
Application of the BWT Method to Solve the Exact String Matching

Problem

T. W. Chen and R. C. T. Lee

Department of Computer Science

National Tsing Hua University, Hsinchu, Taiwan

chen81052084@gmail.com

Abstract

In this paper, we first introduce the BWT

Method to solve the exact string matching problem.

The critical technology of applying the BWT is the

algorithm to construct the BWT. If we use an

ordinary sorting algorithm to construct the BWT,

the BWT Method will be only theoretically

interesting and not practically feasible. We will

introduce our method to construct the BWT. As

explained, our method is easy to understand, easy

to implement and efficient. For a text string with

length 10M, our method only needs 15 seconds.

In this paper, we also show that the BWT Method

is exceedingly efficient as compared with several

other exact string matching algorithms.

1 Introduction

In this paper, we focus on the exact string

matching problem. We are given a text string 𝑇

and a pattern string 𝑃. Our job is to determine

whether 𝑃 appears in 𝑇 and if it does, the

location of 𝑇 where 𝑃 appears. Many

algorithms have been designed to solve this

problem. A comprehensive review of some

famous algorithms, such as the Convolution

Method ([5], [16] and [6]), Reverse Factor

Method([4] and [14]), the Suffix Tree Method

([17], [11] and [15]), the Suffix Array Method [12],

the KMP Method ([13] and [9]), the Boyer and

Moore Method [1], the Horspool Method [7] and

the BWT Method can be found ([2] and [3]).

Among all of the algorithms [10], the Suffix Tree

Method, the Suffix Array Method and the BWT

Method need a pre-processing. After the

pre-processing is done, the exact string problem

can be very efficiently solved. Our research

focuses on the pre-processing part of the BWT

method. We propose an efficient algorithm to

construct the BWT.

2 The BWT of a Text String T

In the exact string matching problem, we are

given a text string 𝑇 = 𝑡1𝑡2 … 𝑡𝑛 and a pattern

𝑃 = 𝑝1𝑝2 … 𝑝𝑚. Our job is to determine whether

𝑃 appears in 𝑇 and if it does, the location where

it appears. One method of the exact string method

is the suffix tree approach. We may also use the

suffix array approach. For instance, consider the

text string 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$. The suffixes of this

string are 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$, 𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$,

𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$, 𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$, 𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$,

𝑎𝑔𝑎𝑎𝑐𝑐𝑎$, 𝑔𝑎𝑎𝑐𝑐𝑎$, 𝑎𝑎𝑐𝑐𝑎$, 𝑎𝑐𝑐𝑎$, 𝑐𝑐𝑎$,

𝑐𝑎$, 𝑎$ and $.

If a pattern 𝑃 appears in 𝑇, it must be a prefix

of one of the suffixes. The suffix array approach

uses a special binary searching algorithm to solve

the exact string matching problem.

In this section, we shall introduce the Burrow

Wheeler Transform (𝐵𝑊𝑇 for short) which uses

the suffix array, but with a much more efficient

searching algorithm. Before giving the formal

definition of the transform, we shall use an

example to explain the main ideas behind it.

Consider the following string:

 𝑇 = 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$

 Given a string 𝑇 = 𝑡1𝑡2 … 𝑡𝑛, a rotation of

𝑇 is 𝑇 = 𝑡2 … 𝑡n𝑡1 . For instance, let 𝑇 =
𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$. Then the rotation of 𝑇 is

𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔. If we further rotate this string,

we will obtain 𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔. We then rotate

the string to obtain the following strings:

Table 1

1 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$

2 𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔

3 𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔

4 𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡

5 𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐

6 𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐

7 𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎

8 𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔

9 𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎

10 𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎

52

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

11 𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐

12 𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐

13 $𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎

The next step is to sort the above strings

alphabetically. The result is as follows:

Table 2

𝑟𝑜𝑤 𝑆𝐴(𝑇) rotation

1 13 $𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎

2 12 𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐

3 8 𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔

4 9 𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎

5 6 𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐

6 11 𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐

7 5 𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐

8 10 𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎

9 4 𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡

10 7 𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔𝑡𝑐𝑐𝑎

11 1 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$

12 2 𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔

13 3 𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$𝑔𝑔

We pick up all of the last characters of the

above strings in Table 2 from top to bottom. The

resulting string is 𝐵𝑊𝑇(𝑇) = 𝑎𝑐𝑔𝑎𝑐𝑐𝑐𝑎𝑡𝑎$𝑔𝑔 .

