goal is 

to find exact matches, thus there is no range distance 

 (adopted in a traditional range query problem) for a 

query. 

Since T is a balanced binary search tree, searching 

qi in T is quite easy. Starting from the root node N 

(consisting of (V, e, TL, TR)), we compute  = (xv, 

qi) for a certain xvV. On condition that  = 0 (that is, 

xv = T[v, v+lmin−1] = Pi[1, lmin] = qi), we realize that 

all the points in V are solution candidates by Property 

1 (b). A further tail checking procedure for each 

candidate xv (V) goes on: If Pi[lmin+1, mi] = T[v+lmin, 

v+mi−1], position v+mi−1 of T is in the solution set; 

otherwise, ignore xv. When all xv’s in V are checked, 

the search corresponding to this node can be 

terminates (that is, no need to search the sub-trees 

since all points equal to qi in the tree rooted at N have 

already been collected in V during the construction of 

T. 
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On the contrary, when   0, we compare  with e. 

If  > e, left sub-tree TL could be cut off; while  < 

e, right sub-tree TR could be pruned away. We call 

this a b-cut owing to the merit of binary search. 

Property 2 emphasizes this. 

Property 2.  If  (=(xv, qi)) > e in N = (V, e, TL, 

TR), TL can be b-cut; and if  < e, TR can be b-cut. 

In short, if (xv, qi)  e, the left sub-tree TL will be 

searched; in addition, if (xv, qi)  e, the right 

sub-tree TR will be searched in a recursive manner. 

Surely, the search returns an empty set when the 

sub-tree searched becomes empty. 

The details of matching patterns P1, P2, ... , Pr in P 

in text T via searching qi in T is shown in Algorithm 

2 where 1ir. Because the height of vp-tree is 

O(log2n), the excepted time complexity of Algorithm 

2 is O(lmin/lminlog2n). 

 

Algorithm 2. Searching patterns in a vp-tree 

Input: Text T = t1t2 ... tn, T with respect to X (T), lmin 

and pattern set P = {P1, P2, ... , Pr} 

Output: S = {S1, S2, ... Sr} in which Si consists of the 

ending positions of the substrings in T 

which are exactly equal to Pi for 1ir 

QueryVP(T, T, lmin, Pi) 

1. if (T = ) then return  

2. Obtain (V, e, TL, TR) from the node pointed 

by T 

3. Let qi = Pi[1, lmin] 

4. Choose any point, say xv, in V as the vantage 

point 

5. Compute  = (xv, qi) and set S =  

6.a if ( = 0) then 

6.a.1 for (each xvV) do // tail checking  

 if (T[v+lmin, v+mi−1] = Pi[lmin+1, mi]) then  

 S = S{v+mi−1} 

 endif 

 endfor 

6.b else 

6.b.1 if ((xv, qi)  e) then 

 S = SQueryVP(T, TL, lmin, Pi)  

6.b.2 if ((xv, qi)  e) then 

 S = SQueryVP(T, TR, lmin, Pi) 

 endif 

 endif 

7. return S 

 

SolveEMSMP(T, P) 

1. X = {x1, x2, ... , xn+lmin1} where xj = T[j, j+lmin1] 

for 1jn+lmin1 

2. T = ConstructVP-tree(X) 

3. lmin = min{||Pi|| | PiP} 

4. for (each i, 1ir) do 

 Si = QueryVP(T, T, lmin, Pi) 

 endfor 

5. return S = {S1, S2, ... Sr} 

 

The effectiveness of collecting all data points 

having the same distance with the selected vantage 

point in V for each node is evident in Algorithm 2. 

Whenever (xv, qi) = 0 occurs for some xvV in node 

N, we stop further searching N’s descendants, since 

all possible solution candidates in the tree rooted at N 

are assessable in the current V. 

Example 2 

Following Example 1 where vp-tree T is shown in 

Figure 2, consider a query qi that is exactly equal to 

point j (i.e., qi = j). We search T and start from root 

N1. In N1 (= ({a}, e
1
, T 1 

L , T 1 

R )), (a, qi) = (a, j)  0 

and (a, qi) = e1 where e1 is the median distance of N1. 

