
Understanding Mathematical Expressions from Camera Image

2Chun-Yao Wang, *1,2Ying-Chin Lin, 1Han Yuan Tan, 1Jing-Yun Zeng
1Department of Applied Mathematics,

2Industrial Ph.D. Program of Internet of Things,

Feng Chia University, Taichung, Taiwan, R.O.C.
*yichlin@fcu.edu.tw

Abstract

Recognizing mathematical expressions from

document or camera images helps us to understand

and process mathematical expressions in scientific

and technical documents, while it has been studied for

over a decade. Based on previous works, we develop

an automatic recognition tool, named EqnEye, which

leverages the OpenCV library to perform image

processing and the Tesseract tool to recognize

mathematical symbols. We also apply correction

methods before the recognition stage to improve the

recognition accuracy. Experimental results exhibit the

success of our recognition method with the correction

design. In addition, porting the recognition tool to

handy devices can produce more value-added

applications.

1. Introduction

 Scientific and technical documents are published at

an incredible scale, and it’s getting more and more

time-consuming to retrieve relevant documents and

locate targeted terms. Current search engines can

rapidly find text-based keywords in plenty of

documents, but retrieving relevant images is a

challenge work. The optical character recognition

(OCR) technology converts image-based content to

searchable data, where the work of mathematical

expression identification and recognition assists in

extracting mathematical formula in the images. There

are many applications followed by the recognition of

expressions. For example, it can be translated with a

markup language as LaTeX for the execution on

computer algebra systems. It’s also valuable in

education since one can develop learning guide

applications based on the recognition process. Porting

the recognition tool to handy devices can produce

more value-added applications. In this work, we

develop an automatic recognition tool EqnEye of

printed mathematical expression, while our tool

leverages the OpenCV library [1] to perform image

processing and Tesseract tool [2] to recognize

mathematical symbols.

 The rest of this paper is organized as follows.

Related literature is given in Section 2. The processing

flow and details of each component are described in

Section 3. Section 4 presents the experimental results,

while Section 5 gives concluding remarks of this work.

2. Related Works

 The mathematical expression recognition (MER)

problem is to recognize the mathematical expression

(ME) in the electronic documents or images, while it

usually consists of two stages: symbol recognition and

structure analysis [3]. The former is to identify

mathematical symbols and the latter tries to know the

spatial relationships among symbols, where both are

challenging. Mathematical notation comprises a great

deal of symbols, fonts and typefaces, whereas the

small signs, e.g., comma and dot, must be carefully

processed to distinguish from noises. Moreover, the

analysis of spatial relationships among symbols,

particularly for handwritten notations, is more

challenging because the ambiguous layout in an

expression could confuse the order and presence of

operators [4]. In contrast, the recognition of printed

ME is much simple. Of special note are the symbols

with disconnected signs (e.g., “i”, “j”, “=”) and

variable size (e.g., division sing), and the radical sign.

Previous works to recognize printed mathematical

symbols include PPC [5], kNN, SVM, HMM, etc [6].

After the stage of symbol recognition, the structure

analysis decides the spatial relationships for

recognized symbols to construct complete expression,

while the commonly used methods are tree

transformation [4] and geometric features [7].

 In spite of many works to tackle MER before, there

are studies proposed recently to raise the recognition

accuracy. To combine wrongly split text lines, Lin et

al. present a learning-based strategy to merge the text

lines belonging to an independent formula [8]. Chu

and Liu detect mathematical equations in an image

document comprised of texts, figures and tables [9].

In addition, Kumar et al. develop a ternary tree based

representation to orient mathematical symbols

according to their spatial relationships [10]. These

works are good reference to our development, and two

stages are applied to tackle MER. In symbol

recognition, we leverage Tesseract OCR [2] to

recognize mathematical symbols; in structure analysis,

the geometric features of bounding boxes are used to

clarify the spatial relationships among recognized

70

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

symbols and merge the symbols one by one to acquire

the complete expression.

 In addition, the image thresholding is a critical step

to the image analysis, and it deeply affects whether the

symbol recognition is correct in our tool. Previous

works utilize the image features to develop

thresholding method, including histogram shape,

measurement space clustering, entropy, object

attributes, spatial correlation, as well as local gray-

level information [11]. Otsu method considers the

minimum of intra-class variance, and is classical for

the image thresholding to extract the internal

characteristics of region of interest (ROI) [12].

