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Abstract

Metagenomic information provides deeper un-
derstanding of the ecological role, metabolism,
and evolutionary history of microbes in a given
ecosystem by analyzing environmental DNA di-
rectly without prior cultivation. In this paper,
we propose methods and implement tools to facil-
itate the bioinformatics analysis of metagenomic
data. The open-source metagenomic sequences
data analysis softwares were integrated to con-
struct accessible platforms for metagenomic data
analysis. The functionality of the platform is ex-
amined by composition analysis of human oral mi-
crobiome. Furthermore, a feature selection algo-
rithm was also proposed to choice more informa-
tive features among many variables. By using the
algorithm, the support vector machine can get ab-
solute accuracy with few features.

Keywords: metagenomics, microbiome commu-
nity, machine learning, support vector machine,
feature selection.

1 Introduction

Metagenomics is the study of genomes of mul-
tiple species from environmental samples, such as
soil sea water, and the human gut [2, 5, 18, 1, 9].
The link with human body environments gener-
ated many studies of microbial community com-
position designed to assess its role in various
metabolic pathway and to determine whether it is
involved in inducing and preventing specific patho-
logical conditions. Such investigations could help
to clarify the pathogenesis of specific diseases and
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could also lead to novel disease-markers and to the
development of novel therapeutic strategies.

Due to technological improvements in sequenc-
ing methods and sample extraction techniques,
virtually all the microbes from a given environ-
ment can be analyzed in a efficient run, avoid-
ing cultivation steps. In particular, procedures
based on 16S rRNA next-generation sequencing,
which allow the high throughput microbial iden-
tification within a specific metagenome, represent
a powerful means to investigate the composition
and the biodiversity of microbial communities [12].
The enormous amount of next-generation metage-
nomic data generated by such procedures neces-
sitates bioinformatic tools and platforms able to
analyze them. In fact, an accurate taxonomic as-
signment of each microbe in a target environment
is required to evaluate the structure, the biodiver-
sity, the richness and the role of the community
resident in a given environment [13, 6].

The purposes of feature selection include im-
proving the prediction performance of the predic-
tors, providing faster and more cost-effective pre-
dictors, and providing a better understanding of
the underlying process that generated the data
[10, 14]. Feature selection methodology can be
categorised into three class according to how they
combine the feature selection search with the con-
struction of the classification mode: filter meth-
ods, wrapper methods and embedded methods.
Filter methods estimate the relevance of features
by check at the intrinsic properties of the data.
They are computationally simple and fast, can
scale to very high-dimensional datasets easily, and
are independent of the classification algorithm.
However, some techniques in filter methods can
not be applied to the case of contiguous variables.
For instance, the most popular χ2 suppose vari-
ables to be categorical data. Filter methods have
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also been used as a preprocessing step for wrapper
methods, allowing a wrapper to be used on larger
problems.

In machine learning, support vector machines
[16] (SVMs) are supervised learning models with
associated learning algorithms that analyze data
used for classification and regression analysis.
A support vector machine constructs a hyper-
plane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classi-
fication, regression, or other tasks. Intuitively, a
good separation is achieved by the hyperplane that
has the largest distance to the nearest training-
data point of any class, since in general the larger
the margin the lower the generalization error of
the classifier. SVMs have been extensively used
as a classification tool with a great deal of success
in a variety of areas.

In this paper, we provide metagenomic anal-
ysis platforms constructed by integrating QIIME
[3], PEAR [19], UCHIME [8], UPARSE [7], and
other open-source tools. The system is integrated
with Hadoop cloud platform and provides efficient
and reliable solutions. We also introduce feature
selection algorithms for SVMs. The method was
based on correlation coefficient between microor-
ganism and healthy state associated with peri-
odontal disease. Bioinformatic analysis of human
oral metagenomic data are conducted on the plat-
form to identify the microbiome composition. As
a result, the characteristics of human oral environ-
ment and analysis of the diversity and richness of
the microbial community is reported in the paper.

2 Materials and Methods

2.1 16S rRNA Sequence Dataset

We constructed a dataset containing the 16S
rRNA sequence data obtained from the analysis
of subgingival plague samples of twenty unrelated
persons: ten patients with severe periodontal dis-
ease and ten healthy controls. The next genera-
tion sequencing evaluation of their oral microbial
communities was carried out by using Illumina
MiSeq after performing amplicon sequencing on
16S rRNA V1-V2 region and PCR reaction of 10
to 18 cycles to enrich the adapter-modified DNA
fragments. The minimum length = 35 and error
probability < 0.05 was adopted as the criteria for
quality trim processing.

