
A Fast Algorithm for the Constrained Longest Common
Subsequence Problem with Small Alphabet

Wen-Chuan Hoa, Kuo-Si Huangb and Chang-Biau Yanga∗
aDepartment of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan

∗cbyang@cse.nsysu.edu.tw
b Department of Information Management

National Kaohsiung Marine University, Kaohsiung, Taiwan

Abstract

Given three sequences A, B and C with lengths
of m, n and r, respectively, the constrained longest
common subsequence (CLCS) problem is to find
the LCS of A and B which contains C as the subse-
quence of the answer. The dynamic programming
algorithm for solving the CLCS problem, proposed
by Chin et al., calculates the three-dimensional lat-
tice layer by layer. We find that the values of
most corresponding CLCS lattice cells are identical
in two consecutive layers when the alphabet set is
small. In this paper, we clarify whether lattice cells
need to be calculated or not for reducing the com-
putational redundancy in two consecutive layers.
Accordingly, our algorithm calculates only some
special boundary cells instead of the whole three-
dimensional lattice in most cases, although our
algorithm still requires O(mnr) time and O(mn)
space in the worst case. In 2010, Deorowicz and
Obstój showed that the algorithm of Chin et al. has
good performance when the alphabet size |Σ| ≤ 20.
As our experimental results show, our algorithm
is faster than Chin’s algorithm when |Σ| ≤ 20. So
our algorithm is better than most of the previous
CLCS algorithms when |Σ| is small.

1 Introduction

Needleman and Wunsch [15] first proposed the
concept of the longest common subsequence (LCS)
in order to deal with the relationships between bi-
ological sequences, including DNA, RNA, and pro-
tein sequences. By measuring the similarity of two
sequences, there are a lot of applications in vari-
ous areas, such as bioinformatics, file plagiarism,

∗Corresponding author.

and voice recognition [13].
A subsequence is obtained by removing zero or

more symbols from the original sequence or string.
Given two sequences (or strings) A = a1a2 · · · am
and B = b1b2 · · · bn, where |A| = m and |B| = n,
the LCS problem is defined to find the common
subsequence S in both A and B such that S is
the longest one. A lot of algorithms have been
proposed for solving the LCS problem [11, 14, 22].
In addition, many variations of the LCS problem
have also been presented, such as the constrained
longest common subsequence (CLCS) problem [4,
21] and the merged longest common subsequence
(MLCS) [10, 17, 20] problem.

Given two sequences A = a1a2 · · · am and B =
b1b2 · · · bn, and an extra constrained sequence C =
c1c2 · · · cr, where |A| = m, |B| = n, |C| = r, and
m ≤ n, the constrained longest common subse-
quence (CLCS) problem, a variant LCS problem
defined by Tsai [21], is to find the LCS S of A and
B such that S contains C as its subsequence. Tsai
proposed a dynamic programming (DP) algorithm
in O(m2n2r) time and space. Peng proposed a
DP algorithm in O(mnr) time and space for the
CLCS problem [16]. Chin et al. showed that the
CLCS problem is a special case of the constrained
sequence alignment (CSA) problem and proposed
a simpler dynamic programming algorithm with
O(mnr) time and space [4]. Peng and Ting [19]
proposed a recursive algorithm based on the lin-
ear space algorithm with the divide-and-conquer
approach [9] in O(mnr) time and O(nr) space.

Furthermore, Arslan and Eğecioğlu [2] pro-
posed an improved algorithm in O(mnr) time
by changing its calculation order. Deorowicz [5]
rewrote the formula of the dynamic programing
by Chin et al. and employed the skill mentioned
by Hunt and Szymanski [11], thus proposed an
algorithm in O(r(ml + R) + n) time, where l =

|LCS(A,B)| and R is the number of total match-
ing pairs in A and B. Deorowicz’s algorithm is
more efficient when the alphabet size grows up. Il-
iopoulos and Rahman [12] proposed an algorithm
in O(rR log log n + n) time by using the DP for-
mula proposed by Arslan and Eğecioğlu [2] and
building the bounded heap (BH) data structure.
Both algorithms of Deorowicz [5] and Iliopoulos &
Rahman [12] only considered the matching pairs
in A and B. Deorowicz and Obstój [7] proposed an
algorithm based on an entry-exit point approach
[8] in O(r(ml + R) + n) time. Besides, they [7]
implemented the existing algorithms before 2010
to compare the performance of these algorithms
in practice. In 2010, Becerra et al. [3] proposed a
space-efficient algorithm in O(R+D) space, where
D is the size of domination set, dependent on the
length of the constrained sequence. In 2010, De-
orowicz [6] also proposed an algorithm based on
the bit-parallelism (BP) technique with a com-
puter of word size w in O(mnr/|Σ| + nr⌈m/w⌉)
time under a fixed alphabet Σ.