Note that, in Table 2, the numbers on the second

column are the starting positions of the suffixes of

𝑇, denoted as 𝑆𝐴(𝑇). In our example, 𝑆𝐴(𝑇) =
{13,12,8,9,6,11,5,10,4,7,1,2,3}. The relationship

between 𝑆𝐴(𝑇) and 𝐵𝑊𝑇(𝑇) is as follows:

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑛], if 𝑆𝐴[𝑖] = 1

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑆𝐴[𝑖] − 1], otherwise

3 The Backward Search

Consider row 2 in the BWT matrix in Table 2.

Row 2 starts with 𝑎 and 𝐵𝑊𝑇(𝑇)2 = 𝑐 . This

actually means that there exists a suffix starting

with 𝑐𝑎. For every string 𝑆 = 𝑠1𝑠2 … 𝑠𝑘, there are

two corresponding 𝑠(𝑆) and 𝑒(𝑆). 𝑠(𝑆) and

𝑒(𝑆) are the first row of the BWT matrix which

starts with 𝑆 and the last row of BWT matrix

which starts with 𝑆 respectively. For instance,

𝑆 = 𝑐𝑐𝑎, 𝑠(𝑆) = 8 and 𝑒(S) = 9. Thus, our job

is to find the 𝑠(𝑆) and 𝑒(𝑆) for a given pattern

𝑆.

To apply the backward search of the BWT to

solve the string matching problem, two functions

have to be available: 𝐶𝑜𝑢𝑛𝑡(𝑥) and

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑖, 𝑥) . The function 𝐶𝑜𝑢𝑛𝑡(𝑥) is the

total number of characters in 𝑇 that are

lexicographically smaller than 𝑥. For our example,

𝑇 = 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$, 𝐶𝑜𝑢𝑛𝑡(𝑎) = 1 ,

𝐶𝑜𝑢𝑛𝑡(𝑐) = 5 , 𝐶𝑜𝑢𝑛𝑡(𝑔) = 9 and

𝐶𝑜𝑢𝑛𝑡(𝑡) = 12. 𝐶𝑜𝑢𝑛𝑡(𝑐) = 5 because four 𝑎’s

and one $ appear in 𝑇. This means that any suffix

starting with 𝑐 cannot be in row 1 to row 5 of the

BWT matrix. It must start from row 5+1=6 in the

BWT matrix. Similarly, 𝐶𝑜𝑢𝑛𝑡(𝑡) = 12 . Any

suffix starting with 𝑡 must start from row

12+1=13. The function 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑖, 𝑥) is the

number of character 𝑥 in 𝐵𝑊𝑇(𝑇)1 to

𝐵𝑊𝑇(𝑇)𝑖−1 . In our example, 𝐵𝑊𝑇(𝑇) =
𝑎𝑐𝑔𝑎𝑐𝑐𝑐𝑎𝑡𝑎$𝑔𝑔 , 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(6, 𝑎) = 2 ,

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(8, 𝑎) = 2 and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(8, 𝑔) = 1. The

meaning of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(6, 𝑎) = 2 is that from row

1 to row 5 of BWT matrix, there are two rows

ending with 𝑎. These two functions 𝐶𝑜𝑢𝑛𝑡(𝑥)

and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑖, 𝑥) can be stored in matrixes in

pre-processing time.

