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Abstract 
 

In this paper, we first introduce the BWT 

Method to solve the exact string matching problem.  

The critical technology of applying the BWT is the 

algorithm to construct the BWT.  If we use an 

ordinary sorting algorithm to construct the BWT, 

the BWT Method will be only theoretically 

interesting and not practically feasible.  We will 

introduce our method to construct the BWT.  As 

explained, our method is easy to understand, easy 

to implement and efficient.  For a text string with 

length 10M, our method only needs 15 seconds.  

In this paper, we also show that the BWT Method 

is exceedingly efficient as compared with several 

other exact string matching algorithms. 

 

 

1  Introduction 
 

In this paper, we focus on the exact string 

matching problem.  We are given a text string 𝑇 

and a pattern string 𝑃.  Our job is to determine 

whether 𝑃  appears in 𝑇  and if it does, the 

location of 𝑇  where 𝑃  appears.  Many 

algorithms have been designed to solve this 

problem.  A comprehensive review of some 

famous algorithms, such as the Convolution 

Method ([5], [16] and [6]), Reverse Factor 

Method([4] and [14]), the Suffix Tree Method 

([17], [11] and [15]), the Suffix Array Method [12], 

the KMP Method ([13] and [9]), the Boyer and 

Moore Method [1], the Horspool Method [7] and 

the BWT Method can be found ([2] and [3]). 

Among all of the algorithms [10], the Suffix Tree 

Method, the Suffix Array Method and the BWT 

Method need a pre-processing.  After the 

pre-processing is done, the exact string problem 

can be very efficiently solved.  Our research 

focuses on the pre-processing part of the BWT 

method.  We propose an efficient algorithm to 

construct the BWT. 

 
 
2 The BWT of a Text String T 
 

In the exact string matching problem, we are 

given a text string 𝑇 = 𝑡1𝑡2 … 𝑡𝑛  and a pattern 

𝑃 = 𝑝1𝑝2 … 𝑝𝑚. Our job is to determine whether 

𝑃 appears in 𝑇 and if it does, the location where 

it appears. One method of the exact string method 

is the suffix tree approach. We may also use the 

suffix array approach. For instance, consider the 

text string 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$. The suffixes of this 

string are  𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 

𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 

𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 𝑔𝑎𝑎𝑐𝑐𝑎$ , 𝑎𝑎𝑐𝑐𝑎$ , 𝑎𝑐𝑐𝑎$ , 𝑐𝑐𝑎$ , 

𝑐𝑎$, 𝑎$ and $. 

  

If a pattern 𝑃 appears in 𝑇, it must be a prefix 

of one of the suffixes. The suffix array approach 

uses a special binary searching algorithm to solve 

the exact string matching problem.  

 

In this section, we shall introduce the Burrow 

Wheeler Transform (𝐵𝑊𝑇 for short) which uses 

the suffix array, but with a much more efficient 

searching algorithm. Before giving the formal 

definition of the transform, we shall use an 

example to explain the main ideas behind it. 

Consider the following string: 

 

  𝑇 = 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ 

 

 Given a string 𝑇 = 𝑡1𝑡2 … 𝑡𝑛, a rotation of 

𝑇  is 𝑇 = 𝑡2 … 𝑡n𝑡1 . For instance, let 𝑇 =
𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ . Then the rotation of 𝑇  is 

𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔. If we further rotate this string, 

we will obtain 𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔. We then rotate 

the string to obtain the following strings: 

 

Table 1 

 

1 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ 

2 𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔 

3 𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔 

4 𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡 

5 𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐 

6 𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐 

7 𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎 

8 𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔 

9 𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎 

10 𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎 
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11 𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐 

12 𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐 

13 $𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎 

  

The next step is to sort the above strings 

alphabetically. The result is as follows: 

 

Table 2 

 

𝑟𝑜𝑤 𝑆𝐴(𝑇) rotation 

1 13 $𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎 

2 12 𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐 

3 8 𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔 

4 9 𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎 

5 6 𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐 

6 11 𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐 

7 5 𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐 

8 10 𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎 

9 4 𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡 

10 7 𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎 

11 1 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ 

12 2 𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔 

13 3 𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔 

  

We pick up all of the last characters of the 

above strings in Table 2 from top to bottom.  The 

resulting string is 𝐵𝑊𝑇(𝑇) = 𝑎𝑐𝑔𝑎𝑐𝑐𝑐𝑎𝑡𝑎$𝑔𝑔 . 