Hence, we have to search both T 1 

L  and T 1 

R  (rooted 

at N2 and N9, respectively). In N2, because (b, qi)  0 

and (b, qi) = e2, both T 2 

L  and T 2 

R  need to be 

considered. In N3, since (d, qi)  0 and (d, qi) > e3, 

only N5 (but not N4 by Property 2) would be searched. 

In leaf N5, we find that (i, qi)  0 and no more child 

node would be searched. Hence, there is no solution 

in sub-tree T 2 

L . Let us consider T 2 

R . In N6. owing to 

(e, qi)  0 and (e, qi) = e3, N7 and N8 need to be 

considered. In leaf N7, we find that (j, qi) = 0 so that 

S = {j} and stop searching any descendant node of N7. 

In leaf N8, (j, qi)  0 and no child node would be 

searched. By now, the whole left sub-tree T 1 

L  has 

been searched and we go on searching T 1 

R  rooted at 

N9. In N9, (c, qi)  0 and (c, qi) < e9 so that only 

sub-tree T 9 

L  (but not T 9 

R  by Property 2) need to be 

considered. In N10, since (f, qi)  0 and (f, qi) > e10, 

only T 10 

L (instead of T 10 

R ) need to be considered. In 

leaf N12, (m, qi)  0 and no more child node could 

be searched. Finally, we obtain Si = {j}. Note that in 

this case ten out of the fifteen nodes are searched. 

 

3.3 Vp-tree with alliance cut 

 

When querying qi in T rooted at N, we may 

encounter a situation that both TL and TR need to be 

queried further. For instance, both sub-trees in N1, N2 

and N6 of Example 2 ought to be searched owing to 

(a, qi) = e1, (b, qi) = e2 and (e, qi) = e6, 

respectively. Concerning such situation ((xv, qi) = e 

in N consisting V and e where xvV), we shall 

introduce a skill, referred to as the alliance cut, to 

determine whether NL’s (or NR’s) sub-trees could be 

cut because there is no chance to gather exact 

matches any more. 

Let us observe a feature on the distance 

relationship in our scenario. Consider two data points 

a and b, and one vantage point v. On condition that 

(v, a)  (v, b), it is impossible to have a = b. On 

the contrary, a = b only if (v, a) = (v, b). We 

summarize these in Property 3. 
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Property 3.  For any pair of data points a and b, 

and vantage point v, 

(a) if (v, a)  (v, b), a  b; and
 

(b) a = b only if (v, a) = (v, b). 

Figure 3 illustrates some examples for Property 3: 

(a) (v, a)  (v, b), thus a  b; (b) (v, a) = (v, b), 

but a  b, and (c) a = b so that (v, a) = (v, b). 

a

b

v
e

 

a

b

v
e

 

ab

v
e

 
(a) (b) (c) 

Figure 3. Some examples for Property 3 

The concept of the proposed alliance cut (a-cut, 

for short) utilizes Property 3 and is informally 

explained via Examples 1 and 2 (see Figure 2). When 

searching qi (= j) in N1 with vantage point a and 

medium distance e1, we find thee points e, j and m 

such that (a, e) = (a, j) = (a, m) = e1. By 

Algorithm 2, we know that both sub-trees T 1 

L  and 

T 1 

R  should be searched. However, we could obtain 

more clues from this case: (1) These three points are 

solution candidates since they may be equal to qi by 

Property 3 (b); and (2) the other points would not be 

the same as qi any more by Property 3 (a). Let us 

check where these three points locate after the 

revised ball partition in N1. Observing T 1 

L  rooted at 

N2 in Figure 2 (b), we know that N2 classifies e and j 

into T 2 

R . It means that there is no need to search T 2 

L  

(in which no solution candidate exists). In addition, 

observing T  1 

R  rooted at N9, we find that m is 

classified into T 9 

L . It means that there is no need to 

search T 9 

R  (since there is no solution candidate). 

Algorithm 2 could detect the latter (no need to search 

T 9 

R ) by b-cut at N9, but it could not explore the 

former (so that T 2 

L  would be searched in Algorithm 

2). Our a-cut aims at cutting off such T 2 

L  (and T 9 

R ). 

