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Abstract 
 

Recognizing mathematical expressions from 

document or camera images helps us to understand 

and process mathematical expressions in scientific 

and technical documents, while it has been studied for 

over a decade. Based on previous works, we develop 

an automatic recognition tool, named EqnEye, which 

leverages the OpenCV library to perform image 

processing and the Tesseract tool to recognize 

mathematical symbols. We also apply correction 

methods before the recognition stage to improve the 

recognition accuracy. Experimental results exhibit the 

success of our recognition method with the correction 

design. In addition, porting the recognition tool to 

handy devices can produce more value-added 

applications. 

 

 

1. Introduction 
 

  Scientific and technical documents are published at 

an incredible scale, and it’s getting more and more 

time-consuming to retrieve relevant documents and 

locate targeted terms. Current search engines can 

rapidly find text-based keywords in plenty of 

documents, but retrieving relevant images is a 

challenge work. The optical character recognition 

(OCR) technology converts image-based content to 

searchable data, where the work of mathematical 

expression identification and recognition assists in 

extracting mathematical formula in the images. There 

are many applications followed by the recognition of 

expressions. For example, it can be translated with a 

markup language as LaTeX for the execution on 

computer algebra systems. It’s also valuable in 

education since one can develop learning guide 

applications based on the recognition process. Porting 

the recognition tool to handy devices can produce 

more value-added applications. In this work, we 

develop an automatic recognition tool EqnEye of 

printed mathematical expression, while our tool 

leverages the OpenCV library [1] to perform image 

processing and Tesseract tool [2] to recognize 

mathematical symbols. 

  The rest of this paper is organized as follows. 

Related literature is given in Section 2. The processing 

flow and details of each component are described in 

Section 3. Section 4 presents the experimental results, 

while Section 5 gives concluding remarks of this work. 

 

 

2. Related Works 
 

  The mathematical expression recognition (MER) 

problem is to recognize the mathematical expression 

(ME) in the electronic documents or images, while it 

usually consists of two stages: symbol recognition and 

structure analysis [3]. The former is to identify 

mathematical symbols and the latter tries to know the 

spatial relationships among symbols, where both are 

challenging. Mathematical notation comprises a great 

deal of symbols, fonts and typefaces, whereas the 

small signs, e.g., comma and dot, must be carefully 

processed to distinguish from noises. Moreover, the 

analysis of spatial relationships among symbols, 

particularly for handwritten notations, is more 

challenging because the ambiguous layout in an 

expression could confuse the order and presence of 

operators [4]. In contrast, the recognition of printed 

ME is much simple. Of special note are the symbols 

with disconnected signs (e.g., “i”, “j”, “=”) and 

variable size (e.g., division sing), and the radical sign. 

Previous works to recognize printed mathematical 

symbols include PPC [5], kNN, SVM, HMM, etc [6]. 

After the stage of symbol recognition, the structure 

analysis decides the spatial relationships for 

recognized symbols to construct complete expression, 

while the commonly used methods are tree 

transformation [4] and geometric features [7].  

  In spite of many works to tackle MER before, there 

are studies proposed recently to raise the recognition 

accuracy. To combine wrongly split text lines, Lin et 

al. present a learning-based strategy to merge the text 

lines belonging to an independent formula [8]. Chu 

and Liu detect mathematical equations in an image 

document comprised of texts, figures and tables [9]. 

In addition, Kumar et al. develop a ternary tree based 

representation to orient mathematical symbols 

according to their spatial relationships [10]. These 

works are good reference to our development, and two 

stages are applied to tackle MER. In symbol 

recognition, we leverage Tesseract OCR [2] to 

recognize mathematical symbols; in structure analysis, 

the geometric features of bounding boxes are used to 

clarify the spatial relationships among recognized 
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symbols and merge the symbols one by one to acquire 

the complete expression. 

  In addition, the image thresholding is a critical step 

to the image analysis, and it deeply affects whether the 

symbol recognition is correct in our tool. Previous 

works utilize the image features to develop 

thresholding method, including histogram shape, 

measurement space clustering, entropy, object 

attributes, spatial correlation, as well as local gray-

level information [11]. Otsu method considers the 

minimum of intra-class variance, and is classical for 

the image thresholding to extract the internal 

characteristics of region of interest (ROI) [12]. 

 

 

3. Material and Method 
 

  Automatically recognizing ME is an important 

approach for extracting the mathematical meaning 

from electronic documents and images in scientific 

and engineering fields. Here, we develop the tool 

EqnEye for MER, which captures the image with a 

ME inside, recognizes each symbol as well as 

analyzes the spatial relations among these symbols. 