Next, given the range [𝑠(𝑦), 𝑒(𝑦)] of a string

𝑦 , computing the range [𝑠(𝑥𝑦), 𝑒(𝑥𝑦)] for the

string x𝑦 for any character 𝑥 can be done by the

following formulas:

𝑠(𝑥𝑦) = 𝐶𝑜𝑢𝑛𝑡(𝑥) + 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑦), 𝑥) + 1

𝑒(𝑥𝑦) = 𝐶𝑜𝑢𝑛𝑡(𝑥) + 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑦) + 1, 𝑥)

Initially, 𝑦 is an empty string ∅. Therefore,

𝑠(𝑦) and 𝑒(𝑦) are initialized as 1 and 𝑛

respectively because every rows in the BWT

matrix are started with an empty string. For

example, given a pattern 𝑃 = 𝑔𝑡, we start with

𝑥 = 𝑡 and 𝑦 = ∅ . Since 𝐶𝑜𝑢𝑛𝑡(𝑡) = 12 ,

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(1, 𝑡) = 0 and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(14, 𝑡) = 1 ,

𝑠(𝑡) = 12 + 0 + 1 = 13 and 𝑒(𝑡) = 12 + 1 =
13. Next, we can use the results of previous step

to find the 𝑠(𝑔𝑡) and 𝑒(𝑔𝑡). By pre-processing,

we know 𝐶𝑜𝑢𝑛𝑡(𝑔) = 9 , 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑡), 𝑔) =
𝑃𝑟𝑒𝑐𝑒𝑑𝑒(13, 𝑔) = 2 and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑡) +
1, 𝑔) = 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(14, 𝑔) = 3. Therefore, we can

find that 𝑠(𝑔𝑡) = 9 + 2 + 1 = 12 and 𝑒(𝑔𝑡) =
9 + 3 = 12. This means that we have found one

solution in row 12 of the BWT matrix. Finally, we

conclude that string 𝑔𝑡 appears at location 2 of

text 𝑇 since the starting position of row 12 is 2,

which is recorded in 𝑆𝐴(𝑇). Next, we present a

case, 𝑃 = 𝑎𝑔𝑡, that does not exist. Let 𝑦 = 𝑔𝑡

and 𝑥 = 𝑎 . Previously, we have found that

[𝑠(𝑦), 𝑒(𝑦)] = [𝑠(𝑔𝑡), 𝑒(𝑔𝑡)] = [12, 12] . By

pre-processing, we know 𝐶𝑜𝑢𝑛𝑡(𝑎) = 1 ,

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑔𝑡), 𝑎) = 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(12, 𝑎) = 4 and

𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑔𝑡) + 1, 𝑎) = 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(13, 𝑎) = 4 .

Then, 𝑠(𝑎𝑔𝑡) = 𝐶𝑜𝑢𝑛𝑡(𝑎) +
𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑠(𝑔𝑡), 𝑎) + 1 = 1 + 4 + 1 = 6 and

𝑒(𝑎𝑔𝑡) = 𝐶𝑜𝑢𝑛𝑡(𝑎) + 𝑃𝑟𝑒𝑐𝑒𝑑𝑒(𝑒(𝑔𝑡) + 1, 𝑎) =
1 + 4 = 5 . Since 𝑒(𝑎𝑔𝑡) < 𝑠(𝑎𝑔𝑡) , we

conclude that string 𝑎𝑔𝑡 does not exist in 𝑇.

53

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

We can see that the backward search of the

BWT is exceedingly fast and it’s time-complexity

is proportional to the length of the text and the

worst case time-complexity is 𝑂(𝑚). The critical

problem is how to find the 𝐵𝑊𝑇(𝑇). A straight

forward method is to sort all of the rotated suffixes.

Suppose the length of the text is 10 million long.

Then, we have 10 million strings to sort. The

authors of the paper [9] proposed an efficient

method to obtain the suffix array. This method,

which may be called the KS Method, can be easily

modified to construct the 𝑆𝐴(𝑇) in linear time.

The KS method is hard to understand and hard to

implement. In the next section, we introduce our

method to construct the 𝐵𝑊𝑇(𝑇) which is based

on the KS method.

4 Our Method to Construct 𝑩𝑾𝑻(𝑻)

The main idea of our method is that when we

compare two strings, we may compare the first

three characters. If they are not identical, the

comparison is already done. If they not identical,

we just continue to compare the next three

characters. This decreases a lot of time.

In our algorithm, we will use 𝑆𝐴 array for

{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏}, denoted as 𝑆𝐴{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏}.

If 𝑆𝐴[𝑖] = 𝑗 , the 𝑖 -th smallest element of

{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏} is 𝑥𝑗. We also use a term rank.