Let N denote a certain node in T, N
f
 be its father, 

N
b
 be its brother, TL and TR be its two sub-trees 

rooted at NL and NR where N = (V, e, TL, TR), N
f
 = 

(V
f
, e

f
, T f 

L , T f 

R ) and N
b
 = (V

b
, e

b
, T b 

L , T b 

R ). The 

alliance cut decision in N (N
b
) about cutting TL or 

TR (T b 

L  or T b 

R ) relies on N
f
’s detection about E

f
  

 where E
f
 = { x

f 

v | (x
f 

v, qi) = e
f
 for x

f 

vX
f
}. We call it 

an alliance cut for the reason that father’s (N
f
’s) 

knowledge is alliance with its son N (N
b
) and after N 

(N
b
) finishes the revised ball partition, such 

knowledge is capable of judging whether some 

sub-tree(s) TL or TR (T b 

L , T b 

R ) may be cut off. 

Property 4.  If (x
f 

v, qi) = e
f
 and E

f
   in N

f
 = (V

f
, 

e
f
, TL, TR) with respect to X

f
, TL or TR (T b 

L , T b 

R ) 

in N (N
b
) which contains no member of E

f
 can be 

a-cut by the alliance of (x
f 

v, xv) where E
f
 = { x

f 

v | (x
f 

v, 

qi) = e
f
 for x

f 

vX
f
}. 

Figure 4 gives a general case that a-cuts do occur 

where (a) depicts a situation that six points xj’s (in 

red) are detected with (x
f 

v, xj) = e
f
 (i.e. |E

f
| = 6) in N

f
 

and (b) tells that three of the six are decomposed into 

TR in N (in red triangles) and the other three into T b 

L  

in N
b
. Then, TL and T b 

R , which contain no member 

of E
f
, can be pruned by a-cuts in N from the alliance 

of vantage points xv and x
f 

v. 

xv
f

xv

ef

e

xv
b

eb

 

Nf

{        } ef

N

xv
f, ...

Nb

{        } exv, ... {        } ebxv
b, ...

TR
fTL

f

TL
b TR

bTL TR

 

(a) (b) 

Figure 4. Example of alliance cuts in vp-tree 

The alliance cut is considered at N (N
b
) only when 

E
f
   in its father N

f
. On condition that E

f
 =  in N

f
, 

we simply follow the rules of searching descendants 

in Algorithm 2 where b-cuts may happen. 

To fulfill the idea of alliance cut, we enhance our 

vp-tree and refer to the refined result as the vp-tree 

with alliance cut capability (vpac-tree for short), 

denoted as C. The construction of C has the similar 

structure as that of T. Additionally, we maintain an 

equal-distance-to-e set E in each node (consisting of 

V and e) with respect to X such that 

E = { xj | (xv, xj) = e for some xvV and all xj’sX } (3) 

to include those xj’s(X) whose (xv, xj) = e. 

Consider again node N, its father N
f
, brother N

b
, 

two sub-trees CL and CR. N
f
 with data point set X

f
 has 

its own E
f
 vector, which would be decomposed as EL

f
 

and E
f 

R according to X
f 

L and X
f 

R, respectively. During 

the construction of N, N inherits X (either X
f 

L or X
f 

R,) 

and E' (either E
f 

L or E
f 

R, respectively) from Nf. N 

performs the refined ball partition procedure to 

obtain (V, e, XL, XR) and decides the go-on flags by: 

GL = 


 

                         otherwise,    0

;any for  ' if    1 Laa XxEx
 and 

 GR = 


 

                         otherwise,    0

;any for  ' if    1 Rbb XxEx
 (4) 

That is, GL = 1 means sub-tree CL contains at least 

one data point, say xa, satisfying (x
f 

v, xa) = e
f
 in N

f
 

(or xaE
f
); otherwise, CL does not contain any 

member in E
f
. Thus, CL could be a-cut when (x

f 

v, qi) 

= e
f
 and GL = 0 occur for some qi by Properties 3 and 

4. The same reasoning applies for GR. Surely, N 

establishes its own E with respect to X using Eq. (3). 

It would be further decomposed into EL and ER 

according to XL and XR. Recursively, CL (CR) is built 

with respect to XL and EL (XR and ER). The recursion 
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returns an empty node on condition that the input 

data point set is empty. After the construction of CL 

and CR, we establish N = (V, e, CL, CR, (GL, GR)) as 

the root of C. Initially, owing to no parent for the 

root node, E' at the root is merely an empty set. 

