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Abstract

A digraph G is singly connected if each pair of
vertices is connected by at most one simple path,
and maximal singly connected if no other singly
connected digraph with the same set of vertices
contains the edges of G. In this paper, we explore
the properties of a maximal singly connected
digraph and extend the concept to subgraphs of
a digraph. In particular, we give a class of such
kind of subgraphs in unidirectional hypercubes.
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1 Introduction

Let G be a directed graph (digraph for short)
with n vertices and m edges. If G contains no
cycles, then it is called a directed acyclic graph
(DAG for short). A directed path in G is a sim-
ple path if it contains no repeating vertices. A
digraph G is singly connected if for each pair of
vertices u and v, there is at most one simple u, v-
path. A Bayesian network is a probabilistic graph
model that represents a set of random variables
and their conditional dependencies via a DAG.
As mentioned in the textbook of Neapolitan and
Naimipour [6, p. 416], although the problem of
probabilistic inference in a Bayesian network is
NP-hard, polynomial-time algorithms have been
found for the subclass of instances in which the
DAG is singly connected (see also Neapolitan [5,
p. 142] for a developed algorithm).

Originally, the problem of testing whether or
not a digraph G is singly connected was emerged in
the textbook by Corment et al. [3, p. 485]. Based
on the technique of DFS trees and a reduction
of contracting each strongly connected component
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into a single vertex to produce a reduced graph Gr,
several algorithms have been proposed for solv-
ing this problem in O(n2) time (e.g., see works
of Buchsbaum and Carliske [1], Khuller [9] and
Karlin [8], where the latter was mentioned in the
addendum [10]). In addition, Khuller [9] posed a
challenging question of designing an algorithm to
solve this problem in linear time, and however, so
far it remains open.

Recently, using a similar approach mentioned
above, Dietzdelbinger and Jaberi [4] presented a
refined version of the algorithm with running time
O(s · t + m) for testing whether G is singly con-
nected, where s and t are the numbers of sources
(i.e., vertices with indegree 0) and sinks (i.e., ver-
tices with outdegree 0), respectively, in the re-
duced graph Gr. Moreover, they studied two op-
timization problems related to singly connectivity
of graphs as follows. Given a digraph G = (V,E),
the ESC problem asks to find an edge set F ⊆ E
of minimum size such that the digraph (V,E \ F )
is singly connected. By contrast, the VSC prob-
lem asks to find a vertex set U ⊆ V of minimum
cardinality such that the digraph G− U (i.e., the
digraph obtained from G by removing all vertices
of U and their incident arcs) is singly connected.
A result given in [4] also shows that both ESC and
VSC are NP-hard.

In this paper, inspired by the ESC problem, we
explore the properties of a maximal singly con-
nected digraph, formally defined in Section 2. In
particular, we give a class of such kind of sub-
graphs in a class of interconnection networks called
unidirectional hypercubes, which is formally de-
fined in Section 3.

2 Properties of a maximal singly
connected digraph

The digraph under consideration is assumed
to be simple, i.e., with neither loop nor multiple
edges. Notice that the underlying graph may con-
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tain multiple edges. The set of vertices and edges
of a digraph G are denoted by V (G) and E(G),
respectively. When there is no danger of misin-
terpretation, the set of vertices is denoted by G
instead of V (G). A simple path from vertex u to
v in the digraph under consideration is denoted by
u v. If the simple u, v-path consists of only ver-
tices in a set U , we use u  

U
v. An edge incident

from u to v is denoted by the pair (u, v). We use
G− e to denote the spanning subgraph of G with
edge set E(G) \ {e}.

Definition 1 A digraph G = (V,E) is maximal
singly connected if G is singly connected and there
is no other singly connected digraph G′ = (V ′, E′)
such that V ′ = V and E ( E′ (i.e., E is a proper
subset of E′).

Proposition 1 If digraph G is singly and strongly
connected, then G is maximal singly connected.

Proof. Let G = (V,E). Suppose to the contrary
that G is not maximal singly connected. There is
a singly connected digraph G′ with vertex set V
and edge set E′ such that E ( E′. Let e ∈ E′ \E,
and let e = (u, v). We claim that there are two
simple paths from u to v. Clearly, G′−e is strongly
connected. There is a u, v-path in G′ − e. Along
with the edge e, we have two simple paths from
u to v in G′. This contradicts that G′ is singly
connected. �

Proposition 2 Let G be a digraph with vertex set
V and edge set E. Given that there is a bipartition
{V1, V2} of V such that G[V1] and G[V2] are both
strongly and singly connected, we have that G is
maximal singly connected if and only if {(u, v) ∈
E : u ∈ Vi, v ∈ V3−i, i ∈ {1, 2}} = {(x, y), (y, x)}
for some x ∈ V1 and y ∈ V2.