Note that, in Table 2, the numbers on the second 

column are the starting positions of the suffixes of 

𝑇, denoted as 𝑆𝐴(𝑇). In our example, 𝑆𝐴(𝑇) =
{13,12,8,9,6,11,5,10,4,7,1,2,3}. The relationship 

between 𝑆𝐴(𝑇) and 𝐵𝑊𝑇(𝑇) is as follows: 

  

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑛], if 𝑆𝐴[𝑖] = 1 

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑆𝐴[𝑖] − 1], otherwise 

 

 

3 The Backward Search 

  
Consider row 2 in the BWT matrix in Table 2. 

Row 2 starts with 𝑎  and 𝐵𝑊𝑇(𝑇)2 = 𝑐 . This 

actually means that there exists a suffix starting 

with 𝑐𝑎. For every string 𝑆 = 𝑠1𝑠2 … 𝑠𝑘, there are 

two corresponding 𝑠(𝑆)  and 𝑒(𝑆).  𝑠(𝑆)  and 

𝑒(𝑆) are the first row of the BWT matrix which 

starts with 𝑆 and the last row of BWT matrix 

which starts with 𝑆  respectively. For instance, 

𝑆 = 𝑐𝑐𝑎, 𝑠(𝑆) = 8 and 𝑒(S) = 9. Thus, our job 

is to find the 𝑠(𝑆) and 𝑒(𝑆) for a given pattern 

𝑆. 

 

To apply the backward search of the BWT to 

solve the string matching problem, two functions 

have to be available: 𝐶𝑜𝑢𝑛𝑡(𝑥)  and 

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑖, 𝑥) . The function 𝐶𝑜𝑢𝑛𝑡(𝑥)  is the 

total number of characters in 𝑇  that are 

lexicographically smaller than 𝑥. For our example, 

𝑇 = 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$ , 𝐶𝑜𝑢𝑛𝑡(𝑎) = 1 , 

𝐶𝑜𝑢𝑛𝑡(𝑐) = 5 ,  𝐶𝑜𝑢𝑛𝑡(𝑔) = 9  and 

𝐶𝑜𝑢𝑛𝑡(𝑡) = 12. 𝐶𝑜𝑢𝑛𝑡(𝑐) = 5 because four 𝑎’s 

and one $ appear in 𝑇. This means that any suffix 

starting with 𝑐 cannot be in row 1 to row 5 of the 

BWT matrix. It must start from row 5+1=6 in the 

BWT matrix. Similarly, 𝐶𝑜𝑢𝑛𝑡(𝑡) = 12 . Any 

suffix starting with 𝑡  must start from row 

12+1=13. The function 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑖, 𝑥)  is the 

number of character 𝑥  in 𝐵𝑊𝑇(𝑇)1  to 

𝐵𝑊𝑇(𝑇)𝑖−1 . In our example, 𝐵𝑊𝑇(𝑇) =
𝑎𝑐𝑔𝑎𝑐𝑐𝑐𝑎𝑡𝑎$𝑔𝑔 , 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(6, 𝑎) = 2 , 

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(8, 𝑎) = 2 and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(8, 𝑔) = 1. The 

meaning of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(6, 𝑎) = 2 is that from row 

1 to row 5 of BWT matrix, there are two rows 

ending with 𝑎. These two functions 𝐶𝑜𝑢𝑛𝑡(𝑥) 

and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑖, 𝑥) can be stored in matrixes in 

pre-processing time. 

 

Next, given the range [𝑠(𝑦), 𝑒(𝑦)] of a string 

𝑦 , computing the range [𝑠(𝑥𝑦), 𝑒(𝑥𝑦)] for the 

string x𝑦 for any character 𝑥 can be done by the 

following formulas: 

 

𝑠(𝑥𝑦) = 𝐶𝑜𝑢𝑛𝑡(𝑥) + 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑦), 𝑥) + 1 

𝑒(𝑥𝑦) = 𝐶𝑜𝑢𝑛𝑡(𝑥) + 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑦) + 1, 𝑥) 

 

Initially, 𝑦  is an empty string ∅. Therefore, 

𝑠(𝑦) and 𝑒(𝑦)  are initialized as 1  and 𝑛 

respectively because every rows in the BWT 

matrix are started with an empty string. For 

example, given a pattern 𝑃 = 𝑔𝑡, we start with 

𝑥 = 𝑡  and 𝑦 = ∅ . Since 𝐶𝑜𝑢𝑛𝑡(𝑡) = 12 , 

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(1, 𝑡) = 0  and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(14, 𝑡) = 1 , 

