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Abstract 
 

For  ,G V E and a cost function  : 0,1,2f V  , 

define { | ( ) }iV v V f v i   , where 0 2i  , then 

0 1 2, ,V V V  is a vertex partition of ( )V G . A vertex u  

is said to be under protection if u is not in 0V  or it 

is adjacent to at least one vertex in 1 2V V . f is a 

guard function of G  if every vertex of G is under 

protection.  Let 0u V , and 1 2v V V  is a 

neighbor of u.  A move function v uf 
 based on f  

is defined as '( ) 1f u   '( ) ( ) 1f v f v   and 

'( ) ( )f x f x  for all { , }x V u v  . For every 

vertex 0u V , if there is a move function 'f based on 

the guard function f  is a guard function of G , 

then f is called a weak Roman dominating function, 

and the cost of f is 1 2( ) 2
v V

f v V V


  . The 

foolproof version asked that every vertex 0u V , if 

1 2( ) ( )v N u V V , then the move function v uf 
 is 

a guard function of G . The minimum cost among all 

possible (foolproof) weak Roman dominating 

functions of G , is called the (foolproof) weak 

Roman domination number of G  and is denoted as 

( )r G  ( *( )r G  for foolproof version). This paper 

established the (foolproof) weak Roman domination 

number of Cartesian product of complete graph with 

other graphs. 

 

 

1. Introduction 
 

Roman dominating function was first motivated by 

Stewart as a new variety of the domination problem 

[1][12].  When the Roman Empire is getting weak 

and was not able to have armies in all towns, they 

have to protect all the towns by using the least 

amount of armies. In order not to scarify itself when 

try to rescue others, they set the rule that a town can 

protect itself if there is one group of army in that 

town, and it may protect all its neighboring towns if 

there are two groups of armies in it. The problem of 

finding the least amount of armies needed to have all 

towns either has at least a group of army or is 

neighboring to a town with two groups of armies, is 

known as Roman Domination Problem.  Cockayne 

et al. transform this problem to a variety of 

domination problems [4][5]. Henning et al. proposed 

a new strategy to protect the Roman Empire using 

even less armies [9]. They reset the rule that a town 

with only one group of army can also protect its 

neighbor as long as after sending the army to rescue 

its neighbor, every town without army in it is still 

neighboring with a town with at least a group of 

army. Based on the new strategy, the problem is 

called the weak Roman domination problem. Let us 

express this problem mathematically. Let G  be a 

simple and undirected graph. Let every vertex be a 

town and there is an edge between two vertices if the 

corresponding towns are adjacent to each other. We 

use  ( ) ( )N v u uv E G  to denote the neighboring 

vertices of v  and a function : {0,1,2}f V  to 

indicate the number of armies stationed in the town. 

Let { | ( ) }iV v V f v i   where 0 2i  , then 

0 1 2, ,V V V  is a vertex partition of ( )V G . The weight 

of f is 1 2( ) 2
v V

f v V V


  . A vertex is protected 

if either itself or at least one of its neighbors is in 

1 2V V . Function f is called a guard function of G  

if every vertex of G is under protection.  If 

2V  , the guard function is called domination 

function of G, and the minimum weight among all 

domination function of G is the domination number 

of G, denoted as ( )G . Then the Roman domination 

function of G  is a special guard function such that 

every vertex 0u V , there is a vertex 2( )v N u V . 

The minimum weight among all Roman domination 

function of G is the Roman domination number of G, 

denoted as ( )R G . Let 0u V , and 

1 2( ) ( )v N u V V , a move function v uf 
 based on

f  is defined as '( ) 1f u   '( ) ( ) 1f v f v   and 

'( ) ( )f x f x  for all { , }x V u v  . A weak Roman 

dominating function of G is a special guard function 

f  such that for every vertex 0u V , there is a 

vertex 1 2( ) ( )v N u V V  such that the move 

function v uf 
 based on f  is also a guard function 

of G .  The minimum weight of all weak Roman 

dominating functions is the weak Roman domination 

number of G , denoted as ( )r G . A weak Roman 

domination function f of G is optimal if and only if 

the weight of f is ( )r G .  Later on, the foolproof 

40

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

mailto:yllai@mail.ncyu.edu.tw
mailto:dennis07060608,%20ixmxthexbest%7d@gmail.com


version was proposed in 2004 by [2][3]. The original 

version of the weak Roman domination is then 

referred as the smart version. The foolproof version 

asks for a guard function f of G such that for 
0u V

and 1 2( ) ( )v N u V V , v uf 
  is a guard function 

of G .  The minimum cost among all possible 

foolproof weak Roman dominating functions of G , 

is called the foolproof weak Roman domination 

number of G and is denoted as *( )r G . A foolproof 

weak Roman domination function f of G is optimal if 

and only if the weight of f  is *( )r G . 

