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Abstract

The star is one of the most fundamental ar-
chitectures for interconnecting a large number of
components in a network system. Based on the
popularity of the star, the star network has been a
good alternative to the hypercube-based topologies.
Under the probability fault model, Wu and Latifi
(2008) established an upper bound on the substar
reliability for the class of star networks. However,
a lower-bounded reliability plays a more informa-
tive role in maintaining system availability. For
this reason, this paper is aimed at deriving an an-
alytic lower bound on the substar reliability of star
networks by means of combinatorial approach. In
addition, numerical comparisons are presented for
validating the proposed formulation.
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1 Introduction

The interconnection network is of great signif-
icance for a parallel and distributed computing
system. It is usually multi-objected and compli-
cated to design an interconnection network. The
star is one of the most fundamental architectures
for interconnecting a large number of components
in a network system. Based on the popularity of
the star, Akers and Krishnamurthy [1] proposed
the star network as a viable alternative to the
hypercube-based topologies. An immediate ad-
vantage of the star network is that it is able to con-
nect more nodes with less connection links and less
communication delay than the hypercube [8]. The
promising features of the star network include low
degree of nodes, small diameter, node transitivity,
link symmetry, and high degree of fault tolerance,
and so on. Many researchers had investigated the
algebraic properties of the star network in terms
of various performance metrics, such as connec-
tivity, diameter, fault diameter, surface area, diag-
nosability [4, 5, 6, 10, 12, 14, 15, 16, 17, 18, 21, 24].

The underlying topology of an interconnection
network is modeled as a graph, in which vertices



and edges correspond to nodes and connection
links between nodes. In general, as the size of
a system grows, the likelihood of fault occurrences
in the system increases. Reliability is extensively
applied to quantify the impact of system failures.
The reliability of a network system is defined as
the probability that the system is able to perform
its required functions for a given time session [11].
A wide range of reliability models have been pro-
posed to measure the network reliability and avail-
ability [3, 7, 9, 13, 20, 23]. An explicit formula
of the subcube reliability of the hypercube-based
network was formulated by Das and Kim [7] un-
der the random fault model, which assumes that
there are f faults distributed randomly in the hy-
percube. Later, Chang and Bhuyan [3] proposed a
more efficient computing model, namely the prob-
ability fault model, for assessing the subcube re-
liability of the hypercube. Under the probability
fault model, Wu and Latifi [22] analyzed the sub-
star reliability in star networks, and Lin et al. [19]
calculated the subgraph reliability of the arrange-
ment graph. However, only upper-bounded relia-
bility is addressed in [22] and [19]. It is intuitive
to see that a lower-bounded reliability may play
a more informative role in achieving system avail-
ability. Therefore, this paper is aimed at deriving
an analytic lower bound on the substar reliability
of star networks. Numerical comparisons between
lower- and upper-bounded reliability are also pre-
sented.

The rest of this paper is structured as follows.
Section 2 introduces the foundation of the prob-
ability fault model and the topological properties
of star networks. In Section 3, an analytic lower
bound on the substar reliability of star networks
is derived. Section 4 presents numerical compar-
isons between lower- and upper-bounded substar
reliability. Finally, Section 5 concludes this paper.

2 Background

Throughout this paper, graphs (interchange-
ably, networks) are finite, simple, and undirected.
Fundamental graph-theory definitions and nota-
tions are introduced in advance. For those not
defined here, we follow the standard terminology
given by Bondy and Murty [2]. An undirected
graph G consists of a vertex set V (G) and an edge
set E(G), where V (G) is a finite set, and E(G) is
a subset of the set of all unordered pairs of dis-
tinct elements in V (G). In this paper, we use
{u, v} to denote an unordered pair of two elements
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Figure 1: Illustrating S2, S3, and S4.

u, v. Two vertices u and v of G are adjacent if
{u, v} ∈ E(G). A graph H is a subgraph of G

if V (H) ⊆ V (G) and E(H) ⊆ E(G). For any
nonempty subset S of V (G), the subgraph of G
induced by S is a graph whose vertex set is S and
whose edge set consists of all the edges of G joining
any two vertices in S.