Proof. Let X = {(u, v) ∈ E : u ∈ Vi, v ∈
V3−i, i ∈ {1, 2}}. For necessity, we prove the con-
trapositive. If X = ∅, then clearly the graph
(V,E ∪ {(x, y)}), where x ∈ V1 and y ∈ V2, is
singly connected. Similarly, for X = {(x, y)} the
graph (V,E ∪ {(y, x)}) is singly connected. For
|X| ≥ 2 and X 6= {(x, y), (y, x)} for {x, y} ⊆ V ,
then there exist two elements of X, say (x1, y1)
and (x2, y2), which share at most one vertex. If
{x1, x2} ⊆ Vi for some i ∈ {1, 2}, then there are
two simple x1, y1-paths, namely the edge (x1, y1)
itself and x1  

Vi

x2  y2  
V3−i

y1. Otherwise,

{x1, y2} ∈ Vi for some i ∈ {1, 2} so there are two

simple x1, y2-paths, namely x1  y1  x2  y2
and x1  

Vi

y2.

For sufficiency, it is not difficult to verity that G
is singly connected. Suppose to the contrary that
G is not maximal singly connected. Then there is
a digraph G′ = (V,E′) with E ⊆ E′ and E 6= E′.
Let (x′, y′) ∈ E′ \ E. Clearly, {x′, y′} 6⊆ Vi for i ∈
{1, 2} since otherwise there are two simple x′, y′-
paths in G[Vi]. Therefore, |{x, y} ∩ {x′, y′}| ≤ 1.
However, similar to the analysis above, there are
more than one simple paths between two vertices,
and we have a contradiction. �

Definition 2 Given a digraph G, a subgraph H of
G is a maximal singly connected subgraph if H is
singly connected, and there is no singly connected
subgraph H ′ of G such that V (H) ( V (H ′) or
E(H) ( E(H ′).

Clearly, if H is a maximal singly connected sub-
graph of G, then V (H) = V (G). Therefore, to find
a maximal singly connected subgraph of a graph,
it suffices to consider its spanning subgraphs.

Corollary 3 Let G be a digraph whose underlying
graph is connected with no multiple edges, and let
H be a spanning subgraph of G. Given that there
is a bipartition {V1, V2} of V (H) such that H[V1]
and H[V2] are both strongly and singly connected,
we have that H is a maximal singly connected sub-
graph of G if and only if |{(u, v) ∈ E(H) : u ∈
Vi, v ∈ V3−i, i ∈ {1, 2}}| = 1.

3 Maximal singly connected sub-
graphs of a unidirectional hyper-
cube

In this section, we give a class of maximal singly
connected subgraphs of a specific digraph, called
unidirectional hypercube, defined as follows. The
n-dimensional hypercube (n-cube for short), de-
noted by Qn, is a graph with 2n vertices such that
each vertex v is represented by a distinct binary
string v = vn−1vn−2 · · · v1v0 and two vertices are
adjacent if they differ in exactly one position [11].
In particular, if two adjacent vertices differ at ith
position, the edge between them is called an i-
edge. For Qn, the Hamming weight h(v) of a ver-
tex v is defined by h(v) = vn−1+vn−2+· · ·+v1+v0.
Obviously, given an i-edge between two vertices u
and v, there is exactly one of h(u) + i and h(v) + i
is even. If the former (respectively, the latter) is
even, then u (respectively, v) is call the even ver-
tex with respect to the i-edge, otherwise it is the
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Figure 1: UQ4

odd vertex. Unidirectional hypercube, denoted by
UQn, was proposed by Chou and Du [2] as a di-
rected version of n-cube. It serves as the basis for
high speed networking. Formally, UQn is obtained
from Qn by orienting every edge from the even ver-
tex to the odd vertex. For example, Fig 1 depicts
UQ4. Recently, Hung et al. [7] studied the fault
Hamiltonicity in UQn. In particular, they men-
tioned that so far only less properties and research
results are known for unidirectional hypercubes.

An important property of UQn is that it can
be decomposed recursively, as indicated by Chou
and Du [2].

Property 4 (See [2]) UQn can be decomposed
into two UQn−1 and 2n−1 edges between them.
The sets of vertices {v : vn−1 = 0} and
{v : vn−1 = 1} induce the requested two UQn−1,
respectively.

In the following, we give a class of spanning
subgraphs S(UQn) of UQn, for n ≥ 0, which are
maximal singly connected. Let UQi

n−1 be the sub-
graph of UQn induced by {v : vn−1 = i}, and
analogously let UQij

n−2 be the subgraph of UQn

induced by {v : vn−1 = i, vn−2 = j}. In UQn, the
set Xa of cross edges is defined as {(u, v) : un−1 6=
vn−1}. A 4-cycle with vertex set {u, v, x, y} with
un−1un−2 = 00, vn−1vn−2 = 01, xn−1xn−2 = 11,
and yn−1yn−2 = 10 is called a cross cycle. Let
the set of cross cycles be Xc. For n = 0, we
let S(UQn) = {K1}, For n ≥ 1, a member S in
S(UQn) is defined as

S =

{
S0 ∪ S1 ∪A, if n is odd,

S00 ∪ S01 ∪ S11 ∪ S10 ∪ C, otherwise,

where Si ∈ S(UQi
n−1), Sij ∈ S(UQij

n−2), A ∈ Xa,
and C ∈ Xc. We claim that S(UQn) is a maximal
singly connected subgraph of UQn, as shown in
the following.