𝑠(𝑡) = 12 + 0 + 1 = 13  and 𝑒(𝑡) = 12 + 1 =
13. Next, we can use the results of previous step 

to find the 𝑠(𝑔𝑡) and 𝑒(𝑔𝑡). By pre-processing, 

we know 𝐶𝑜𝑢𝑛𝑡(𝑔) = 9 , 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑡), 𝑔) =
𝑃𝑟𝑒𝑐𝑒𝑑𝑒(13, 𝑔) = 2  and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑡) +
1, 𝑔) = 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(14, 𝑔) = 3. Therefore, we can 

find that 𝑠(𝑔𝑡) = 9 + 2 + 1 = 12 and 𝑒(𝑔𝑡) =
9 + 3 = 12. This means that we have found one 

solution in row 12 of the BWT matrix. Finally, we 

conclude that string 𝑔𝑡 appears at location 2 of 

text 𝑇 since the starting position of row 12 is 2, 

which is recorded in 𝑆𝐴(𝑇). Next, we present a 

case, 𝑃 = 𝑎𝑔𝑡, that does not exist. Let 𝑦 = 𝑔𝑡 

and 𝑥 = 𝑎 . Previously, we have found that 

[𝑠(𝑦), 𝑒(𝑦)] = [𝑠(𝑔𝑡), 𝑒(𝑔𝑡)] = [12, 12] . By 

pre-processing, we know 𝐶𝑜𝑢𝑛𝑡(𝑎) = 1 , 

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑔𝑡), 𝑎) = 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(12, 𝑎) = 4  and 

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑔𝑡) + 1, 𝑎) = 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(13, 𝑎) = 4 . 

Then, 𝑠(𝑎𝑔𝑡) = 𝐶𝑜𝑢𝑛𝑡(𝑎) +
𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑔𝑡), 𝑎) + 1 = 1 + 4 + 1 = 6  and 

𝑒(𝑎𝑔𝑡) = 𝐶𝑜𝑢𝑛𝑡(𝑎) + 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑔𝑡) + 1, 𝑎) =
1 + 4 = 5 . Since 𝑒(𝑎𝑔𝑡)  <  𝑠(𝑎𝑔𝑡) , we 

conclude that string 𝑎𝑔𝑡 does not exist in 𝑇.  
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We can see that the backward search of the 

BWT is exceedingly fast and it’s time-complexity 

is proportional to the length of the text and the 

worst case time-complexity is 𝑂(𝑚). The critical 

problem is how to find the 𝐵𝑊𝑇(𝑇). A straight 

forward method is to sort all of the rotated suffixes. 

Suppose the length of the text is 10 million long. 

Then, we have 10 million strings to sort.  The 

authors of the paper [9] proposed an efficient 

method to obtain the suffix array.  This method, 

which may be called the KS Method, can be easily 

modified to construct the 𝑆𝐴(𝑇) in linear time.  

The KS method is hard to understand and hard to 

implement. In the next section, we introduce our 

method to construct the 𝐵𝑊𝑇(𝑇) which is based 

on the KS method. 

 
 
4 Our Method to Construct 𝑩𝑾𝑻(𝑻) 
 

The main idea of our method is that when we 

compare two strings, we may compare the first 

three characters. If they are not identical, the 

comparison is already done. If they not identical, 

we just continue to compare the next three 

characters. This decreases a lot of time.  

 

In our algorithm, we will use 𝑆𝐴  array for 

{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏}, denoted as 𝑆𝐴{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏}.  

If 𝑆𝐴[𝑖] = 𝑗 , the 𝑖 -th smallest element of 

{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏} is 𝑥𝑗.  We also use a term rank.  

If 𝑥𝑗  is the 𝑘 -th smallest element of 

{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏}, the rank of 𝑥𝑗 is 𝑘. 

 

Instead of sorting the suffixes, we may sort the 

prefixes of the suffixes.  For instance, consider 

suffix gtcca$ and suffix ggtcca$.  Let us only 

compare their prefixes with which contain three 

charcaters.  Such prefixes for gtcca$ and ggtcca$ 

are gtc and ggt.  We compare these two prefixes 

and can see easily that ggt is alphabetically  

smaller than gtc. Therefore we can immediately 

conclude that suffix ggtcca$ is alphabetically 

smaller than suffix gtcca$.  