For any positive integer n, let 〈n〉 denote the
set of all positive integers from 1 to n; i.e., 〈n〉 =
{1, 2, . . . , n}. A permutation over 〈n〉 is an or-
der sequence containing each element of 〈n〉 once,
and only once. The vertex set of the n-star net-
work Sn is the set of all permutations over 〈n〉.
In Sn, two permutations are linked by an i-edge
if one can be obtained from the other by swap-
ping the 1st and the ith digits, 2 ≤ i ≤ n. Fig-
ure 1 illustrates S2, S3, and S4. Obviously, Sn

is bipartite and (n − 1)-regular for n ≥ 2. More-
over, it is not only vertex-transitive but also edge-
transitive [1]. For any vertex v of Sn, its ith digit
is denoted by (v)i, and for 1 ≤ k ≤ n − 1, let

S
(i1:x1,i2:x2,...,ik:xk)
n be the subgraph of Sn induced

by {v ∈ V (Sn) | (v)i1 = x1, (v)i2 = x2, . . . , (v)ik =
xk}, where {i1, i2, . . . , ik} and {x1, x2, . . . , xk} are
k-element subsets of {2, 3, . . . , n} and 〈n〉, respec-

tively. Then, S
(i1:x1,i2:x2,...,ik:xk)
n is isomorphic to

an (n − k)-star network Sn−k. As S
(i:x)
n is an

Sn−1-subgraph of Sn for any i ∈ {2, 3, . . . , n} and
x ∈ 〈n〉, there are n − 1 different ways to parti-
tion Sn into n disjoint Sn−1-subgraphs. Thus, the
total number of distinct Sn−1-subgraphs in Sn is
n(n− 1).

Wu and Latifi [22] first analyzed the substar
reliability of star networks under the probability
fault model. In the probability fault model, every
node has a homogeneous node reliability p, which
is defined as the probability that a single node is



fault-free at time t. Given the homogeneous node
reliability p, then Rn,n−1(p) stands for the proba-
bility that there exists at least one fault-free Sn−1-
subgraph in Sn. Because there are n(n−1) distinct
Sn−1-subgraphs in Sn, we denote them by S1

n−1,

S2
n−1, . . ., S

n(n−1)
n−1 . Moreover, let ξin−1 denote the

probabilistic event that Si
n−1 is fault-free in Sn for

1 ≤ i ≤ n(n− 1). Then, Pr
(

ξin−1

)

= p(n−1)! and

Rn,n−1(p) = Pr
(

⋃n(n−1)
i=1 ξin−1

)

, where Pr(·) is

the probability of a stochastic event. According
to the inclusion-exclusion principle, Rn,n−1(p) is
further decomposed:

Rn,n−1(p)

=

n(n−1)
∑

i=1

Pr
(

ξin−1

)

−
∑

i<j

Pr
(

ξin−1 ∩ ξ
j
n−1

)

+
∑

i<j<k

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1

)

−
∑

i<j<k<l

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

. . .

+(−1)n(n−1)−1Pr





n(n−1)
⋂

i=1

ξin−1



 . (1)

Wu and Latifi [22] suggested a simple approxi-
mation of Rn,n−1(p) as follows:

Rn,n−1(p) ≈ 1−
(

1− p(n−1)!
)n(n−1)

(2)

Furthermore, an upper bound on Rn,n−1(p) has
been established by neglecting all after the third
term in Eq. (1):

Rn,n−1(p)

≤

n(n−1)
∑

i=1

Pr
(

ξin−1

)

−
∑

i<j

Pr
(

ξin−1 ∩ ξ
j
n−1

)

+
∑

i<j<k

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1

)

= n(n− 1)p(n−1)! −

(

n

2

)

[

(2n− 3)p2(n−1)!

+2

(

n− 1

2

)

p2(n−1)!−(n−2)!

]

+

(

n

3

)

[

(2n− 4)p3(n−1)!

+(6n− 6)p3(n−1)!−(n−2)!

+3(2n− 5)(n− 1)p3(n−1)!−2(n−2)!

+6

(

n− 1

3

)

p3(n−1)!−3(n−2)!+(n−3)!