2.2 Bioinformatics Analysis

2.2.1 Pre-analysis Step

The pre-analysis step includes paired-end reads
assembly, barcodes filtering and trimming, and
chimeras removing. The goal of this step is to
filtering out noise sequences; and then, once
denoising and additional quality control processes
are completed, chimeric sequences should be
removed from the dataset. The following parame-
ters were set for our experiments: (1) a minimum
average quality Phred score of 25 allowed in reads
; (2) 10 bases minimum overlap required in as-
sembly processing; (3) a minimum and maximum
sequence length in the range of 50-1000 bases; and
(4) a maximum number of ambiguous bases and
length of homopolymers equal to 6. In addition,
to be as stringent as possible, no any primer mis-
matches was allowed in our experiments and only
a 1.5 maximum number of errors in barcodes was
allowed. The “Gold” database which is a FASTA
file containing the ChimeraSlayer reference
database in the Broad Microbiome Utilities[11]
(http://microbiomeutil.sourceforge.net/) was
used for chimeras detection and removing.

2.2.2 16S rRNAs Detection, Clustering,
and Identification

The freeware UPARSE was used to perform 16S
rRNAs detection. The OTU picking procedure
consists of dereplication, abundance sort and dis-
card singletons, and OTU clustering. Reads that
are singletons after quality filtering and global
trimming are discarded after the removal of du-
plicated sequences. Then, reads with abundances
of two or more are sorted by decreasing abundance
and are used as input for OTU clustering. In OTU
clustering precess, reads are assigned to OTUs by
clustering the reads that match the OTU with ≥
97% identity. A sequence is taken in a sequence
collection that represents the presence of a taxo-
nomic unit when it shows a similarity level above
the required threshold (97% identity). After the
OTU picking step, the representative sequence for
each OTU, namely, the most abundant sequences
in that OTU, is chosen for subsequent analyses in
order to reduce the computational power and the
analysis time, without losing the frequency infor-
mation.
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Gpc(⟨a1, a2, . . . an⟩) ◃ Generate prioritized features order combination.
Input: ⟨a1, a2, . . . an⟩ a feature list with n features in prioritized order.
Output: A queue Q used to store 2n − 1 features combination.
1 Q← ⟨∅⟩ ◃ Enqueue empty set ∅ into queue Q
2 for i← 1 to n do ◃ Generate attribute combinations according to each feature in the list.
3 T ← Q ◃ Copy Q into T
4 for each s in T do
5 Enqueue(Q, s ∪ {ai} )
6 Dequeue(Q) ◃ Delete first empty set ∅ from queue Q
7 return Q

Figure 1: The prioritized features combination generated algorithm. As an example,
when n equals to four, the generated list will be ⟨ 1000,0100,1100,0010,1010,0110,1110,0001,
1001,0101,1101,0011,1011,0111,1111⟩.

2.2.3 Taxonomic Classification

QIIME can perform the taxonomy assign-
ment using different methods such as RDP[17],
BLAST, Mothur[15] and Rtax. In this study,
we adopted the BLAST against the Hu-
man Oral Microbiome Database[4] (available at
http://www.homd.org/), setting the Maximum e-
Value Cutoff to 0.001. Reads assigned to the Bac-
teria root but not attaining the threshold at the
chosen taxonomic level fell in the category “Un-
classified”, while sequences not assigned to the
Bacteria root were classified as “No Hits”. Af-
ter taxonomic assignment, QIIME generates a Bi-
ological Observation Matrix (BIOM) file useful to
transfer the obtained data to other tools for anal-
ysis purposes.

2.3 Feature Selection

The correlation coefficient of two variables in
a data sample is their covariance divided by the
product of their individual standard deviations.
It is a normalized measurement of how the two
are linearly related. If the correlation coefficient
is close to 1, it would indicates that the variables
are positively linearly related. For -1, it indicates
that the variables are negatively linearly related.
And for zero, it would indicates a weak linear re-
lationship between the variables.

We calculated the correlation coefficients be-
tween the microbes and healthy state associated
with periodontal disease. The microbe with higher
correlation coefficient was selected to be a more in-
formative feature. Then, the prioritized features
combination generated algorithm shown in Fig-
ure 1 was adopted to produce the prioritized fea-
tures combination composed by the more informa-
tive features.
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Figure 2: The top 10 taxonomic composition at
genus (A) and family (B) level in each sample.

The feature combinations were used to build
classifier with SVMs, each sample was selected to
be testing sample by turn and others were training
samples, and the accuracy of the classifier can be
obtained by calculate the average accuracy of all
training model. Each combination was assessed
until the accuracy exceed the threshold θ.

3 Experimental Results

In this experiment, the 16S rRNA next-
generation sequencing run produced 5,026,516 raw
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Figure 3: The top 10 genus (A) and family (B) tax-
onomic composition in healthy and patient case.

paired-end sequences belonging to the twenty sam-
ples. After merging these raw Illumina paired-end
reads by using open-source software, PEAR, it
gots 4,536,431(90.25%) assembled sequences and
490,085(9.75%) unassembled reads. In filtering
and trimming step, total assembled sequences
have been parsed according defined quality thresh-
olds and 2,694,715 sequences have been assigned to
appropriate sample ID. The minimum and maxi-
mum length of there sequences are 54 and 544,
respectively, and the average length is 313. After
removing chimeras by using software UCHIME,
it obtained 2,560,229 post-filtering reads for OTU
clustering process, 134,486(5%) chimeras were
found in this step. The freeware, UPARSE was
used to perform clustering process which includes
dereplication, abundance sort, OTU clustering,
and mapping reads back to OTUs steps. Total
of 938 OTUs were clustered in this process.