3. Material and Method

 Automatically recognizing ME is an important

approach for extracting the mathematical meaning

from electronic documents and images in scientific

and engineering fields. Here, we develop the tool

EqnEye for MER, which captures the image with a

ME inside, recognizes each symbol as well as

analyzes the spatial relations among these symbols.

Figure 1 shows each stage of EqnEye and the detail is

as follows.

3.1. Image capture

 Easy-access devices for image capture, e.g., mobile

phone, tablet and smart glasses, assist us in capturing

the ME images. Figure 2 shows an image captured

from the text book, and we will use it as a reference

example throughout this paper.

3.2. Image preprocessing

 The captured image requires some preprocessing

steps to mark the ROI, i.e., mathematical characters in

the image, so that we can segment each individually.

First, the source image is converted to greyscale, and

next, we perform the median filter with 5*5 to reduce

noises but preserve edges. Subsequently, we convert

the grey-level image to black-and-white, i.e.,

binarization, which is a simple way of separating the

ROI from the background. The threshold to separate

the two classes of black and white pixels is

automatically given by the Otsu method [12]

according to the minimum of intra-class variance,

while Figure 3 is the binarization result of Figure 2.

3.3. Yaw correction

 When utilizing the camera to take a ME picture, the

captured image may be rotated due to lack of stable

support to user hands. The skew characters not only

reduce the recognition accuracy but also make the

estimation of spatial relationship among characters

fail. Consequently, we need to correct the binary

image before the segmentation stage. In the three-

dimensional coordinate system, there are three kinds

of rotations: roll, pitch and yaw. In this work, we

consider the yaw rotation only because it’s most

common when using the camera on the handheld

device. There are some works for the skew detection,

including projection profiles analysis, nearest

neighbors, Hough transform, etc [13]. Here, we use a

heuristic to determine the rotation angle and rotate the

binary image accordingly.

 Since the text book or paper is static and user is

motionless, it’s reasonable to assume that the rotation

angle is small, say smaller than 45 degrees. Each ME

has the character of “=”, thus it can be a clue of the

rotation angle. We then create bounding box for each

character of ME from left to right, which divides “=”

into two different bounding boxes. If there is no skew,

two bounding boxes for the equal sign should contain

Figure 2. Image captured by camera

Figure 3. Binarization image

Figure 1. Flow chart of our MER tool

71

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

only white pixels. Now we scan the bounding boxes

one by one from the left, and once a bounding box BB

satisfies the following two conditions, it contains a

part of the symbol “=”, i.e., a bar. (1). lengthx(BB) >

lengthy(BB), where lengthx(BB) and lengthy(BB) are

the lengths of BB in the x and y-direction, respectively;

(2). There are two successive BBs of the same ratio

Nw(BB)/N(BB), where N(BB) is the number of pixels

in the BB and Nw(BB) is the number of white pixels

the BB has. The condition (1) is set because we

assume that the rotation angle is small enough, while

the condition (2) helps to recognize the equal sign well.

If no such BB, the image needs no yaw correction and

the next stage is applied. Otherwise, we pick two end

points (x1, y1), (x2, y2) of the bar in the BB and compute

the rotation angle θ = tan-1((x2-x1)/(y2-y1)). If θ < 0,

then the image is rotated θ degrees counterclockwise;

otherwise, it is rotated θ degrees clockwise. The

experiment in Section 4 will exhibit how the yaw

correction affects the recognition accuracy.

3.4. Symbol segmentation

 In this phase, each symbol is within a bounding box

shown by Figure 4, which fully encloses the symbol

and is obtained by the projection analysis [12]. For the

clarity, the Canny edge detector [12] is applying to the

binary image in Figure 4.

 At first glance, each bounding box fully encloses

the mathematical symbol; in fact, it contains

individual glyph only and hence needs further

correction. There are two types required to be

modified here. One is that a mathematical symbol is

wrongly divided into more bounding box, i.e., “i”, “j”,

“=”, “÷”. By the geometric feature and position, we

can find out related bounding boxes and outline the

real bounding boxes for these symbols. The other is

that a bounding box could contain nothing, for

example, there are two bounding boxes to the number

0 and one box is within the other one. The inside box

contains nothing and should be removed. After this

phase, we have the one to one mapping between the

bounding box and mathematical symbol.