]

(3)

3 Lower bound on Rn,n−1(p)

A lower bound on Rn,n−1(p) can be formed
from the first four terms of Eq. (1):

Rn,n−1(p)

≥

n(n−1)
∑

i=1

Pr
(

ξin−1

)

−
∑

i<j

Pr
(

ξin−1 ∩ ξ
j
n−1

)

+
∑

i<j<k

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1

)

−
∑

i<j<k<l

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

.

Let

δ(n, p) ,
∑

i<j<k<l

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

.

In the rest of this section, we will derive the fol-
lowing analytic formula:

δ(n, p)

=

[

(n− 1)

(

n

4

)

+ n

(

n− 1

4

)]

p4(n−1)!

+

[

2(n− 3)

(

n− 1

2

)(

n

3

)

+ 8

(

n− 1

4

)(

n

2

)

+6

(

n− 1

2

)(

n

3

)

+ 6

(

n− 1

3

)(

n

2

)]

p4(n−1)!−3(n−2)!

+

[

6

(

n− 1

2

)(

n

3

)

+ 6

(

n− 1

3

)(

n

2

)

+

(

n− 1

2

)(

n

2

)]

p4(n−1)!−2(n−2)!

+

[(

n− 1

2

)(

n

2

)(

n− 2

2

)

+ 9

(

n− 1

3

)(

n

3

)

+6

(

n− 1

4

)(

n

2

)]

p4(n−1)!−4(n−2)! +

[

36

(

n− 1

3

)(

n

4

)

+36

(

n− 1

4

)(

n

3

)]

p4(n−1)!−5(n−2)!+2(n−3)!

+24

(

n− 1

4

)(

n

4

)

p4(n−1)!−6(n−2)!+4(n−3)!−(n−4)!

+36

(

n− 1

3

)(

n

3

)

p4(n−1)!−4(n−2)!+(n−3)!.

To compute the probability of event
ξin−1 ∩ ξ

j
n−1 ∩ ξkn−1 ∩ ξln−1, we have to enu-

merate all possible union of Si
n−1, S

j
n−1,

Sk
n−1, and Sl

n−1. For the sake of clar-

ity, we associate Si
n−1, S

j
n−1, S

k
n−1, S

l
n−1 with

S
(i1:x1)
n , S

(i2:x2)
n , S

(i3:x3)
n , S

(i4:x4)
n , respectively.

Case 1: All of i1, i2, i3, and i4 are the same;
that is, i1 = i2 = i3 = i4. Obviously, we



have |{x1, x2, x3, x4}| = 4, so S
(i1:x1)
n , S

(i2:x2)
n ,

S
(i3:x3)
n , and S

(i4:x4)
n are mutually disjoint. Then,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

= p4(n−1)!. Fig-

ure 2(a) illustrates the union of S
(i1:x1)
n , S

(i2:x2)
n ,

S
(i3:x3)
n , and S

(i4:x4)
n . Accordingly, there are

(

n−1
1

)(

n
4

)

groups of four Sn−1-subgraphs corre-
sponding to this union type.

Case 2: At least two of i1, i2, i3, and i4 are
different. Without loss of generality, we assume
i1 = s is different from i4 = t.

Subcase 2.1: Both i2 and i3 are in {s, t}; that
is, i2, i3 ∈ {s, t}.

• |{x1, x2, x3, x4}| = 4.

– Position s or t corresponds to three
identifying codes; that is, either
i1 = i2 = i3 = s or i2 = i3 = i4 = t.
For instance, if i2 = i3 = i4, then

S
(i2:x2)
n , S

(i3:x3)
n , and S

(i4:x4)
n are mutu-

ally disjoint. However, S
(i1:x1)
n overlaps

with each of S
(i2:x2)
n , S

(i3:x3)
n , and

S
(i4:x4)
n (see Figure 2(b)). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−3(n−2)!. There are
(

n−1
2

)(

2
1

)(

n
3

)(

n−3
1

)

distinct groups of
four Sn−1-subgraphs leading to this
union type.