If 𝑥𝑗 is the 𝑘 -th smallest element of

{𝑥𝑎 , 𝑥𝑎+1, … , 𝑥𝑏}, the rank of 𝑥𝑗 is 𝑘.

Instead of sorting the suffixes, we may sort the

prefixes of the suffixes. For instance, consider

suffix gtcca$ and suffix ggtcca$. Let us only

compare their prefixes with which contain three

charcaters. Such prefixes for gtcca$ and ggtcca$

are gtc and ggt. We compare these two prefixes

and can see easily that ggt is alphabetically

smaller than gtc. Therefore we can immediately

conclude that suffix ggtcca$ is alphabetically

smaller than suffix gtcca$.

We shall call a string with three characters a

“triple.” We now first add two 0’s to our input

string. That is, our string becomes:

 𝑇 = 𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$00

Table 3 shows all the triples of 𝑇 =
𝑔𝑔𝑡𝑐𝑐𝑎𝑔𝑎𝑎𝑐𝑐𝑎$. We then use radix sort to sort

these triples. After radix sort, we can obtain the

sorted triples which are shown in Table 4.

Consider the triples in Table 4. For 𝑖 =

6, 𝑆𝐴[6] = 11. This means that the 6-th smallest

triple is 𝑡𝑟𝑖𝑝𝑙𝑒11. Note that for this case, the ranks

of 𝑡𝑟𝑖𝑝𝑙𝑒4 and 𝑡𝑟𝑖𝑝𝑙𝑒10 are both 8.

Table 3

Index 𝑡𝑟𝑖𝑝𝑙𝑒𝑖

1 𝑔𝑔𝑡

2 𝑔𝑡𝑐

3 𝑡𝑐𝑐

4 𝑐𝑐𝑎

5 𝑐𝑎𝑔

6 𝑎𝑔𝑎

7 𝑔𝑎𝑎

8 𝑎𝑎𝑐

9 𝑎𝑐𝑐

10 𝑐𝑐𝑎

11 𝑐𝑎$

12 𝑎$0

13 $00

Table 4

Index 𝑆𝐴 𝑟𝑎𝑛𝑘

1 13 $00 1

2 12 𝑎$0 2

3 8 𝑎𝑎𝑐 3

4 9 𝑎𝑐𝑐 4

5 6 𝑎𝑔𝑎 5

6 11 𝑐𝑎$ 6

7 5 𝑐𝑎𝑔 7

8 4 𝑐𝑐𝑎 8

9 10 𝑐𝑐𝑎 8

10 7 𝑔𝑎𝑎 10

11 1 𝑔𝑔𝑡 11

12 2 𝑔𝑡𝑐 12

13 3 𝑡𝑐𝑐 13

If the ranks of two 𝑡𝑟𝑖𝑝𝑙𝑒𝑎 and 𝑡𝑟𝑖𝑝𝑙𝑒𝑏 are

the same, we continue to compare the rank of

𝑡𝑟𝑖𝑝𝑙𝑒𝑎+𝑘 and 𝑡𝑟𝑖𝑝𝑙𝑒𝑏+𝑘, 𝑘 is initialized as 3. If

the ranks of 𝑡𝑟𝑖𝑝𝑙𝑒𝑎+𝑘 and 𝑡𝑟𝑖𝑝𝑙𝑒𝑏+𝑘 are still

the same, we set 𝑘 = 𝑘 + 3 and compare again

until we can find which one is smaller. Since

𝑡𝑟𝑖𝑝𝑙𝑒4 and 𝑡𝑟𝑖𝑝𝑙𝑒10 are identical, we know that

we must compare 𝑡𝑟𝑖𝑝𝑙𝑒4+3 = 𝑡𝑟𝑖𝑝𝑙𝑒7 and

𝑡𝑟𝑖𝑝𝑙𝑒10+3 = 𝑡𝑟𝑖𝑝𝑙𝑒13. The rank of 𝑡𝑟𝑖𝑝𝑙𝑒7 = 10

and that of 𝑡𝑟𝑖𝑝𝑙𝑒13 = 1. We say that the rank of

𝑡𝑟𝑖𝑝𝑙𝑒7 is larger than that of 𝑡𝑟𝑖𝑝𝑙𝑒13. Since the

rank of 𝑡𝑟𝑖𝑝𝑙𝑒7 is larger than the rank of

𝑡𝑟𝑖𝑝𝑙𝑒13, we may say that the rank of 𝑡𝑟𝑖𝑝𝑙𝑒4 is

larger than that of 𝑡𝑟𝑖𝑝𝑙𝑒10. Thus we update their

ranks and obtain the following table:

Table 5

54

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

Index 𝑆𝐴 𝑟𝑎𝑛𝑘

1 13 $00 1

2 12 𝑎$0 2

3 8 𝑎𝑎𝑐 3

4 9 𝑎𝑐𝑐 4

5 6 𝑎𝑔𝑎 5

6 11 𝑐𝑎$ 6

7 5 𝑐𝑎𝑔 7

8 10 𝑐𝑐𝑎 8

9 4 𝑐𝑐𝑎 9

10 7 𝑔𝑎𝑎 10

11 1 𝑔𝑔𝑡 11

12 2 𝑔𝑡𝑐 12

13 3 𝑡𝑐𝑐 13

Now, the ranks are all different. We then use the

following formula

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑛], if 𝑆𝐴[𝑖] = 1

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑆𝐴[𝑖] − 1], otherwise

to obtain the 𝐵𝑊𝑇(𝑇) = acgaccctaa$gg . The

algorithm of our method is as follows:

The Algorithm of our Method

Input: a text 𝑇 with 𝑛 characters

Output: 𝐵𝑊𝑇(𝑇)

For 𝑖 from 1 to 𝑛 do

𝑡𝑟𝑖𝑝𝑙𝑒𝑖 = 𝑡𝑖𝑡𝑖+1𝑡𝑖+2.

End

Radix sort the triples and produce the

𝑆𝐴{𝑡𝑟𝑖𝑝𝑙𝑒1, 𝑡𝑟𝑖𝑝𝑙𝑒2, … , 𝑡𝑟𝑖𝑝𝑙𝑒𝑛}.

Set 𝑟𝑎𝑛𝑘𝑆𝐴[1] = 1.

For 𝑖 from 2 to 𝑛 do

if 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑖] = 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑖−1]

 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖−1]

Else

 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑖
End

For 𝑖 from 2 to 𝑛 do

 𝑘𝑖 = 3

End

While some ranks are identical do

For each (𝑎, 𝑏) (such that the rank of 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑎]

equals to that of 𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝐴[𝑏] and b − a is the

maximum) do

 Sort 𝑟𝑎𝑛𝑘𝑆𝐴[𝑎]+𝑘 to 𝑟𝑎𝑛𝑘𝑆𝐴[𝑏]+𝑘 to produce

 𝑆𝐴{𝑟𝑎𝑛𝑘𝑆𝐴[𝑎]+𝑘 , 𝑟𝑎𝑛𝑘𝑆𝐴[𝑎+1]+𝑘, … , 𝑟𝑎𝑛𝑘𝑆𝐴[𝑏]+𝑘};

𝑆𝐴{𝑡𝑟𝑖𝑝𝑙𝑒𝑎 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑎+1,…,𝑡𝑟𝑖𝑝𝑙𝑒𝑏} =
 𝑆𝐴{𝑟𝑎𝑛𝑘𝑆𝐴[𝑎], 𝑟𝑎𝑛𝑘𝑆𝐴[𝑎+1], … , 𝑟𝑎𝑛𝑘𝑆𝐴[𝑏]};

For 𝑖 from 𝑎 + 1 to 𝑏 do

 if 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖]+𝑘 = 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖−1]+𝑘

 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖−1]

Else

 𝑟𝑎𝑛𝑘𝑆𝐴[𝑖] = 𝑖
 𝑘𝑖 = 𝑘𝑖 + 3

 End

 End

End of while

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑛], if 𝑆𝐴[𝑖] = 1

𝐵𝑊𝑇(𝑇)𝑖 = 𝑇[𝑆𝐴[𝑖] − 1], otherwise

5 Experiments

The environment of our experiment is on the

Windows 7 64-bit computer which equipped with

two 3.20GHz cores Intel(R) Core(TM) i5-4570

CPU, 8GB RAM and 1000GB hard disk. The

experiment results are the average of 100

randomly generated texts.