 

We shall call a string with three characters a 

“triple.” We now first add two 0’s to our input 

string.  That is, our string becomes: 

 

 𝑇 = 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$00 
 

Table 3 shows all the triples of 𝑇 =
𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$. We then use radix sort to sort 

these triples. After radix sort, we can obtain the 

sorted triples which are shown in Table 4. 

 

Consider the triples in Table 4.  For 𝑖 =

6, 𝑆𝐴[6] = 11.  This means that the 6-th smallest 

triple is 𝑡𝑟𝑖𝑝𝑙𝑒11. Note that for this case, the ranks 

of 𝑡𝑟𝑖𝑝𝑙𝑒4 and 𝑡𝑟𝑖𝑝𝑙𝑒10 are both 8. 

  

Table 3 

 

Index 𝑡𝑟𝑖𝑝𝑙𝑒𝑖  

1 𝑔𝑔𝑡 

2 𝑔𝑡𝑐 

3 𝑡𝑐𝑐 

4 𝑐𝑐𝑎 

5 𝑐𝑎𝑔 

6 𝑎𝑔𝑎 

7 𝑔𝑎𝑎 

8 𝑎𝑎𝑐 

9 𝑎𝑐𝑐 

10 𝑐𝑐𝑎 

11 𝑐𝑎$ 

12 𝑎$0 

13 $00 

 

Table 4 

 

Index 𝑆𝐴  𝑟𝑎𝑛𝑘 

1 13 $00 1 

2 12 𝑎$0 2 

3 8 𝑎𝑎𝑐 3 

4 9 𝑎𝑐𝑐 4 

5 6 𝑎𝑔𝑎 5 

6 11 𝑐𝑎$ 6 

7 5 𝑐𝑎𝑔 7 

8 4 𝑐𝑐𝑎 8 

9 10 𝑐𝑐𝑎 8 

10 7 𝑔𝑎𝑎 10 

11 1 𝑔𝑔𝑡 11 

12 2 𝑔𝑡𝑐 12 

13 3 𝑡𝑐𝑐 13 

 

If the ranks of two 𝑡𝑟𝑖𝑝𝑙𝑒𝑎  and 𝑡𝑟𝑖𝑝𝑙𝑒𝑏  are 

the same, we continue to compare the rank of 

𝑡𝑟𝑖𝑝𝑙𝑒𝑎+𝑘 and 𝑡𝑟𝑖𝑝𝑙𝑒𝑏+𝑘, 𝑘 is initialized as 3. If 

the ranks of 𝑡𝑟𝑖𝑝𝑙𝑒𝑎+𝑘  and 𝑡𝑟𝑖𝑝𝑙𝑒𝑏+𝑘  are still 

the same, we set 𝑘 = 𝑘 + 3 and compare again 

until we can find which one is smaller. Since 

𝑡𝑟𝑖𝑝𝑙𝑒4 and 𝑡𝑟𝑖𝑝𝑙𝑒10 are identical, we know that 

we must compare 𝑡𝑟𝑖𝑝𝑙𝑒4+3 = 𝑡𝑟𝑖𝑝𝑙𝑒7  and 

𝑡𝑟𝑖𝑝𝑙𝑒10+3 = 𝑡𝑟𝑖𝑝𝑙𝑒13. The rank of 𝑡𝑟𝑖𝑝𝑙𝑒7 = 10 

and that of 𝑡𝑟𝑖𝑝𝑙𝑒13 = 1. We say that the rank of 

𝑡𝑟𝑖𝑝𝑙𝑒7 is larger than that of 𝑡𝑟𝑖𝑝𝑙𝑒13. Since the 

rank of 𝑡𝑟𝑖𝑝𝑙𝑒7  is larger than the rank of 

𝑡𝑟𝑖𝑝𝑙𝑒13, we may say that the rank of 𝑡𝑟𝑖𝑝𝑙𝑒4 is 

larger than that of 𝑡𝑟𝑖𝑝𝑙𝑒10. Thus we update their 

ranks and obtain the following table: 

 

Table 5 
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Index 𝑆𝐴  𝑟𝑎𝑛𝑘 

1 13 $00 1 

2 12 𝑎$0 2 

3 8 𝑎𝑎𝑐 3 

4 9 𝑎𝑐𝑐 4 

5 6 𝑎𝑔𝑎 5 

6 11 𝑐𝑎$ 6 

7 5 𝑐𝑎𝑔 7 

8 10 𝑐𝑐𝑎 8 

9 4 𝑐𝑐𝑎 9 

10 7 𝑔𝑎𝑎 10 

11 1 𝑔𝑔𝑡 11 

12 2 𝑔𝑡𝑐 12 

13 3 𝑡𝑐𝑐 13 

 