In 2010, Peng et al. [18] proposed an algorithm
in O(mnr) time and O(nr) space for a general-
ized version of the CLCS problem, called weighted
CPSA (WCPSA) problem. In 2012, Ann et al.
proposed an efficient algorithm for run-length en-
coded (RLE) sequences, in O(mnr̄+mn̄r+ m̄nr)
time, where m̄, n̄ and r̄ are the numbers of runs
in A, B and C, respectively [1].

The DP algorithm of Chin et al. calculates the
whole two-dimensional lattices layer by layer, de-
composed from the three-dimensional CLCS lat-
tice [4]. We find that the values of most corre-
sponding CLCS lattice cells are identical in two
consecutive layers in case that the alphabet set
is small. For reducing the computational redun-
dancy in two consecutive layers, we clarify which
lattices need not be calculated. Our algorithm
calculates only some special boundary cells, in-
stead of the whole 3-dimensional lattice, in most
cases. Our algorithm still requires O(mnr) time
and O(mn) space to solve the CLCS problem in
the worst case. In 2010, Deorowicz and Obstój
showed that the algorithm of Chin et al. has out-
standing performance when alphabet size |Σ| ≤
20. Our experimental results show that our algo-
rithm is faster than Chin’s algorithm when |Σ| ≤
20. Therefore, our algorithm is better than most
of the previous CLCS algorithms when Σ is small.

The organization of this paper is given as fol-
lows. In Section 2, the preliminaries of the CLCS
problem are introduced. Section 3 presents the
properties for reducing computational redundancy

and then proposes our algorithm. Section 4 shows
the experimental results. And finally, we derive
the conclusion in Section 5.

2 The Constrained Longest Com-
mon Subsequence Problem

Let S = s1s2 · · · si · · · s|S| be a sequence of char-
acters over a finite alphabet Σ, where si and |S|
represent the ith character and the length of S,
respectively. The notation i..j indicates the index
range from indexes i to j, so Si..j represents the
substring of S from position i to position j. Note
that Si..j = ∅ if i > j.

Given two sequences A = a1a2 · · · am and B =
b1b2 · · · bn, and an extra constrained sequence C =
c1c2c3 · · · cr, where |A| = m, |B| = n, |C| = r,
and m ≤ n, the CLCS problem is to find an LCS
of A and B such that C is contained in the an-
swer as a subsequence. The answer of the prob-
lem is denoted by CLCS(A,B,C). For example,
assume that A = abcde and B = acdbe and C
= ab. The LCS of A and B is acde, and the
CLCS(A,B,C) becomes abe when the extra con-
strained sequence C is considered. Let M(i, j, k)
=|CLCS(A1..i, B1..j , C1..k)|. Chin et al. [4] pro-
posed a DP algorithm in O(mnr) time and space
to solve the CLCS problem as follows.
M(i, j, k) =

M(i− 1, j − 1, k − 1) + 1 if ai = bj and ai = ck,

M(i− 1, j − 1, k) + 1 if ai = bj and ai ̸= ck,

max

{
M(i− 1, j, k)

M(i, j − 1, k)
if ai ̸= bj ,

(1)

with the boundary conditions:
M(i, 0, 0) = M(0, j, 0) = 0,
M(i, 0, k) = M(0, j, k) = −∞,
M(i, j, 0) = |LCS(A1..i, B1..j)|.

3 Our Constrained LCS Algorithm

By observing the three-dimensional DP lattice,
it is worthy to notice that the values of most cor-
responding CLCS lattice cells are identical in two
consecutive layers k and k − 1. Based on this
observation, the paper proposes a new algorithm
for solving the CLCS problem by identifying un-

changed points, instead of considering match points.
The main strategy of our algorithm is to find some
boundary unchanged points (BUP) such that each
M(i, j, k) in the lower right corner of those BUP’s

is identical to M(i, j, k − 1). One cannot precisely
predict the changed region (CR) from layer k − 1

to layer k, because M(i, j, k) ̸= M(i, j, k − 1) may
happen when (i, j, k) is a mismatch point (ai ̸= bj),
a simple match point (ai = bj ̸= ck) or a strong match

point (ai = bj = ck). Thus, some rules are proposed
for identifying BUP in the following.