Figure 1 shows each stage of EqnEye and the detail is 

as follows. 

 

3.1. Image capture 

  Easy-access devices for image capture, e.g., mobile 

phone, tablet and smart glasses, assist us in capturing 

the ME images. Figure 2 shows an image captured 

from the text book, and we will use it as a reference 

example throughout this paper. 

 
3.2. Image preprocessing 

  The captured image requires some preprocessing 

steps to mark the ROI, i.e., mathematical characters in 

the image, so that we can segment each individually. 

First, the source image is converted to greyscale, and 

next, we perform the median filter with 5*5 to reduce 

noises but preserve edges. Subsequently, we convert 

the grey-level image to black-and-white, i.e., 

binarization, which is a simple way of separating the 

ROI from the background. The threshold to separate 

the two classes of black and white pixels is 

automatically given by the Otsu method [12] 

according to the minimum of intra-class variance, 

while Figure 3 is the binarization result of Figure 2. 

 
3.3. Yaw correction 

  When utilizing the camera to take a ME picture, the 

captured image may be rotated due to lack of stable 

support to user hands. The skew characters not only 

reduce the recognition accuracy but also make the 

estimation of spatial relationship among characters 

fail. Consequently, we need to correct the binary 

image before the segmentation stage. In the three-

dimensional coordinate system, there are three kinds 

of rotations: roll, pitch and yaw. In this work, we 

consider the yaw rotation only because it’s most 

common when using the camera on the handheld 

device. There are some works for the skew detection, 

including projection profiles analysis, nearest 

neighbors, Hough transform, etc [13]. Here, we use a 

heuristic to determine the rotation angle and rotate the 

binary image accordingly. 

  Since the text book or paper is static and user is 

motionless, it’s reasonable to assume that the rotation 

angle is small, say smaller than 45 degrees. Each ME 

has the character of “=”, thus it can be a clue of the 

rotation angle. We then create bounding box for each 

character of ME from left to right, which divides “=” 

into two different bounding boxes. If there is no skew, 

two bounding boxes for the equal sign should contain 

Figure 2. Image captured by camera 

Figure 3. Binarization image 

Figure 1. Flow chart of our MER tool 
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only white pixels. Now we scan the bounding boxes 

one by one from the left, and once a bounding box BB 

satisfies the following two conditions, it contains a 

part of the symbol “=”, i.e., a bar. (1). lengthx(BB) > 

lengthy(BB), where lengthx(BB) and lengthy(BB) are 

the lengths of BB in the x and y-direction, respectively; 

(2). There are two successive BBs of the same ratio 

Nw(BB)/N(BB), where N(BB) is the number of pixels 

in the BB and Nw(BB) is the number of white pixels 

the BB has. The condition (1) is set because we 

assume that the rotation angle is small enough, while 

the condition (2) helps to recognize the equal sign well. 

If no such BB, the image needs no yaw correction and 

the next stage is applied. Otherwise, we pick two end 

points (x1, y1), (x2, y2) of the bar in the BB and compute 

the rotation angle θ = tan-1((x2-x1)/(y2-y1)). If θ < 0, 

then the image is rotated θ degrees counterclockwise; 

otherwise, it is rotated θ degrees clockwise. The 

experiment in Section 4 will exhibit how the yaw 

correction affects the recognition accuracy. 

 

3.4. Symbol segmentation 

  In this phase, each symbol is within a bounding box 

shown by Figure 4, which fully encloses the symbol 

and is obtained by the projection analysis [12]. For the 

clarity, the Canny edge detector [12] is applying to the 

binary image in Figure 4. 

 
  At first glance, each bounding box fully encloses 

the mathematical symbol; in fact, it contains 

individual glyph only and hence needs further 

correction. There are two types required to be 

modified here. One is that a mathematical symbol is 

wrongly divided into more bounding box, i.e., “i”, “j”, 

“=”, “÷”. By the geometric feature and position, we 

can find out related bounding boxes and outline the 

real bounding boxes for these symbols. The other is 

that a bounding box could contain nothing, for 

example, there are two bounding boxes to the number 

0 and one box is within the other one. The inside box 

contains nothing and should be removed. After this 

phase, we have the one to one mapping between the 

bounding box and mathematical symbol. 

 

3.5. Symbol recognition 

  We leverage the Tesseract tool [2] to recognize 

mathematical symbols. Tesseract is an open source 

OCR engine and its development has been sponsored 

by Google since 2006. We integrated it into our system 

to identify the symbol within every bounding box. 