Our approach for constructing vpac-tree is shown 

in Algorithm 3. 

 

Algorithm 3. Constructing a vpac-tree  

Input: Data point set X = {x1, x2, … , xn−lmin+1} 

corresponding to text T = t1t2 … tn and 

equal-distance-to-e set E' (initially E' = ) 

Output: Vpac-tree C of X (T) 

ConstructVPAC-tree(X, E') 

1. if (X = ) then return an empty vp-tree 

2. Arbitrarily choose a point from X, say xv, to be 

the vantage point 

3. (V, e, XL, XR) = RefinedBallPartition(X, xv) 

4. GL = 0 and GR = 0 

5. if (xaE' for any xaXL) then GL = 1 

6. if (xbE' for any xbXR) then GR = 1 

7. EL =  and ER =  

8. for (each a, xaXL) do  

 if ((xv, xa) = e) then EL = EL{xa} 

9. for (each b, xbXR) do  

 if ((xv, xb) = e) then ER = ER{xb} 

10. CL = ConstructVPAC-tree(XL, EL) 

11. CR = ConstructVPAC-tree(XR, ER) 

12. Create a node N = (V, e, CL, CR, G) with pointer 

C where G = (GL, GR) 

13. return C 

 

3.4 Searching in basic vpdc-tree 

 

When dealing with a query point qi (= Pi[1, lmin]) 

at node N containing V and e in C, we simply 

compute  = (xv, qi) where 1≤i≤r and xvV. If  = 0, 

a subsequent tail checking is performed for each 

members in V to gather matches into the solution set. 

The search in the sub-tree rooted at N ends and the 

solution set is returned (just as in the basic vp-tree). 

While   0, we test whether  = e: If yes (a case 

that possible a-cuts may occur in its sons), a flag of 

equal-distance-to-e-between-query-vantange is set, 

i.e., edeqv = 1; otherwise edeqv = 0. This flag would 

be passed to N’s sub-trees CL and CR rooted at NL 

and NR which rename it as “p_edeqv”. Of course, N 

receives such p_edeqv from its father N
f
. Note that in 

the root node, p_edeqv = 0 since it has no parent 

node. 

On condition that N gets p_edeqv = 1 from its 

father N
f
, G = (GL, GR) becomes useful. If GL (GR) = 

0, CL (CR) can be a-cut directly by Property 4. In fact, 

CL (CR) would only be searched when   e (it is not 

b-cut by vantage point xv in N) and GL = 1 (it cannot 

be a-cut by the alliance of xv in N and xv
f
 in N

f
). 

Otherwise (p_edeqv = 0), the conventional vantage 

point tests (as in Algorithm 2) are followed to decide 

which sub-trees ought to be searched. Algorithm 4 

shows how to search pattern Pi in a vpac-tree for 

1≤i≤r. 

 

Algorithm 4. Searching a pattern in a vpac-tree 

Input: Text T, vpac-tree C of T, length lmin, pattern Pi 

and flag p_edeqv (initially, p_edeqv = 0) 

Output: S consisting of the ending positions of the 

substrings in T which are exactly equal to Pi 

QueryVPAC-tree(T, C, lmin, Pi, p_edeqv) 

1. if (C = ) then return  

2. Obtain (V, e, CL, CR, (GL, GR)) in the node 

pointed by C 

3. Let qi = Pi[1, lmin] 

4. Choose any point, say xv, in V as the 

vantage point 

5. Compute  = (xv, qi) and set S =  

6.a if ( = 0) then  

6.a.1 for (each xvV) do   // tail checking  

 if (T[v+lmin, v+mi−1] = Pi[lmin+1, mi]) 

then S = S{v+mi−1} 

 endfor 

6.b else 

6.b.1 if ( = e) then edeqv = 1 else edeqv = 0 

6.b.2.a if (p_edeqv = 1) then 

6.b.2.a.1 if (  e and GL = 1) then  

  S = SQueryVPAC-tree(T, CL, lmin, 

Pi, edeqv) 