Now, the ranks are all different. We then use the 

following formula 

 

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑛], if 𝑆𝐴[𝑖] = 1 

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑆𝐴[𝑖] − 1], otherwise 

 
to obtain the 𝐵𝑊𝑇(𝑇) = acgaccctaa$gg . The 

algorithm of our method is as follows: 

 

The Algorithm of our Method 

Input: a text 𝑇 with 𝑛 characters 

Output: 𝐵𝑊𝑇(𝑇) 

 

For 𝑖 from 1 to 𝑛 do 

𝑡𝑟𝑖𝑝𝑙𝑒𝑖 = 𝑡𝑖𝑡𝑖+1𝑡𝑖+2. 

End 

Radix sort the triples and produce the 

𝑆𝐴{𝑡𝑟𝑖𝑝𝑙𝑒1, 𝑡𝑟𝑖𝑝𝑙𝑒2, … , 𝑡𝑟𝑖𝑝𝑙𝑒𝑛}. 

Set 𝑟𝑎𝑛𝑘𝑆𝐴[1] = 1. 

For 𝑖 from 2 to 𝑛 do 

if 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑖] = 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑖−1] 

  𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖−1] 

Else 

  𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑖 
End  

For 𝑖 from 2 to 𝑛 do 

  𝑘𝑖 = 3 

End 

While some ranks are identical do 

For each (𝑎, 𝑏)  (such that the rank of 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑎] 

equals to that of 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑏]  and b − a  is the 

maximum) do 

    Sort 𝑟𝑎𝑛𝑘𝑆𝐴[𝑎]+𝑘 to 𝑟𝑎𝑛𝑘𝑆𝐴[𝑏]+𝑘 to produce 

    𝑆𝐴{𝑟𝑎𝑛𝑘𝑆𝐴[𝑎]+𝑘 , 𝑟𝑎𝑛𝑘𝑆𝐴[𝑎+1]+𝑘, … , 𝑟𝑎𝑛𝑘𝑆𝐴[𝑏]+𝑘}; 

𝑆𝐴{𝑡𝑟𝑖𝑝𝑙𝑒𝑎 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑎+1,…,𝑡𝑟𝑖𝑝𝑙𝑒𝑏} =
         𝑆𝐴{𝑟𝑎𝑛𝑘𝑆𝐴[𝑎], 𝑟𝑎𝑛𝑘𝑆𝐴[𝑎+1], … , 𝑟𝑎𝑛𝑘𝑆𝐴[𝑏]}; 

For 𝑖 from 𝑎 + 1 to 𝑏 do 

      if 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖]+𝑘 = 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖−1]+𝑘 

        𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖−1] 

Else 

        𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑖 
      𝑘𝑖 = 𝑘𝑖 + 3 

    End 

  End 

End of while 

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑛], if 𝑆𝐴[𝑖] = 1 

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑆𝐴[𝑖] − 1], otherwise 

 
 
5 Experiments 
 

The environment of our experiment is on the 

Windows 7 64-bit computer which equipped with 

two 3.20GHz cores Intel(R) Core(TM) i5-4570 

CPU, 8GB RAM and 1000GB hard disk. The 

experiment results are the average of 100 

randomly generated texts. 
 
 Experiment 1:  A Comparison of Our 

Method and Ordinary Method to Construct 

the BWT. 

 
By ordinary method to construct the BWT, 

we mean the method of using some 

𝑂(𝑛 log 𝑛)  sorting method. That is, we 

compare two complete suffixes. If the text 

string is very long, there will be a large 

number of long suffixes.  Therefore this 

kind of method will be highly inefficient.  

Table 5 shows the experimental results. The 

vertical dimension indicates the methods, 

the horizontal dimension indicates the length 

of input text 𝑇, and the cells in the table 

contain the execution time of each 

conditions. The experiment results are the 

average of 100 randomly generated texts.  

From this result, we can see that our method 

is much more efficient than an ordinary 

method. 
 

Table 5 

 

Length 

Method 

10K 100K 1M 10M 

Our method 0.0012 0.158 0.29 15.7 

Ordinary 

Sorting 

0.12 34 5051 69243 

 
 Experiment 2:  Comparison of the 

searching Time of the BWT Method and the 

Searching Time of Brute-Force Method. 