 

3.5. Structure analysis 

  After the last phase, we obtain a sequence of 

symbols, and this phase is to decide the spatial 

relationship among these symbols enclosed by 

bounding boxes (BBs). Initially, BBs are sorted in 

ascending order based on the 2-dimensional 

coordinate of the left-up corner of the box, i.e., (a, b) 

in Figure 5. We follow the idea in [4] but detect three 

compounds of radical sign, fractional sign and 

exponentiation relation here. The radical sign is easy 

to be detected since its BB contains more BBs. The 

detection of fractional sign is also simple, because its 

BB is a bar and the BBs behind it lie to the either up 

or low of it. To identify the exponentiation relation is 

slightly complicated, and in our approach, it must 

satisfies that b + tH > b’ + tH’ with t = 0.5, where b, 

b’, H, H’ are shown by Figure 5. The condition 

considers the y-coordinates of centers of the base and 

exponent. Though Zanibbi et al. considered more 

complicated cases and a range of t in [0, 0.5] for 

handwritten mathematical notations [4], here we 

empirically set t = 0.5 for detecting printed symbols. 

 
  Following the recognition of the structure and 

compound symbols, an ME parse tree can be 

constructed. Figure 6 is an example tree for the image 

in Figure 2. 

 
3.5. Expression exhibition 

  To get the ME, one needs to merge each node of the 

ME parse tree from button to up, where we add 

parentheses to each compound node to avoid 

ambiguity. The output can be a string or the LaTeX 

form, which is convenient for further process. 

 

 

Figure 4. Bounding box for each symbol with 

Canny edge detector 

Figure 5. An example of 2D coordinate of 

bounding boxes 

Figure 6. An example of an ME parse tree 
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4. Experiments 
 

  All experiments are conducted on NVIDIA 

GeForce GTX760 with the global memory 4GB, 

which is mounted with the Intel Core i7 3.6 GHz of 

PC machine. Take example in Figure 2 as the input, 

our MER tool identifies all symbols and returns the 

string “( f ( x ) = ( ( x + 1 ) / ( ( ( x ^ 2 ) + 7 ) ^ ( 1 / 

2 ) ) ) + 2 )”, which are the correct expression of the 

source. Now, we take a skew picture as shown by 

Figure 8. Without the correction, the bounding boxes 

can be marked normally but many bugs could appear. 

First, Tesseract incorrectly recognizes almost all 

symbols, except the symbols “f”, “(”, “)”, “x” as well 

as “2”. Next, the spatial relationship among symbols 

is in disorder. It hardly performs segmentation 

correction and structure analysis in Sections 3.4 and 

3.6, respectively. With the yaw correction introduced 

in Section 3.3, our program automatically rotates the 

binary image of the skew expression by 19 degrees 

clockwise, and the processing steps can be normally 

applied. In the example of Figure 8, our tool 

accurately recognizes all symbols and their spatial 

relationship after performing the yaw correction. 

  Besides, we test more equations from textbook 

under different considerations: normal, skew and 

shadowy images (Figure 7). In the experiments, the 

rotation angle is less than 10 degree, and we shadow 

an equation by at least fifty percentage. We have 

totally 10 groups of equations, while each group 

contains 3 images corresponding to three different 

considerations. For an equation under a specific 

consideration, we test one time, and call it success if it 

can recognize the equation accurately; otherwise, it is 

fail. For failed recognitions, we also examine the 

major reasons in the processing flow. Table 1 is the 

experimental results. 

  Table 1 exhibits the high success rate, say 90%, 

when the equation image is captured in a normal 

situation. The only one miss in the normal 

consideration results from the fail in the structure 

analysis. Moreover, when the image is skew, we also 

receive good performance. Two fails come from the 

false identification of the equal sign in the stage of 

yaw correction. Finally, we get the worst result if the 

equation is covered by shadow, where the recognition 

almost crashes in the image processing. Since the 

binarization is done by the Otsu method, it hardly 

discriminates the characters of equation from the 

background affected by the shadow. 

  There are some reasons such that our tool acquires 

the high rate of success. The denoising and 

Figure 8. An example of a skew expression and the yaw correction 

Figure 7. (a) Normal, (b) skew and (c) shadowy 

images from camera 

(a) 

(b) 

(c) 
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binarization stages could destroy much of the symbol, 

which is more serious to the image of low resolution. 

