Finding paired dominating sets

Yu-Sen Kao and Ching-Lueh Chang Department of Computer Science and Engineering Yuan Ze University, Taoyuan, Taiwan s1036048@mail.yzu.edu.tw (Yu-Sen Kao), clchang@saturn.yzu.edu.tw (Ching-Lueh Chang)

Abstract

A dominating set of an undirected graph G = (V, E) is a set $D \subseteq V$ such that each vertex not in D has at least one neighbor in D. A paired-dominating set is a dominating set whose induced subgraph contains at least one perfect matching. This paper shows that the minimum paired-dominating set problem has a polynomialtime $2\lceil \log |V| \rceil$ -approximation algorithm.

1 Introduction

A graph is an ordered pair G = (V, E) consisting of a finite nonempty set V of vertices and a set E of edges, where each edge is an unordered pair of vertices. A dominating set of G is a set $D \subseteq V$ such that each vertex not in D has at least one neighbor in D. A paired-dominating set is a dominating set whose induced subgraph contains at least one perfect matching [1].

Raz and Safra prove that the dominating set problem has no polynomial-time $(c \log |V|)$ -approximation algorithms for some c>0 unless P = NP [3].

Lin and Tu design an O(|E| + |V|)-time algorithm for interval graphs and an O(|E|(|E| + |V|))-time algorithm for circular-arc graphs, for the minimum paired-dominating set problem [2].

Let $f: \mathbb{N} \to \mathbb{N}$ be any function. If, given any graph G = (V, E), an algorithm A outputs a paired-dominating set of G whose size is at most f(|V|) times the minimum, then A is said to be f(|V|)-approximate for the minimum paireddominating set problem.

By modifying a well-known approximation algorithm for set covering, this paper obtains a polynomial-time $O(\log |V|)$ -approximation algorithm for the minimum paired-dominating set problem.

The following lemma is a consequence of line 2 of the algorithm in Fig. 1.

 $1: \ \mathcal{D} \leftarrow \emptyset;$

2: while $\bigcup_{v \in D} N[v] \neq V$ do

3: Among the edges in E not having an endpoint in D, pick an edge (a, b) that maximizes |(N[a] ∪ N[b]) ∩ (V \ U_{v∈D} N[v])|, breaking ties arbitrarily;
4: D ← D ∪ {a, b};

4:
$$\mathcal{D} \leftarrow \mathcal{D} \cup \{a, b\}$$

5: end while

5: end while
6: return
$$\mathcal{D}$$
.

$$\mathbf{return} \ \boldsymbol{\nu},$$

Lemma 1. Whenever line 3 of the algorithm in Fig. 1 is executed,

$$\left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right| > 0.$$

Let D^* be a smallest dominating set of G = (V, E).

Lemma 2. Whenever line 3 of the algorithm in Fig. 1 is executed, there exists $u \in D^* \setminus \mathcal{D}$ satisfying

$$\left| N[u] \cap \left(V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right) \right| \ge \frac{1}{|D^*|} \cdot \left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right| \quad (1)$$

and that $N(u) \not\subseteq \mathcal{D}$.

Proof. Because D^* is a dominating set,

$$\bigcup_{v \in D^*} N[v] = V.$$

Consequently,

$$V \setminus \bigcup_{v \in \mathcal{D}} N[v] \subseteq \bigcup_{v \in D^*} N[v].$$

So by the averaging argument, there exists $u \in D^*$ satisfying inequality (1). It is not hard to verify that $u \notin \mathcal{D}$ and $N(u) \not\subseteq \mathcal{D}$. **Corollary 1.** Right after each execution of line 3 of the algorithm in Fig. 1,

$$\left| (N[a] \cup N[b]) \cap \left(V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right) \right| \ge \frac{1}{|D^*|} \cdot \left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right|$$

By elementary calculus, $(1 - 1/n)^n < 1/e$ for all $n \in \mathbb{Z}^+$.

After $|D^*| \cdot \lceil \log |V| \rceil$ iterations,

$$\left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right| \le \left(1 - \frac{1}{|D^*|} \right)^{|D^*| \cdot \lceil \log |V| \rceil} |V| < 1$$

by repeatedly invoking Corollary 1, implying

$$\left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right| = 0$$

When the algorithm halts, $|\mathcal{D}|$ is simply twice number of iterations. As a result, the algorithm outputs a set \mathcal{D} of size at most $2 \cdot |D^*| \cdot \lceil \log |V| \rceil$. Summarizing the above gives our main theorem, stated below.

Theorem 1. The minimum paired-dominating set problem has a polynomial-time $2\lceil \log |V| \rceil$ -approximation algorithm.

Acknowledgments

The authors are supported in part by the Ministry of Science and Technology of Taiwan under grant MOST103-2221-E-155-026-MY2.

References

- T. W. Haynes and P. J. Slater. Paireddomination in graphs. *Networks*, 32(3):199– 206, 1998.
- [2] C.-C. Lin and H.-L. Tu. A linear-time algorithm for paired-domination on circulararc graphs. *Theoretical Computer Science*, 591(C):99–105, 2015.
- [3] R. Raz and S. Safra. A sub-constant errorprobability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 475– 484, 1998.