6.b.2.a.2 if (  e and GR = 1) then  

 S = SQueryVPAC-tree(T, CR, lmin, 

Pi, edeqv) 

 endif 

6.b.2.b else 

6.b.2.b.1 if ( ≤ e) then 

 S = SQueryVPAC-tree(T, CL, lmin, 

Pi, edeqv) 

6.b.2.b.2 if ( ≥ e) then 

 S = SQueryVPAC-tree(T, CR, lmin, 

Pi, edeqv) 

 endif 

 endif 

 endif 

7. return S 

 

Let re-examine the example in Figure 2 and 

replace all notations T’s as C’s with vector E and 

flag G in each node. In N1, we have e1 = (a, e) = (a, 

j) = (a, m) (i.e., E1 = {e, j, m}); and, e and j are 

classified into its left sub-tree C 1 

L , while m into C 1 

R . 

In N2, we find that both e and j will be in its right 

sub-tree C 2 

R  with G
2 

L  = 0 and G
2 

R  = 1 where G
2 

L  

denotes GL of N2. Consider query qi = j. We search 

vpac-tree C from the root node. In N1, we find that 

(a, qi) = (a, j) = e1. Hence, edeqv = 1 and both N
2
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and N
9
 need to be considered. In N2, we obtain 

p_edeqv = 1 from its father node N1 and find that 2 

= (b, qi) = e2. Now, we have p_edeqv = 1 and G
2 

L  = 

0 so that N2’s sub-tree C 2 

L  rooted at N3 could be 

pruned away by a-cut. Likewise, owing to p_edeqv = 

1 and G
9 

L  = 0, N9’s sub-tree C 9 

R  rooted at N13 is also 

a-cut. Therefore, the nodes need to be considered in 

level 3 of vpac-tree N
6
 and N

10
; while in vp-tree, we 

need to consider N3, N6 and N10 in level 3. 

 

 

4. Experimental Results and Discussions 
 

To ease the discussion, the proposed schemes for 

coping with EMSMP using vp-tree and vpac-tree are 

referred to as vp and vpac, respectively. To evaluate 

their performances, we tested them by several 

datasets and compared their results against those by 

the m-BNDM algorithm. Their performances may be 

affected by  (the size of alphabet set ), n (length of 

T), r (number of patterns in P) and mi (length of 

pattern Pi) for 1ir. 

Our interest focuses on DNA alphabet for a long 

text and a large number of patterns so that we set  = 

4, n = 1M and r = 10K. Regarding mi, we generate 

five groups of lengths: 1020%, 2020%, 3020%, 

4020% and 5020%. Note that the lengths of the 

first group are between 8 and 12, while those of the 

last one are between 40 and 60.  

Our experimental platform is a personal computer 

with 3.1 GHz CPU (Intel i5-2400) and 32GB main 

memory. The operation system is CentOS 6.5 and all 

of the three algorithms are implemented in C 

language and then compiled by GNU Compiler 

Collection (gcc) 4.4.7 with optimization option -O3. 

The data in one test, including one text T and five 

pattern sets/groups, are randomly generated from  = 

{a, g, c, t}. The averaged results from 100 

independent tests would be reported in the following. 

We summarize the total running time (in seconds) 

of the three algorithms for EMSMP under various 

pattern lengths in Table 1. 

Table 1 Results of total running time (in seconds) 

for m-BNDM, vp and vpac 

Algorithm 
Pattern length 

1020% 2020% 3020% 4020% 5020% 

m-BNDM 37.23 16.70 14.50 13.84 13.43 

vp 1.67 2.81 3.31 3.94 4.69 

vpac 1.47 2.74 3.26 3.90 4.63 

From Table 1, we obtain two immediate findings: 

(1) the execution times spent by the proposed 

schemes are better than that of m-BNDM, and  

(2) vpac outperforms vp to a certain degree. 

The superiority of vp and vpac over m-BNDM is 

evident in this experiment. Further, the alliance cuts 

are effective in vpac so that vpac is more efficient 

than vp.  

Let us examine the behavior of vp and vpac. The 

tree construction time of vp and vpac is presented in 

Table 2. It is seen that the construction time needed 

by vpac-tree is slightly slower than that of vp-tree. 