Our tool copes with the high resolution image of 

1920*1080 to mitigate the incomplete symbols. Once 

the symbol is accurately marked as the input, the 

recognition of Tesseract engine has good quality. The 

printed expression also reduces the complexity of the 

structure analysis. On the other hand, though the 

resolution of captured image is high, the execution 

time of our tool is within 400 milliseconds, where half 

the time is spent on the phase of image preprocessing. 

 

 
Three Considerations 

Normal Skew Shadowy 

Success  9 (90%) 8 (80%) 5 (50%) 

Fail 

Image 
processing 

0 0 4 

Yaw 

correction 
0 2 0 

Segmentation 
correction 

0 0 0 

Character 

recognition 
0 0 1 

Structure 

analysis 
1 0 0 

Table 1. Experimental results 

 

 

5. Conclusion 
 

As large amounts of scientific and technical 

documents are published, it’s getting more and more 

time-consuming to retrieve relevant documents and 

locate targeted terms. Current search engines can look 

for text-based keywords in the planet-size of 

documents; however, it’s hard to retrieve relevant 

images in a large-scale digital libraries. The OCR 

technology translates image-based content into 

readable and searchable data, where the mathematical 

expression recognition has been studied for over a 

decade. Based on their works, we develop an 

automatic recognition tool EqnEye which leverages 

the OpenCV library to perform image processing and 

Tesseract tool to recognize mathematical symbols. We 

also apply yaw and segmentation corrections before 

the recognition stage to improve the recognition 

accuracy. Experimental results exhibit the success of 

our correction methods to enhance the accuracy. 

Moreover, the simulation shows great influence of the 

shadow. A future work is to moderate the shadow 

effect by the technique in the image processing. 

 

Acknowledgements 

 

This work is partially supported by the Ministry of 

Science and Technology under contract number 

MOST 104-2633-S-035-001. 

 

References 
 

[1] OpenCV, http://opencv.org/ 

[2] tesseract-ocr, https://github.com/tesseract-ocr 

[3] K.-F. Chan and D.-Y Yeung, “Mathematical 

Expression Recognition: A Survey,” 

International Journal on Document Analysis and 

Recognition, vol. 3, no. 1, pp. 3-15, 2000. 

[4] R. Zanibbi, D. Blostein, and J.R. Cordy, 

“Recognizing Mathematical Expressions using 

Tree Transformation,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 

24, no. 11, pp. 1455-1467, 2002. 

[5] A. Raja, et al., “Towards a Parser for 

Mathematical Formula Recognition,” 

Mathematical Knowledge Management, vol. 

4108 of LANI, pp. 139-151, 2006. 

[6] F. Álvaro and J.A. Sánchez, “Comparing Several 

Techniques for Offline Recognition of Printed 

Mathematical Symbols,” 20th International 

Conference on Pattern Recognition (ICPR), 

Istanbul, Turkey, 2010. 

[7] Y.-S. Guo, L. Huang, and C.-P. Liu, “A New 

Approach for Understanding of Structure of 

Printed Mathematical Expression,” International 

Conference on Machine Learning and 

Cybernetics, Hong Kong, China, 2007. 

[8] X. Lin, et al., “A Text Line Detection Method for 

Mathematical Formula Recognition,” 12th 

International Conference on Document Analysis 

and Recognition (ICDAR), Washington, DC, 

2013. 

[9] W.-T. Chu and F. Liu, “Mathematical Formula 

Detection in Heterogeneous Document Images,” 

2013 Conference on Technologies and 

Applications of Artificial Intelligence (TAAI), 

Taipei, Taiwan, 2013. 

[10] P.P. Kumar, A. Agarwal, and C. Bhagvati, “A 

Knowledge-Based Design for Structural 

Analysis of Printed Mathematical Expressions,” 

8th International Workshop on Multi-

disciplinary Trends in Artificial Intelligence, vol. 

8875 of LNCS, pp. 112-123, 2014. 

[11] M. Sezgin and B. Sankur, “Survey over Image 

Thresholding Techniques and Quantitative 

Performance Evaluation,” Journal of Electronic 

Imaging, vol. 13, no. 1, pp.146-168, 2004. 

[12] J.R. Parker, Algorithms for Image Processing 

and Computer Vision, 2nd ed., Wiley, 2010. 

[13] S. Li, Q. Shen, and J. Sun, “Skew Detection using 

Wavelet Decomposition and Projection Profile 

Analysis,” Pattern Recognition Letters, vol. 28, 

pp. 555-562, 2007. 

 

  

 

74

The 33rd Workshop on Combinatorial Mathematics and Computation Theory