– Both positions s and t correspond to
two identifying codes. Without loss
of generality, we assume that i1 = i2

and i3 = i4. Accordingly, S
(i1:x1)
n and

S
(i2:x2)
n are disjoint; S

(i3:x3)
n and S

(i4:x4)
n

are disjoint. However, both S
(i1:x1)
n

and S
(i2:x2)
n overlap with S

(i3:x3)
n and

S
(i4:x4)
n (see Figure 2(c)). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−4(n−2)!. There are
(

n−1
2

)(

n

2

)(

n−2
2

)

distinct groups of
four Sn−1-subgraphs leading to this
union type.

• |{x1, x2, x3, x4}| = 3.

– Position s or t corresponds to three
identifying codes; that is, either
i1 = i2 = i3 = s or i2 = i3 = i4 = t.
Suppose that i2 = i3 = i4. Then, x2,

x3, and x4 are distinct, so S
(i2:x2)
n ,

S
(i3:x3)
n , and S

(i4:x4)
n are mutually

disjoint. Since |{x1, x2, x3, x4}| = 3,
we have x1 ∈ {x2, x3, x4}. Without

loss of generality, we assume x1 = x2.

Thus, S
(i1:x1)
n and S

(i2:x2)
n are disjoint,

and S
(i1:x1)
n overlaps with both S

(i3:x3)
n

and S
(i4:x4)
n (see Figure 2(d)). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−2(n−2)!. There are
(

n−1
2

)(

2
1

)(

n
3

)(

3
1

)

= 6
(

n−1
2

)(

n
3

)

distinct
groups of four Sn−1-subgraphs leading
to this union type.

– Both positions s and t correspond to
two identifying codes. Without loss
of generality, we assume i1 = i2 and

i3 = i4. Accordingly, S
(i1:x1)
n and

S
(i2:x2)
n are disjoint; S

(i3:x3)
n and S

(i4:x4)
n

are disjoint. Since |{x1, x2, x3, x4}| = 3,
we have {x1, x2} ∩ {x3, x4} 6= ∅. With-
out loss of generality, we further assume

that x2 = x4. Thus, S
(i2:x2)
n and S

(i4:x4)
n

are also disjoint. Moreover, S
(i1:x1)
n

overlaps with both S
(i3:x3)
n and S

(i4:x4)
n ,

and S
(i3:x3)
n overlaps with both S

(i1:x1)
n

and S
(i2:x2)
n . See Figure 2(e). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−3(n−2)!. There are
(

n−1
2

)(

n
3

)(

3
1

)

× 2! = 6
(

n−1
2

)(

n
3

)

dis-
tinct groups of four Sn−1-subgraphs
leading to this union type.

• |{x1, x2, x3, x4}| = 2. Let {a, b} =
{x1, x2, x3, x4}. Without loss of generality,
we assume i1 = i2 and i3 = i4, so we ob-
tain {x1, x2} = {x3, x4} = {a, b}. We further
assume that x1 = x3 = a and x2 = x4 = b.
Thus, S

(i1:x1)
n and S

(i2:x2)
n are disjoint; S

(i1:x1)
n

and S
(i3:x3)
n are disjoint; S

(i3:x3)
n and S

(i4:x4)
n

are disjoint; S
(i2:x2)
n and S

(i4:x4)
n are disjoint.

However, S
(i1:x1)
n overlaps with S

(i4:x4)
n , and

S
(i2:x2)
n overlaps with S

(i3:x3)
n . See Figure 2(f).

Clearly, Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−2(n−2)!. There are
(

n−1
2

)(

n
2

)

distinct
groups of four Sn−1-subgraphs leading to this
union type.

Subcase 2.2: Only one of i2 and i3 is in
{s, t} = {i1, i4}. Without loss of generality, we
assume that i2 6∈ {s, t} and i3 = i4 = t. Thus,

x3 is different from x4, so S
(i3:x3)
n and S

(i4:x4)
n are

disjoint.

• |{x1, x2, x3, x4}| = 4. Obviously, both

S
(i1:x1)
n and S

(i2:x2)
n overlap with the



others (see Figure 2(g)). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−5(n−2)!+2(n−3)!. Then, there are
(

n−1
3

)(

3
1

)(

n

4

)(

4
2

)

× 2! = 36
(

n−1
3

)(

n

4

)

distinct
groups of four Sn−1-subgraphs leading to
this union type.