As the relation between different version of 

domination numbers, we know that for any graph G , 

     *( ) ( ) 2r r RG G G G G        [4][7][9]. 

The Roman domination problem on trees is solvable 

in linear time, but it is NP-complete on split graphs, 

bipartite graphs, and planar graphs [4]. Cockayne et 

al. [6] found a general lower bound on the Roman 

domination number of a graph G, involving the order 

and maximum degree ∆(G) such that 

( ) 2 / ( ( ) 1)R G n G    . They also achieved the 

exact value of the Roman domination number 

( )R G  for several graphs including paths, cycles, 

complete k-partite graphs and the Cartesian product 

of complete graphs. Weak Roman domination 

problem has also been proved to be NP-Complete 

even if the graph is restricted to bipartite or chordal 

graphs [9]. The polynomial solution to this problem 

is found for a limited classes of graphs such as 

complete graph, path, cycle and complete 

multipartite graph [6][9][11]. The upper bound on 

( )r G  is known for some complex graph structures, 

such as grid and torus [6]. 

In this paper, we purpose a linear-time algorithm for 

solving the foolproof weak Roman domination 

problem on the Cartesian product of complete 

graphs.  

 

 

2. Main Result 
 

The Cartesian product of two graphs 1G  and 2G  

is denoted as 1 2H G G . The vertex set of H is 

the Cartesian product 1 2( ) ( )V G V G , where 1( )V G  

and 2( )V G  are the vertex sets of 1G  and 2G , 

respectively. Two vertices 1 2( , )u u  and 1 2( , )v v  

of H are connected by an edge if and only if 1 1u v  

and 2 2 2( , ) ( )u v E G or 2 2u v and 1 1 1( , ) ( )u v E G . 

Figure 1 illustrates the graph 2 3K K . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: An illustration of 2 3K K  

 

As shown in Figure 1, the graph n mG K K  for 

m n  may be represented by connecting 

corresponding vertices in n copies of mK  namely 

1 2, , , n

m m mK K K  where each vertex in G may be 

named as ,i jv  for 1 ,i n   and 1 j m  . 

Lemma 1: Let G be a graph with m vertices and 

nH G K  for 1n  . Then *( )r H m  . 

Proof: Let ,i jv  ( 1 ,i m   and 1 j n  ) denote 

the vertex in H. Note that H may be viewed as n 

copies of G (say 1 2, , , nG G G ), and the i-th vertex 

in each copy of G  form a complete graph. Define 

the function : ( ) {0,1, 2}f V H   where 2V  , 

1

1 ,1( ) { 1 }iV V G v i m    , and 0 1( )V V H V  .  

Clearly, f  is a foolproof weak Roman domination 

function of H . That is 
* 1( ) ( )r H V G m   .  

Lemma 2 comes directly from the definition of the 

Cartesian product.  

Lemma 2: For any two graphs 1G  and 2G , 

1 2 2 1G G G G . 

Lemma 3: (From [10])  Let : ( ) {0,1, 2}f V G  be 

a guard function of G. Then f is a foolproof weak 

Roman domination function of G if and only if for 

each 0v V , one of the following holds. 

1. 
 

( ) 2
u N v

f u


 ; 

2. 
 

( ) =1
u N v

f u


  and 1(} ){ N v Vw  , then

  0  ( ) [ ]  N w N v V  . 

A smart version of Lemma 3 is stated as Lemma 4, 

which can be showed in a similar way as in [10]. 

Lemma 4: Let : ( ) {0,1, 2}f V G  be a guard 

function of G. Then f is a weak Roman domination 

function of G if and only if for each 0v V , one of 

the following holds. 
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1. 
 

( ) 2
u N v

f u


 ; 

2. 
 

( ) =1
u N v

f u


  and 1(} ){ N v Vw  . If C 

is a clique containing { , }v w  , then f is a 

guard function for G C . 

Theorem 1: For graph nH G K  for 4n  , if G 

is a path or a cycle with m vertices, then 
*( ) ( )r rH H m   . 

Proof: By Lemma 1 we know *( )r H m  , hence 

we just need to show that ( )r H m  .  Suppose to 

the contrary that ( )r H m  , let f be an optimal 

weak Roman domination function of H , then there 

must exist 0( )i

nV K V  for some i , 1 i m  .  