The reason is that each node in vpac spends extra 

time to tackle set E' from its parent node, decide the 

flags GL and GR and pass set E to child nodes in 

every node. 

Table 2 Tree construction time (in seconds) of vp 

and vpac 

Algorithm 
Pattern length 

1020% 2020% 3020% 4020% 5020% 

vp 0.83 1.80 2.50 3.21 4.01 

vpac 0.85 1.85 2.56 3.26 4.04 

Table 3 shows the searching time of vp and vpac. 

Since vpac prunes away some unnecessary branches 

while searching by alliance cuts, the searching time 

of vpac is faster than that of vp. 

Table 3 Searching time (in seconds) of vp and vpac 

Algorithm 
Pattern length 

1020% 2020% 3030% 4040% 5050% 

vp 0.84 1.01 0.80 0.73 0.68 

vpac 0.61 0.89 0.70 0.64 0.59 

From Tables 2 and 3, we realize when the length 

of the patterns becomes small, the tree construction 

time tends to be short. A small pattern length leads 

the number of data points with a same edit distance 

from the vantage point and that of the members of V 

in each node increases so that the number of total 

nodes decreases and the height of the tree shrinks. 

Such a small pattern length also raises the chance for 

searching both sub-trees in a node. Thus, the 

searching time tends to be long. Meanwhile, the 

effect of alliance cuts in vp-tree goes vigorous. With 

the similar reasoning, a larger pattern length results 

in a larger total number of nodes, a relatively longer 

(or unshrunk) tree height, a shorter searching time 

and a weak effect of alliance cuts. 

Let N denote the number of total nodes in vp-tree 

and vpac-tree, nvp and nvpac be those of the searched 

nodes by vp and vpac, respectively. We could 

evaluate the searching effectiveness of vp and vpac 

by examining the search ratios defined as 

 nvp/N and nvpac/N. (4) 

To measure the effectiveness of vpac in cutting 

branches/nodes, we define the cut ratio as  

 (nvpnvpac)/nvp. (5) 

Table 4 reports N, nvp, nvpac, nvp/N, nvpac/N and 

(nvpnvpac)/nvp in our experiment. Note that N = 

215985 for pattern length of 1020% is very small 

(as compared to that of 2020%). This is because lmin 

is small in the case of 1020% and there are quite a 

lot identical sub-strings with length lmin in T, which 

would be collected in vantage point set V after the 
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vantage point is selected in each node. Therefore, N 

becomes quite small.  

Table 4 Results of N, nvp, nvpac and cut-ratio 

 
Pattern length 

1020% 2020% 3030% 4040% 5050% 

N 215985 999934 999977 999969 999961 

nvp 58973 50662 33499 26011 21421 

nvpac 40789 41144 27608 21598 17896 

nvp/N 27.30% 5.07% 3.35% 2.60% 2.14% 

nvpac/N 18.88% 4.11% 2.76% 2.16% 1.79% 

(nvpnvpac)/nvp 30.83% 18.79% 17.58% 16.96% 16.45% 

It is seen from Table 4 that the search ratio tends to 

decrease when pattern length increases. As we 

mentioned before, when the pattern length is small, 

the data points (corresponding to T) with a same edit 

distance from the vantage point grow larger. Those 

with the same distance as median e would be 

decomposed into both sub-trees of the node. 

Consequently, both sub-trees have to be searched, 

when the edit distance between the query point and 

the vantage point is the same as e in a node. When 

pattern length is 1020%, the search ratios are 

27.30% and 18.88% for vp and vpac, respectively. 

On the other hand, when the pattern length is 

5020%, the search-ratio is only 2.14% (1.79%) for 

vp (vpac). 

Regarding the cut ratio, it tends to decrease when 

pattern length increases. The reason is that when 

pattern length grows, the range of edit distances 

becomes large. Then the chance that the edit distance 

between a vantage point and a query point is median 

e is declined. Therefore, the chance of searching both 

sub-trees is also reduced. In the case of 1020%, the 

cut ratio is 30.83%; while in the case of 5020%, it 

reduces to 16.45%. 

The aforementioned outcomes and discussion 

explain the effectiveness of vpac in pruning away 

unnecessary branches, which makes vpac more 

efficient than vp. 