 Experiment 1: A Comparison of Our

Method and Ordinary Method to Construct

the BWT.

By ordinary method to construct the BWT,

we mean the method of using some

𝑂(𝑛 log 𝑛) sorting method. That is, we

compare two complete suffixes. If the text

string is very long, there will be a large

number of long suffixes. Therefore this

kind of method will be highly inefficient.

Table 5 shows the experimental results. The

vertical dimension indicates the methods,

the horizontal dimension indicates the length

of input text 𝑇, and the cells in the table

contain the execution time of each

conditions. The experiment results are the

average of 100 randomly generated texts.

From this result, we can see that our method

is much more efficient than an ordinary

method.

Table 5

Length

Method

10K 100K 1M 10M

Our method 0.0012 0.158 0.29 15.7

Ordinary

Sorting

0.12 34 5051 69243

 Experiment 2: Comparison of the

searching Time of the BWT Method and the

Searching Time of Brute-Force Method.

In the experiment, we compare Brute-Force

Method and the BWT Method. Given a text

T = 𝑡1𝑡2 … 𝑡𝑛and a pattern 𝑃 = 𝑝1𝑝2 … 𝑝𝑚,

the Brute-Force Method compares

𝑡𝑖𝑡𝑖+1 … 𝑡𝑖+𝑚 and 𝑝1𝑝2 … 𝑝𝑚 for 𝑖 from 1

55

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

to 𝑛 − 𝑚. In this experiment, we randomly

generated a text string and 1000 randomly

generated patterns. Table 6 shows the result

of searching time in microseconds. The

vertical dimension indicates the length of

text 𝑇 and the searching algorithms, and

the horizontal dimension indicates the length

of the pattern 𝑃. We can see that the BWT

Method is much more efficient than the

Brute-Force Method. Besides, it is

interesting to note that for a fixed text length,

the searching time of the BWT Method is

independent of the pattern length.

Table 6

𝑃

𝑇

50 100

10K BWT 0.000001 0.000001

Brute-Force 0.0024 0.0045

100K BWT 0.000001 0.000001

Brute-Force 0.023 0.045

1M BWT 0.000001 0.000001

Brute-Force 0.23 0.45

10M BWT 0.000002 0.000002

Brute-Force 2.33 4.58

 Experiment 3: Comparison of the

Searching Time of the BWT Method and the

Searching Time of Some Other Methods.

In this experiment, we tested the KMP

Method, Reverse Factor Method and the

BWT Method. The result is shown in Table

7. The vertical dimension indicates the

length of text 𝑇 and the searching

algorithms, and the horizontal dimension

indicates the length of the pattern 𝑃. As can

be seen, the BWT method is much faster

than the other methods.

Table 7

𝑃

𝑇

10 50 100

100K

BWT 0.0002 0.0002 0.0002

KMP 0.1 0.1 0.1

RF 0.023 0.007 0.006

1M

BWT 0.0002 0.0002 0.0002

KMP 1 1 1

RF 0.23 0.06 0.03

10M

BWT 0.0002 0.0002 0.0002

KMP 10 10 10

RF 2.37 0.63 0.36

6 Concluding Remarks

By examining the results of Experiment 1,

Experiment 2 and Experiment 3, we can conclude

that the BWT Method is suitable for multiple

pattern searching. This is the case for all exact

string algorithms which need pre-processing, such

as the suffix tree method and the suffix array

method. The pre-processing always takes some

time. But once it is done, it is done. It is common

these days that some research organization

constructs a huge data base of text strings and it

will be available for researchers around the world.

In such a situation, pre-processing is worthwhile.

Of course, we do not like the pre-processing time

to be exceedingly long. The pre-processing of the

BWT Method is to construct the BWT for a given

text. From the result of Experiment 1, we can see

that our method to construct the BWT Method is

not too long. For instance, for a text string with

10M length, the time needed to construct the BWT

is only 15.7 seconds. Our experience tells us that

this pre-processing method is much better than

that for the suffix tree Method, for instance. Not

mentioning the time needed to construct the suffix

tree, the memory needed to store the suffix tree is

much larger than that needed for the BWT

Method.