Clearly, in order to protect 0( )i

nV K V , 

1, 1,1
( ( ) ( ))i j i jj n

f v f v n  
  . Consider another 

guard function g of H  such that 

,1 1,1 1,1( ) ( ) ( ) 1i i ig v g v g v     and 

, 1, 1,( ) ( ) ( ) 0i j i j i jg v g v g v     for 2 j n   and 

( ) ( )g u f u  for 

1 1( ) { ( ), ( ), ( )}i i i

n n nu V H V K V K V K   , then g  is a 

weak Roman domination function of H  with the 

weight 3n   smaller than the weight of f , which 

produces a contradiction. Figure 3 shows the 

illustration of 3 4P K .    

 

Figure 3: An illustration of 3 4P K   

Theorem 2: Let m nG K K  for 1m n  . Then 

*( ) ( )r rG G n   . 

Proof: 
*( )r G n  comes directly from Lemma 1 and 

Lemma 2.  To see that ( )r G n  , assume 

( )r G n  , let : ( ) {0,1, 2}f V G   be an optimal 

weak Roman domination function of G . Since 
*( )r G n  , there must be a 0( )i

mV K V  for some 

,1i i n  . Since m n , there must be a vertex 

, ( )i

x i mv V K  such that , 0( )x jN v V , which 

contradicts to the fact that f is a weak Roman 

domination function of G. By the fact that 
*( ) ( )r rG G   we know 

*( ) ( )r rG G n   .  

Theorem 3: Let 
,r s nG K K  for 1 r s   and 

2n  . Then the (smart proof) weak Roman 

domination number of G is 

min{ ,4 }, ;

( ) min{ ,2 }, ;

, .

r

n r n for n r s

G r s n for r n r s

r s for r s n



  


    
   

 

Proof: Without loss of generality, let 

,( ) { 1 }r s iV K v i r s     where 1v  to rv  are in a 

partite set and 1rv   to r sv  are in the other partite 

set. Then ,( ) { 1 ,1 }i jV G v i r s j n       where 

,i jv  is adjacent to ,i kv  for j k  and if i r  , 

,i jv  is adjacent to ,t jv  for 1r t r s    , 

otherwise ( 1r i r s    ) ,i jv  is adjacent to ,t jv  

for 1 t r  .   

Case 1: n r s  .  First we show the upper bound. 

Define a guard function : ( ) {0,1, 2}f V G   such 

that 2 , 1{ 1 }i iV v i n   , 1 ,1{ 1 }iV v n i r     

and 0 1 2( )V V G V V   .  Since every vertex ,i jv  

for 1r i r s    , and 1 j n   has a neighbor in 

2V , they are all protected.  Since every vertex ,i jv  

for 1 i r   and 1 j n   is included in a clique 

with some vertex in 1 2V V , by Lemma 4, they are 

also protected.  Hence f  is a weak Roman 

domination function of G , that is  

( ) 2r G n r n n r       ------------ (1). 

Consider another guard function 

: ( ) {0,1, 2}f V G   such that 1V  , 

2 ,{ 1,1 }i jV v r i r j n      , and 0 2( )V V G V  .  

Since all vertex ,i jv  for 1 1i r    is adjacent to 

vertex 1,r jv   which is in 2V  and all vertex ,i jv  for 

2r i r s     is adjacent to vertex ,r jv  which is 

in 2V , they are all protected.  Hence f   is a weak 

Roman domination function of G , that is  

( ) 4r G n   ------------ (2) 

By (1) and (2) we have  

( ) min{ ,4 }r G n r n   --------------------(3). 

Next we show that ( ) min{ ,4 }r G n r n   . 

Suppose to the contrary, ( ) min{ ,4 }r G n r n   .  

Let : ( ) {0,1,2}g V G   be an optimal weak Roman 

domination function of G . Then there exists some 
i

nK  such that 0( )i

nV K V .  

Subcase 1.1: 1r i r s      such that 

0( )i

nV K V . Without loss of generality, assume 

1

0( )nV K V . In order to protect 
1( )nv V K , by 

Lemma 4, we shall have 
( )

( ) 2
u N v

g u


  for each 

1( )nv V K . Then the weight of g is at least 

 

  

42

The 33rd Workshop on Combinatorial Mathematics and Computation Theory



2n s n s n r n      , which is a contradiction. 

Subcase 1.2: 1 i r    such that 
0( )i

nV K V . 

Without loss of generality, assume 1

0( )r

nV K V  . In 

order to protect 1( )r

nv V K  , by Lemma 4, we shall 

have 
( )

( ) 2
u N v

g u


  for each 1( )r

nv V K  . Then 

the weight of g is at least 2n r n r n    , which is 

a contradiction. 