• |{x1, x2, x3, x4}| = 3.

– {x1, x2} ∩ {x3, x4} = ∅. Then, we have

x1 = x2 so that S
(i1:x1)
n and S

(i2:x2)
n

are disjoint. Moreover, both S
(i1:x1)
n

and S
(i2:x2)
n overlap with S

(i3:x3)
n and

S
(i4:x4)
n . This union type is the same

with that in Figure 2(c), and clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−4(n−2)!. There are
(

n−1
3

)(

3
1

)(

n

3

)(

3
2

)

= 9
(

n−1
3

)(

n

3

)

distinct
groups of four Sn−1-subgraphs leading
to this union type.

– {x1, x2} ∩ {x3, x4} 6= ∅. Without
loss of generality, we assume that
x2 = x3. Then, we have x1 6∈ {x3, x4}.

Thus, S
(i2:x2)
n and S

(i3:x3)
n are dis-

joint, but S
(i2:x2)
n overlaps with

S
(i4:x4)
n . Furthermore, S

(i1:x1)
n over-

laps with each of S
(i2:x2)
n , S

(i3:x3)
n , and

S
(i4:x4)
n . See Figure 2(h). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−4(n−2)!+(n−3)!. There are
(

n−1
3

)(

3
1

)(

n

3

)(

3
2

)(

2
1

)

× 2! = 36
(

n−1
3

)(

n

3

)

distinct groups of four Sn−1-subgraphs
leading to this union type.

• |{x1, x2, x3, x4}| = 2.

– x1 = x2. Since x3 6= x4, we assume that

x1 = x2 = x3. Thus, S
(i1:x1)
n , S

(i2:x2)
n ,

and S
(i3:x3)
n are mutually disjoint. More-

over, S
(i4:x4)
n overlaps with both S

(i1:x1)
n

and S
(i2:x2)
n . See Figure 2(d). Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−2(n−2)!. There are
(

n−1
3

)(

3
1

)(

n
2

)(

2
1

)

= 6
(

n−1
3

)(

n
2

)

distinct
groups of four Sn−1-subgraphs leading
to this union type.

– x1 6= x2. Without loss of generality, we
assume that x1 = x3 and x2 = x4. Then,

S
(i1:x1)
n and S

(i3:x3)
n are disjoint; S

(i2:x2)
n

and S
(i4:x4)
n are disjoint. Figure 2(e)

illustrates this union type. Clearly,

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−3(n−2)!. There are
(

n−1
3

)(

3
1

)(

n

2

)

× 2! = 6
(

n−1
3

)(

n

2

)

dis-
tinct groups of four Sn−1-subgraphs
leading to this union type.

Subcase 2.3: None of i2 and i3 is in {s, t} =
{i1, i4}; that is, every two of i1, i2, i3, and i4 are
different.

• |{x1, x2, x3, x4}| = 4. Obviously, each

of S
(i1:x1)
n , S

(i2:x2)
n , S

(i3:x3)
n , and S

(i4:x4)
n

overlaps with the others (see Figure 2(i)).

Clearly, Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−6(n−2)!+4(n−3)!−(n−4)!. There are
(

n−1
4

)(

n
4

)

× 4! = 24
(

n−1
4

)(

n
4

)

distinct groups
of four Sn−1-subgraphs leading to this union
type.

• |{x1, x2, x3, x4}| = 3. Without loss of
generality, we assume that x3 = x4. Thus,

S
(i3:x3)
n and S

(i4:x4)
n are disjoint. However,

S
(i1:x1)
n overlaps with each of S

(i2:x2)
n , S

(i3:x3)
n ,

and S
(i4:x4)
n ; S

(i2:x2)
n overlaps with each of

S
(i1:x1)
n , S

(i3:x3)
n , and S

(i4:x4)
n . This union

type is the same with that in Figure 2(g), and

clearly, Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−5(n−2)!+2(n−3)!. There are
(

n−1
4

)(

n

3

)(

3
1

)(

4
2

)

× 2! = 36
(

n−1
4

)(

n

3

)

dis-
tinct groups of four Sn−1-subgraphs leading
to this union type.