 

 

5. Concluding Remarks 
 

By mapping the sub-strings in T and prefixes of all 

Pi’s with length lmin as data points in the edit 

distance-based metric space for 1ir, we design two 

schemes which construct the data points of T into 

vp-tree and vpac-tree, repsectively, and search data 

points of Pi in the trees, for solving EMSMP. The 

expected tree constructing time is 

O(lmin/lminnlog2n) and the expected searching 

time is O(lmin/lminnlog2n) for either vp-tree or 

vp-ac-tree.  

The experimental results show that the proposed 

schemes using vp-tree and vpac-tree are more 

efficient than the m-BNDM algorithm. In addition, 

the effectiveness of alliance cuts in vpac-tree is 

significant, especially when the pattern length is 

small.  

In the near future, we would like to test more data 

sets with other alphabets (than DNA) to see whether 

the benefits obtained so far could still retain. 

Furthermore, we would like to cope with the 

approximate multiple string matching problem using 

the ideas of vp-tree and vpac-tree. 
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Appendix A 

The construction of vp-tree with respect to X = {a, 

b, c, d, e, f, g, h, i, j, k, l, m, n, o}, as shown in Figure 

2(a) is illustrated level by level as follows. In the 
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beginning, we choose a as the first vantage point and 

we have X = X\{a} and V1 = {a}. Among all (a, x)’s, 

the median distance is e1 = (a, j) (= (a, e) = (a, m)) 

as shown in Figure A(a) where e, j and m are denoted 

as red triangles. Based on median e1, we apply the 

revised refined ball partition procedure to obtain X
 1 

L  

= {i, k, b, d, h, e, j} and X
 1 

R  = {m, l, c, n, f, o, g}. 

The node with respect to X would be N
1
 = ({a}, e1,  

T 1 

L , T 1 

R ) where T 1 

L  and T 1 

R  are the sub-trees with 

respect to X
 1 

L  and X
 1 

R , respectively, after they are 

recursively built as shown in Figure A(b). Let us 

observe the left child node N
2
 of N

1
. In node N

2
, X

2
 

(= X
 1 

L ) = {i, k, b, d, h, e, j}. Assume that b is chosen 

to be its vantage point with X
2
 = X

2
\{b}, V2 = {b} and 

median e2 = (b, d) = (b, j). Then, we obtain X
 2 

L  = 

{h, i, d} and X
 2 

R  = {j, e, k} as shown in Figure A(c) 

and (d). The left child node N
3
 (of N

2
) chooses d to 

be its vantage point where X
3
 = X

 2 

L \{d}, V3 = {d} and 

median e3 = (d, h). Hence, X
 3 

L  = {h} and X
 3 

R  = {i} 

as shown in Figure A(e). In node N
4
 (N

5
) with respect 

to X
4
 = X

 3 

L  (X
5
 = X

 3 

R ), h (i) is the only point and the 

vantage point so that it is the leaf node without any 

sub-tree (see Figure A(f)). The returned pointers T 3 

L  

and T  3 

R  after the construction of N
4
 and N

5
, 

respectively, cause N
3
 to be physically built. For N

6
, 

vantage point is e and e6 = (e, j) (Figure A(g)), 

which makes nodes N
7
 and N

8
 (containing j and k 

with pointers T 6 

L  and T 6 

R , respectively) be built as 

leaf nodes. T 6 

L  and T 6 

R  cause N
6
 to be built with T

 2 

R ; and consequently, T 2 

L  and T 2 

R  (to N
3
 and N

6
, 

respectively) make N
2
 be built with pointer T 1 

L  as 

shown in Figure A(h).  

The sub-tree pointed by T 1 

R  is constructed by the 

same recursive approach. Figure A(i) and (j) depict 

that c is the vantage point of N
9
 with e9 = (c, m), X

 9 

L  

= {f, l, m} and X
 9 

R  = {g, n, o}. Figure A (k) show 

vantage point f (l, m) in N
10

 (N
11

, N
12

) where N
11

 and 

N
12

 become leaf nodes and (l) illustrates the partially 

constructed vp-tree. Figure A(m) gives vantage point 

g in N
13

 and the completion of N
14

 and N
15

; and A(n) 

presents the final vp-tree. 
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Figure A. The constructing vp-tree for Example 1 
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