 

In the experiment, we compare Brute-Force 

Method and the BWT Method. Given a text 

T = 𝑡1𝑡2 … 𝑡𝑛and a pattern 𝑃 = 𝑝1𝑝2 … 𝑝𝑚, 

the Brute-Force Method compares 

𝑡𝑖𝑡𝑖+1 … 𝑡𝑖+𝑚 and 𝑝1𝑝2 … 𝑝𝑚  for 𝑖 from 1 
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to  𝑛 − 𝑚. In this experiment, we randomly 

generated a text string and 1000 randomly 

generated patterns. Table 6 shows the result 

of searching time in microseconds.  The 

vertical dimension indicates the length of 

text 𝑇  and the searching algorithms, and 

the horizontal dimension indicates the length 

of the pattern 𝑃. We can see that the BWT 

Method is much more efficient than the 

Brute-Force Method. Besides, it is 

interesting to note that for a fixed text length, 

the searching time of the BWT Method is 

independent of the pattern length. 

 

Table 6 

 

𝑃 

𝑇 

50 100 

10K BWT 0.000001 0.000001 

Brute-Force 0.0024 0.0045 

100K BWT 0.000001 0.000001 

Brute-Force 0.023 0.045 

1M BWT 0.000001 0.000001 

Brute-Force 0.23 0.45 

10M BWT 0.000002 0.000002 

Brute-Force 2.33 4.58 

 

 Experiment 3:  Comparison of the 

Searching Time of the BWT Method and the 

Searching Time of Some Other Methods. 

 
In this experiment, we tested the KMP 

Method, Reverse Factor Method and the 

BWT Method. The result is shown in Table 

7. The vertical dimension indicates the 

length of text 𝑇  and the searching 

algorithms, and the horizontal dimension 

indicates the length of the pattern 𝑃. As can 

be seen, the BWT method is much faster 

than the other methods.  

 

Table 7 

 

𝑃 

𝑇 

10 50 100 

 

100K 

BWT 0.0002 0.0002 0.0002 

KMP 0.1 0.1 0.1 

RF 0.023 0.007 0.006 

 

1M 

BWT 0.0002 0.0002 0.0002 

KMP 1 1 1 

RF 0.23 0.06 0.03 

 

10M 

BWT 0.0002 0.0002 0.0002 

KMP 10 10 10 

RF 2.37 0.63 0.36 

 

 

 

6 Concluding Remarks  
 

By examining the results of Experiment 1, 

Experiment 2 and Experiment 3, we can conclude 

that the BWT Method is suitable for multiple 

pattern searching.  This is the case for all exact 

string algorithms which need pre-processing, such 

as the suffix tree method and the suffix array 

method. The pre-processing always takes some 

time. But once it is done, it is done. It is common 

these days that some research organization 

constructs a huge data base of text strings and it 

will be available for researchers around the world.  

In such a situation, pre-processing is worthwhile.  

Of course, we do not like the pre-processing time 

to be exceedingly long. The pre-processing of the 

BWT Method is to construct the BWT for a given 

text. From the result of Experiment 1, we can see 

that our method to construct the BWT Method is 

not too long. For instance, for a text string with 

10M length, the time needed to construct the BWT 

is only 15.7 seconds. Our experience tells us that 

this pre-processing method is much better than 

that for the suffix tree Method, for instance. Not 

mentioning the time needed to construct the suffix 

tree, the memory needed to store the suffix tree is 

much larger than that needed for the BWT 

Method. 

 

The contribution of our work is to present an 

efficient algorithm to construct the BWT and thus 

make the BWT Method feasible.  Our 

experimental results showed that the BWT 

Method is much more efficient than any other 

exact string matching algorithm.  

 

 

7 Future Works 
 

For future works, we will make a study of some 

research done on the searching algorithms of the 

BWT approach. 

 

We will also apply the BWT Method to solve 

the repeating group finding problem.  This 

problem is defined as follows: We are given a 

string 𝑇.  The problem is finding all repeating 

sub-strings in 𝑇  under the condition that the 

lengths of the substrings are all larger than a 

threshold because short repeating groups are not 

meaningful.  This problem is quite useful for 

biological research. In [8], Kung used the dynamic 

programming method to solve the problem.  We 

believe that our method to construct the BWT can 

be used too. 
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