The contribution of our work is to present an

efficient algorithm to construct the BWT and thus

make the BWT Method feasible. Our

experimental results showed that the BWT

Method is much more efficient than any other

exact string matching algorithm.

7 Future Works

For future works, we will make a study of some

research done on the searching algorithms of the

BWT approach.

We will also apply the BWT Method to solve

the repeating group finding problem. This

problem is defined as follows: We are given a

string 𝑇. The problem is finding all repeating

sub-strings in 𝑇 under the condition that the

lengths of the substrings are all larger than a

threshold because short repeating groups are not

meaningful. This problem is quite useful for

biological research. In [8], Kung used the dynamic

programming method to solve the problem. We

believe that our method to construct the BWT can

be used too.

56

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

References

[1] Boyer, R. S. and Moore, J. S., A Fast String

Searching Algorithm, Communications of

ACM, Vol. 20, No. 10, 1977, p.p. 762–772.

[2] Burrows, Michael and Wheeler, David J.. A

block sorting lossless data compression

algorithm. Technical Report124, Digital

Equipment Corporation, 1994.

[3] Ferragina P. and Manzini G.. Opportunistic

data structures with applications.

Proceedings of the 41st Symposium on

Foundations of Computer Science, 2000.

[4] Crochemore, M., Czumaj, A., Gasieniec, L.,

Jarominek, S., Lecroq, T., Plandowski, W.

and Rytter, W., Speeding Up Two

String-matching Algorithms, Algorithmica,

Vol. 12, 1994, pp. 247-267.

[5] Fischer, M. M. and Paterson, M. S.,

String-Matching and Other Products,

SIAM-AMS Proceedings, Vol. 7., 1974, pp.

113-125 (In "Complexity of Computation",

R.M. Karp.)

[6] Hou, K. W., The Discrete Convolution

Method on Solving the Exact String

Matching Problem, MS Thesis, 2012,

Department of Electrical Engineering,

National Tsing Hua University, Hsinchu,

Taiwan.

[7] Horspool, R. N., “Practical Fast Searching

in Strings”, Software Practice and

Experience, Vol. 10, 1980, pp. 501-506.

[8] Kung, B. L. and Lee, R. C. T. On the

Repeating Group Finding Problem. Takming

University of Science and Technology,

Taipei, Taiwan.

[9] Knuth, D. E., Morris, J. H. and Pratt, V. R.,

Fast Pattern Matching in Strings, SIAM

Journal on Computing, Vol. 6, No.2, 1977,

pp. 323-350.

[10] Lee, R. C. T., Chen, K. H., Lu, C. W. and Ou,

C. S. and Shieh, Y. K. Introduction to

String Matching Algorithms, Lecture Notes,

National Tsing Hua University, Hsinchu,

Taiwan 300.

[11] McCreight, E. M., A Space-Economical

Suffix Tree Construction Algorithm, Journal

of the ACM, Vol. 23, 1976, pp. 262-272.

[12] Manber, U. and Myers, G., Suffix Arrays: A

New Method for On-line String Searches,

SIAM Journal on Computing, Vol. 22, 1993,

pp. 935-948.

[13] Morris, J. H. and Pratt, V. R., A Linear

Pattern-matching Algorithm, Technical

Report 40, University of California,

Berkeley, 1970.

[14] Raffinot, M., On the Multi Backward Dawg

Matching Algorithm, Proc. The 4th South

American Workshop on String Processing,

1997, pp. 149-165.

[15] Ukkonen, E., On-line Construction of Suffix

Trees, Algorithmica, Vol. 14, 1995, pp.

249-260.

[16] Wu, B. H., Convolution and Its

Application to Sequence Analysis, MS

Thesis, 2004, National Chi Nan University,

Puli, Nantou, Taiwan.

[17] Weiner, P., Linear Pattern Matching

Algorithms, 14th Annual IEEE Symposium

on Switching and Automata Theory, 1973,pp.

1–11.

57

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