3.5. Symbol recognition

 We leverage the Tesseract tool [2] to recognize

mathematical symbols. Tesseract is an open source

OCR engine and its development has been sponsored

by Google since 2006. We integrated it into our system

to identify the symbol within every bounding box.

3.5. Structure analysis

 After the last phase, we obtain a sequence of

symbols, and this phase is to decide the spatial

relationship among these symbols enclosed by

bounding boxes (BBs). Initially, BBs are sorted in

ascending order based on the 2-dimensional

coordinate of the left-up corner of the box, i.e., (a, b)

in Figure 5. We follow the idea in [4] but detect three

compounds of radical sign, fractional sign and

exponentiation relation here. The radical sign is easy

to be detected since its BB contains more BBs. The

detection of fractional sign is also simple, because its

BB is a bar and the BBs behind it lie to the either up

or low of it. To identify the exponentiation relation is

slightly complicated, and in our approach, it must

satisfies that b + tH > b’ + tH’ with t = 0.5, where b,

b’, H, H’ are shown by Figure 5. The condition

considers the y-coordinates of centers of the base and

exponent. Though Zanibbi et al. considered more

complicated cases and a range of t in [0, 0.5] for

handwritten mathematical notations [4], here we

empirically set t = 0.5 for detecting printed symbols.

 Following the recognition of the structure and

compound symbols, an ME parse tree can be

constructed. Figure 6 is an example tree for the image

in Figure 2.

3.5. Expression exhibition

 To get the ME, one needs to merge each node of the

ME parse tree from button to up, where we add

parentheses to each compound node to avoid

ambiguity. The output can be a string or the LaTeX

form, which is convenient for further process.

Figure 4. Bounding box for each symbol with

Canny edge detector

Figure 5. An example of 2D coordinate of

bounding boxes

Figure 6. An example of an ME parse tree

72

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

4. Experiments

 All experiments are conducted on NVIDIA

GeForce GTX760 with the global memory 4GB,

which is mounted with the Intel Core i7 3.6 GHz of

PC machine. Take example in Figure 2 as the input,

our MER tool identifies all symbols and returns the

string “(f (x) = ((x + 1) / (((x ^ 2) + 7) ^ (1 /

2))) + 2)”, which are the correct expression of the

source. Now, we take a skew picture as shown by

Figure 8. Without the correction, the bounding boxes

can be marked normally but many bugs could appear.

First, Tesseract incorrectly recognizes almost all

symbols, except the symbols “f”, “(”, “)”, “x” as well

as “2”. Next, the spatial relationship among symbols

is in disorder. It hardly performs segmentation

correction and structure analysis in Sections 3.4 and

3.6, respectively. With the yaw correction introduced

in Section 3.3, our program automatically rotates the

binary image of the skew expression by 19 degrees

clockwise, and the processing steps can be normally

applied. In the example of Figure 8, our tool

accurately recognizes all symbols and their spatial

relationship after performing the yaw correction.

 Besides, we test more equations from textbook

under different considerations: normal, skew and

shadowy images (Figure 7). In the experiments, the

rotation angle is less than 10 degree, and we shadow

an equation by at least fifty percentage. We have

totally 10 groups of equations, while each group

contains 3 images corresponding to three different

considerations. For an equation under a specific

consideration, we test one time, and call it success if it

can recognize the equation accurately; otherwise, it is

fail. For failed recognitions, we also examine the

major reasons in the processing flow. Table 1 is the

experimental results.

 Table 1 exhibits the high success rate, say 90%,

when the equation image is captured in a normal

situation. The only one miss in the normal

consideration results from the fail in the structure

analysis. Moreover, when the image is skew, we also

receive good performance. Two fails come from the

false identification of the equal sign in the stage of

yaw correction. Finally, we get the worst result if the

equation is covered by shadow, where the recognition

almost crashes in the image processing. Since the

binarization is done by the Otsu method, it hardly

discriminates the characters of equation from the

background affected by the shadow.

 There are some reasons such that our tool acquires

the high rate of success. The denoising and

Figure 8. An example of a skew expression and the yaw correction

Figure 7. (a) Normal, (b) skew and (c) shadowy

images from camera

(a)

(b)

(c)

73

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

binarization stages could destroy much of the symbol,

which is more serious to the image of low resolution.