Subcase 1.3: 11 i r    and 21r i r s      

such that  1 2

0( ) ( )
i i

n nV K V K V  Without loss of 

generality, let  1

0( ) ( )r r

n nV K V K V  .  In this 

case we need to have 
( )

( ) 2
u N v

g u


  for each 

1( ) ( )r r

n nv V K V K  , hence the weight of g is at 

least 4n , which is a contradiction. 

By above subcases we have  

( ) min{ ,4 }r G n r n    -----------------(4). 

By (3) and (4) we have ( ) min{ ,4 }r G n r n   , 

which completes the proof of case 1. 

Case 2: r n r s   . First consider a guard 

function f of G such that

2 1 ,1, { 1 },iV V v i r s     and 0 1( )V V G V  .  

Since every copy of i

nK  has a vertex in 1V , by 

Lemma 4, f  is a weak Roman domination function 

of G , which implies  

( )r G r s   ------------(5). 

Next consider another guard function f   such 

that 2 ,{ 1 }i iV v i r   ,{ 1 },i i rv r i n   
1V   

and 0 2( )V V G V  .  Since every vertex in 0V  has 

at least a neighbor in 2V , by Lemma 4, f   is a 

weak Roman domination function of G , which 

implies 

( ) 2r G n  ----------------(6) 

By (5) and (6) we have ( ) min{ ,2 }r G r s n   . 

To see that ( ) min{ ,2 }r G r s n   , assume to the 

contrary that ( ) min{ ,2 }r G r s n   , then there must 

exist 0( )i

nV K V  some i , 1 i r s   . Since 

r n r s   , similar to subcase 1.1, subcase1.2, and 

subcase 1.3, we have ( ) min{2 ,4 }r G n n  , which 

produce a contradiction.  Therefore, we have 

( ) min{ ,2 }r G r s n   . 

Case 3: r s n  . The guard function f of G in 

case 2 give us ( )r G r s   .  The subcase 1.1, 

subcase1.2, and subcase 1.3 showed that 

( )r G r s   .   

Theorem 4: Let ,r s nG K K  for 1 r s   and 

2n  . Then the foolproof weak Roman domination 

number of G is 

*

min{2 ,4 }, ;

( ) min{ ,2 }, ;

, .

r

r n for n r s

G r s n for r n r s

r s for r s n



 


    
   

 

Proof: The case for r n  is true since the upper 

bound can be showed by the guard functions f  and 

f   in case 2 of the proof of Theorem 3 are also 

foolproof weak Roman domination function of G

(by Lemma 3), and the lower bound come from the 

fact that *( ) ( )r rG G  .  So we only have to take 

care of the case for n r s  . First we show that 
*( ) min{2 ,4 }r G r n  . Consider a guard function 

: ( ) {0,1,2}g V G   such that 

2 , ,1{ 1 } { 1 }i i iV v i n v n i r      , 
1V  , and 

0 2( )V V G V  .  Since every vertex in 
0V  is 

adjacent to a vertex in 2V , by Lemma 3, g  is a 

foolproof weak Roman domination function of G , 

which implies  
*( ) 2r G r  ----------------(7). 

Since the guard function f   in case 1 of the 

proof of Theorem 3 are also foolproof weak Roman 

domination function of G (by Lemma 3), we know  
*( ) 4r G n  -----------------(8) 

By (7) and (8) we have *( ) min{2 ,4 }r G r n  .  

Next we show that *( ) min{2 ,4 }r G r n  .  Let g   

be an optimal foolproof weak Roman domination 

function of G . Suppose *( ) 2r G r  , then there 

must have a copy of i

nK  such that 2( )i

nV K V   

for some 1 i r   and a copy of 
j

nK  such that 

2( )j

nV K V   for some 1r i r s    . Without 

loss of generality, let 1 1

2( ( ) ( ))r

n nV K V K V  .  

In order to protect 1( )nV K , by Lemma 3, it requires 

at least weight of 2n  from ( )i

nV K  for 

1r i r s    ; similarly, in order to protect 
1( )r

nV K  , by Lemma 3, it requires at least weight of 

2n  from ( )i

nV K  for 1 i r  . That implies the 

weight of g   is at least 2 2 4n n n  .  Hence we 

have 
*( ) min{2 ,4 }r G r n  . Therefore 

*( ) min{2 ,4 }r G r n   for n r s  .  That 

completes the proof. 

 

  

3. Conclusion 
 

This paper showed that the Cartesian product of a 

complete graph with a path, a cycle, and a complete 

graph has the same weak Roman domination number 

for both smart version and foolproof version, but on 

Cartesian product of a complete graph with a 

complete bipartite graph, the value of weak Roman 
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domination number for smart version and foolproof 

version, which are provided in the paper, are 

different.   
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