Lemma 5 For S ∈ S(UQn), if n is even, then S
is strongly connected.

Proof. Let n = 2r. We prove the lemma by
induction on r. For r = 0, clearly the lemma holds.
Suppose that the lemma holds for r ≤ k. For
r = k + 1, by definition we have S = S00 ∪ S01 ∪
S11 ∪ S10 ∪ C, where Sij ∈ S(UQij

2k) and C ∈ Xc.
For any two vertices x and y of S, if they belong to
Sij for ij ∈ {00, 01, 11, 10}, then by the induction
hypothesis, there is an x, y-path in Sij . Otherwise,
let u and v be the vertices of C that belong to
the subgraph containing x and that containing y,
respectively. By the induction hypothesis, there is
an x, u-path and a v, y-path. Along with C, we
have an x, y-path in S. �

Lemma 6 For S ∈ S(UQn), if n is even, then S
is singly connected.

Proof. Let n = 2r. We prove the lemma by
induction on r. For r = 0, clearly the lemma holds.
Suppose that the lemma holds for r ≤ k. For
r = k + 1, by definition we have S = S00 ∪ S01 ∪
S11 ∪ S10 ∪ C, where Sij ∈ S(UQij

2k) and C ∈
Xc. For any two vertices x and y of S, we show
that there is at most one simple x, y-path in S.
If x and y belong to Sij for ij ∈ {00, 01, 11, 10},
then any simple x, y-path contains no edge of C.
Therefore, any simple x, y-path lies in Sij , and
by the induction hypothesis we have that there
is at most one simple x, y-path in S. Otherwise,
assume that x and y are vertices of Sij and Sst,
respectively. Any simple x, y-path is of the form

x  
Sij

u 
C

v  
Sst

y.

By the induction hypothesis and that C is singly
connected, there is at most one simple x, y-path
in S. This proves the lemma. �

Theorem 7 For n ≥ 0, any member of S(UQn)
is a maximal singly connected subgraph of UQn.

Proof. Let S ∈ S(UQn). For even n, by Lem-
mas 5 and 6, we have that S is strongly and singly
connected. Then by Proposition 1, S itself is max-
imal singly connected. Since S is a subgraph of
UQn, the theorem holds when n is even. For odd
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n, by definition S = S0∪S1∪A. Hence, by Corol-
lary 3, S is a maximal singly connected subgraph
of UQn, and the theorem is proved. �

4 Concluding remarks

For S ∈ S(UQn), we are interested in whether

|E(S)| = max{|E(H)| : H is a singly connected
subgraph of UQn}.

The ESC problem on UQn is solved if the
equation holds. We have verified that the equa-
tion holds for n ≤ 4 by enumerating all the cases.
It remains open if the equation holds for n ≥ 5.
An appropriate analysis is expected and will be
conducted as a future work.

References

[1] A.L. Buchsbaum and M.C. Carliske, Deter-
mining uni-connectivity in directed graphs,
Inform. Process. Lett. 48 (1993) 9–12.

[2] C.-H. Chou and D.H.C. Du, Uni-directional
hypercubes, in: Proc. Supercomputing’90,
1990, pp. 254-263.

[3] T.H. Cormen, C.E. Leiserson, and R.L.
Rivest, Introduction to Algorithms, MIT
Press, Cambridge, Ma, 1989.

[4] M. Dietzdelbinger and R. Jaberi, On testing
single connectedness in directed graph and
some related problem, Inform. Process. Lett.
115 (2015) 684–688.

[5] R.E. Neapolitan, Learning Bayesian net-
works, Prentice Hall, Upper Saddle River, NJ,
2003.

[6] R.E. Neapolitan and K. Naimipour, Founda-
tions of Algorithms, Jones and Bartlett Pub-
lishers, Sudbury, Ma, 2011.

[7] C.-N. Hung, E. Cheng, T.-M. Wang, and L.
H. Hsu, On Hamiltonian properties of unidi-
rectional hypercubes, Inform. Process. Lett.
115 (2015) 551–555.

[8] A. Karlin, Solution to homework 7, CS 421,
Winter 1995, Department of Computer Sci-
ence, University of Washington, 1995.

[9] S. Khuller, An O(|V |2) algorithm for sin-
gle connectedness, Inform. Process. Lett. 72
(1999) 105–107.

[10] S. Khuller, Addendum to “An O(|V |2) algo-
rithm for single connectedness,” Inform. Pro-
cess. Lett. 74 (2000) 263.

[11] F.T. Leighton, Introduction to Parallel Al-
gorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, San Mateo,
CA, 1992.

33

The 33rd Workshop on Combinatorial Mathematics and Computation Theory