Our tool copes with the high resolution image of

1920*1080 to mitigate the incomplete symbols. Once

the symbol is accurately marked as the input, the

recognition of Tesseract engine has good quality. The

printed expression also reduces the complexity of the

structure analysis. On the other hand, though the

resolution of captured image is high, the execution

time of our tool is within 400 milliseconds, where half

the time is spent on the phase of image preprocessing.

Three Considerations

Normal Skew Shadowy

Success 9 (90%) 8 (80%) 5 (50%)

Fail

Image
processing

0 0 4

Yaw

correction
0 2 0

Segmentation
correction

0 0 0

Character

recognition
0 0 1

Structure

analysis
1 0 0

Table 1. Experimental results

5. Conclusion

As large amounts of scientific and technical

documents are published, it’s getting more and more

time-consuming to retrieve relevant documents and

locate targeted terms. Current search engines can look

for text-based keywords in the planet-size of

documents; however, it’s hard to retrieve relevant

images in a large-scale digital libraries. The OCR

technology translates image-based content into

readable and searchable data, where the mathematical

expression recognition has been studied for over a

decade. Based on their works, we develop an

automatic recognition tool EqnEye which leverages

the OpenCV library to perform image processing and

Tesseract tool to recognize mathematical symbols. We

also apply yaw and segmentation corrections before

the recognition stage to improve the recognition

accuracy. Experimental results exhibit the success of

our correction methods to enhance the accuracy.

Moreover, the simulation shows great influence of the

shadow. A future work is to moderate the shadow

effect by the technique in the image processing.

Acknowledgements

This work is partially supported by the Ministry of

Science and Technology under contract number

MOST 104-2633-S-035-001.

References

[1] OpenCV, http://opencv.org/

[2] tesseract-ocr, https://github.com/tesseract-ocr

[3] K.-F. Chan and D.-Y Yeung, “Mathematical

Expression Recognition: A Survey,”

International Journal on Document Analysis and

Recognition, vol. 3, no. 1, pp. 3-15, 2000.

[4] R. Zanibbi, D. Blostein, and J.R. Cordy,

“Recognizing Mathematical Expressions using

Tree Transformation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol.

24, no. 11, pp. 1455-1467, 2002.

[5] A. Raja, et al., “Towards a Parser for

Mathematical Formula Recognition,”

Mathematical Knowledge Management, vol.

4108 of LANI, pp. 139-151, 2006.

[6] F. Álvaro and J.A. Sánchez, “Comparing Several

Techniques for Offline Recognition of Printed

Mathematical Symbols,” 20th International

Conference on Pattern Recognition (ICPR),

Istanbul, Turkey, 2010.

[7] Y.-S. Guo, L. Huang, and C.-P. Liu, “A New

Approach for Understanding of Structure of

Printed Mathematical Expression,” International

Conference on Machine Learning and

Cybernetics, Hong Kong, China, 2007.

[8] X. Lin, et al., “A Text Line Detection Method for

Mathematical Formula Recognition,” 12th

International Conference on Document Analysis

and Recognition (ICDAR), Washington, DC,

2013.

[9] W.-T. Chu and F. Liu, “Mathematical Formula

Detection in Heterogeneous Document Images,”

2013 Conference on Technologies and

Applications of Artificial Intelligence (TAAI),

Taipei, Taiwan, 2013.

[10] P.P. Kumar, A. Agarwal, and C. Bhagvati, “A

Knowledge-Based Design for Structural

Analysis of Printed Mathematical Expressions,”

8th International Workshop on Multi-

disciplinary Trends in Artificial Intelligence, vol.

8875 of LNCS, pp. 112-123, 2014.

[11] M. Sezgin and B. Sankur, “Survey over Image

Thresholding Techniques and Quantitative

Performance Evaluation,” Journal of Electronic

Imaging, vol. 13, no. 1, pp.146-168, 2004.

[12] J.R. Parker, Algorithms for Image Processing

and Computer Vision, 2nd ed., Wiley, 2010.

[13] S. Li, Q. Shen, and J. Sun, “Skew Detection using

Wavelet Decomposition and Projection Profile

Analysis,” Pattern Recognition Letters, vol. 28,

pp. 555-562, 2007.

74

The 33rd Workshop on Combinatorial Mathematics and Computation Theory