Taxonomy assigning was performed by us-
ing BLAST method within QIIME. It identified
7 main phyla within the root Bacteria: Bac-
teroidetes, Firmicutes, Fusobacteria, Proteobac-
teria, Spirochaetes, TM7, and Actinobacteria.
At deeper phylogenetic levels, 118 distinct bac-
teria families were identified by QIIME, while
when considering only families with more than
1% richness in any sample, 32 distinct bacte-
ria families were identified. In our dataset,
Prevotellaceae, Fusobacteriaceae, Porphyromon-
adaceae, Spirochaetaceae, and Veillonellaceae are
obvious families; especially, average 20.23% of se-
quences belong to Prevotellaceae family. At genus
level, there are 32 genuses with more than 1% rich-
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Figure 4: The genus (A) and family (B) level tax-
onomic composition between healthy and patient.

ness in any sample, and Prevotella, Fusobacterium,
Treponema, Porphyromonas, and Capnocytophaga
are obvious genuses. Figure 2 shows the top 10
taxonomic composition at family and genus level
according to the number of sequences identified by
QIIME. The top 10 family and genus taxonomic
composition of healthy and patient case is shown
in Figure 3.

The family and genus level taxonomic composi-
tion between healthy and patient case is reported
in Figure 4. Nine families were identified with
a widely different score: Pseudanabaenaceae,
Syntrophomonadaceae, Sphaerochaetaceae,
BS11[Bacteroidales], Staphylococcaceae, Odorib-
acter, Methylobacteriaceae, Propionibacteriaceae,
and Rs-045[TM7] ; especially, Pseudanabaenaceae,
Syntrophomonadaceae , Sphaerochaetaceae, and
BS11[Bacteroidales] were just only found in
healthy or patient sample. At genus level, Lep-
tolyngbya was only found in healthy sample and
Sphaerochaeta was only discovered in patient
sample. Figure 5 is the heat map of taxonomic
composition at genus level, Prevotella, Fusobac-
terium and Fusobacterium are most rich genuses
in both healthy and patient case, moreover, Tre-
ponema and Porphyromonas are more common
in patient sample.

In order to understand which microbes are play
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Figure 5: The heat map of taxonomic composition
at genus level.

an important role in the study of periodontal dis-
ease, we calculated the correlation coefficients be-
tween microbes and healthy state of sample. Here,
healthy control samples were assigned value 1 to
its healthy state and patient samples were denoted
by -1. Table 1 shows the top 10 features with
higher correlation coefficient.

Furthermore, by using algorithm shown in Fig-
ure 1, the features chosen were used to pro-
duce feature combinations and build classifier with
SVMs. In this study, the predictor can get abso-
lute accuracy just only use Filifactor and Porphy-
romonas two features.

The correlation coefficient between this features
were analyzed, Figure 6 shows the correlation be-
tween the top 10 informative features. It can find
that, Filifactor, Porphyromonas, TG5, and Tre-
ponema have more symbiotic relationship.

4 Discussion and Conclusions

In this paper, a metagenomic analysis method
was proposed to solve the problem of microbiome
composition. As an example, the methodology is
used to analyze the microbiome composition of hu-
man oral environment by utilizing functions pro-
vided by open-source softwares on our platform.

Feature (Genus) Correlation coefficient
Filifactor -0.828
Campylobacter 0.744
Porphyromonas -0.667
Paludibacter 0.645
Staphylococcus 0.633
Actinomyces 0.591
TG5 -0.573
Corynebacterium 0.565
Treponema -0.505
Aggregatibacter -0.465

Table 1: The correlation coefficient between the
genuses and healthy state associated with peri-
odontal disease .

Aggregatibacter

Filifactor

Porphyromonas

TG5

Treponema

Actinomyces

Paludibacter

Staphylococcus

Corynebacterium

Campylobacter

Figure 6: The correlation between the top 10 in-
formative features.

In our dataset, there are 7 main phyla were
detected. At deeper phylogenetic levels, it dis-
covered 32 main families and 32 main genuses.
Prevotellaceae, Fusobacteriaceae, Porphyromon-
adaceae, Spirochaetaceae, and Veillonellaceae are
obvious families; especially, average 20.23% of se-
quences belong to Prevotellaceae family. At genus
level, Prevotella, Fusobacterium, Treponema, Por-
phyromonas, and Capnocytophaga are obvious
genuses.

The difference of microbiome composition can
be distinguished between patient and healthy
samples. Nine families were identified with a
widely different score, Sphaerochaetaceae, and
BS11[Bacteroidales] were just only found in
healthy or patient sample. At genus level, Lep-
tolyngbya genus was only found in healthy sample
and Sphaerochaeta genus was only discovered in
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patient sample.
Furthermore, a feature selection algorithm was

also proposed to choice more informative features
among many variables. The correlation coefficient
of microbes and healthy state were taken as evalu-
ating criterion for feature selection. Using the al-
gorithm, the predictor can get absolute accuracy
just only use two features.
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