• |{x1, x2, x3, x4}| = 2. For convenience, let
{x1, x2, x3, x4} = {a, b}.

– One identifying code, a or b, is asso-
ciated with three positions. Without
loss of generality, we assume that
x1 = a and x2 = x3 = x4 = b.
Consequently, S

(i2:x2)
n , S

(i3:x3)
n , and

S
(i4:x4)
n are mutually disjoint, and

S
(i1:x1)
n overlaps with every of S

(i2:x2)
n ,

S
(i3:x3)
n , and S

(i4:x4)
n . This union type

is identical to that in Figure 2(b), and

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−3(n−2)!. There are
(

n−1
4

)(

n

2

)

[
(

4
1

)

+
(

4
3

)

] = 8
(

n−1
4

)(

n

2

)

distinct groups of four Sn−1-subgraphs
leading to this union type.

– Both identifying codes a and b are
associated with two positions. Without
loss of generality, we assume that



x1 = x2 = a and x3 = x4 = b. Thus,

S
(i1:x1)
n and S

(i2:x2)
n are disjoint; S

(i3:x3)
n

and S
(i4:x4)
n are disjoint. Furthermore,

both S
(i1:x1)
n and S

(i2:x2)
n overlap with

S
(i3:x3)
n and S

(i4:x4)
n . This union type

is identical to that in Figure 2(c), and

Pr
(

ξin−1 ∩ ξ
j
n−1 ∩ ξkn−1 ∩ ξln−1

)

=

p4(n−1)!−4(n−2)!. There are
(

n−1
4

)(

n

2

)

4!
2!2! = 6

(

n−1
4

)(

n

2

)

distinct
groups of four Sn−1-subgraphs leading
to this union type.

• |{x1, x2, x3, x4}| = 1. Obviously, S
(i1:x1)
n ,

S
(i2:x2)
n , S

(i3:x3)
n , and S

(i4:x4)
n are mutually dis-

joint (see Figure 2(a)). There are
(

n−1
4

)(

n
1

)

distinct groups of four Sn−1-subgraphs lead-
ing to this union type.

All possible scenarios for four out of n(n − 1)
Sn−1-subgraphs in Sn have been categorized. De-
note by g(n, p) the right-hand side of Eq. (3). A
lower bound of Rn,n−1(p) is summarized in the
following theorem.

Theorem 1. Given a homogeneous node relia-
bility p of Sn, a lower bound on Rn,n−1(p) is
g(n, p)− δ(n, p). That is,

Rn,n−1(p) ≥ g(n, p)− δ(n, p). (4)

4 Numerical comparisons

Wu and Latifi [22] adopted a node failure dis-
tribution such that the number of faulty nodes in-
creases over time. Their model assumes that the
expected number of faulty nodes at the moment
t, denoted by f(t), increases as time passes with
a constant failure rate λ. Then, f(t) is given as
follows:

f(t) = n!× (1− e−λt).

Therefore, the node reliability function at the mo-
ment t, denoted by p(t), can be expressed by the
following formula:

p(t) = 1−
f(t)

n!
= e−λt. (5)

Figure 3 plots the three estimates, upper
bound, lower bound, and approximation of
Rn,n−1(p), for a variety of n and p. According
to our numerical results, the curves of these esti-
mates are in reasonable agreement. In particular,
the lower and upper bounds get close to each other

rapidly as time goes by. This implies that the
proposed lower bound of Rn,n−1(p) really plays
a more informative role than the upper bound of
Rn,n−1(p) in achieving system availability, espe-
cially when a specific substar is available for a
user’s request to execute his/her programs in the
current star network system.

5 Concluding remarks

In this paper, an analytic lower bound on the
substar reliability of star networks is derived by
means of combinatorial approach. The lower
bound on Rn,n−1(p) plays a more informative role
than the upper bound in evaluating the degree of
system availability, especially when a specific sub-
star is available for a user to execute his/her pro-
grams in the current star network system. Numer-
ical comparisons are presented for validating the
proposed formulation.
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