For easy presentation, let (i, j1..j2, k) denote
a collection of contiguous points (i, j′, k) where
j1 ≤ j′ ≤ j2, that is, (i, j1, k), (i, j1 + 1, k), · · · ,
(i, j2 − 1, k), (i, j2, k). In the following, an exam-
ple is provided for explaining each term with A

= bddbcbaadbc, B = aacdadbdbabdadcbaadcc and
C = cb. The calculated lattice in layers k = 0,
k = 1 and k = 2 are shown in Figures 1, 2 and 3,
respectively.

Definition 1. (Strong match point [5]) For each layer

k ≥ 1, a point (i, j, k) is a strong match point if ai

= bj = ck.

Definition 2. (Simple match point) For each layer k

≥ 0, a point (i, j, k) is a simple match point if ai

= bj ̸= ck. Note that c0 is set to empty.

Definition 3. (Previous strong match point) For each

layer k ≥ 2, a point (i, j, k) is a previous strong

match point if ai = bj = ck−1.

Definition 4. (Layer start-point) For each layer k

≥ 1, a point (i, j, k) is a layer start-point, denoted as

LSk, if (i, j, k) is a strong match point and there is no

other strong match point (i′, j′, k) such that i′ ≤ i and

j′ ≤ j. Specifically, we set LS0 = (0, 0, 0).

For example, LS1 = (5, 3, 1) in Figure 2, and
LS2 = (6, 7, 2) in Figure 3. In order to efficiently
locate the next match position of a specific sym-
bol at each position in a sequence, we build the
NextMatch tables of A and B. Then, we can eas-
ily locate LSk+1 if LSk is known.

Definition 5. (Changed region (CR)) A point (i, j, k)

∈ changed region (CR) if M(i, j, k) ̸= M(i, j, k−1).
Let LSk′ = (i′, j′, k′). We stipulate that (i′′, j′ − 1, k′)

and (i′ − 1, j′′, k′) ∈ CR, where i′ − 1 ≤ i′′ ≤ |A| and
j′ − 1 ≤ j′′ ≤ |B|, respectively.

Definition 6. (Unchanged region (UR)) A point

(i, j, k) ∈ unchanged region (UR) if M(i, j, k) =

M(i, j, k − 1).

Figure 2 shows examples of CR and UR.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a a c d a d b d b a b d a d c b a a d c c

0 0
1 b 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 d 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 d 0 0 0 0 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
4 b 0 0 0 0 1 1 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4

5 c 0 0 0 1 1 1 2 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5

6 b 0 0 0 1 1 1 2 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5

7 a 0 1 1 1 1 2 2 3 3 4 5 5 5 5 5 5 5 6 6 6 6 6

8 a 0 1 2 2 2 2 2 3 3 4 5 5 5 6 6 6 6 6 7 7 7 7
9 d 0 1 2 2 3 3 3 3 4 4 5 5 6 6 7 7 7 7 7 8 8 8

10 b 0 1 2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 8 8
11 c 0 1 2 3 3 3 3 4 4 5 5 6 6 6 7 8 8 8 8 8 9 9

Figure 1: The CLCS lattice in layer k = 0 for
A=bddbcbaadbc, B=aacdadbdbabdadcbaadcc
and C = cb.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a a c d a d b d b a b d a d c b a a d c c

0

1 b

2 d

3 d

4 b

5 c 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 5 5

6 b 1 1 1 1 2 2 2 2 2 2 2 2 4 5 5 5 5 5 5

7 a 1 1 2 2 2 2 2 3 3 3 3 3 4 5 6 6 6 6 6

8 a 1 1 2 2 2 2 2 3 3 3 4 4 4 5 6 7 7 7 7
9 d 1 2 2 3 3 3 3 3 3 4 4 5 5 5 6 7 8 8 8

10 b 1 2 2 3 4 4 4 4 4 4 4 5 5 6 6 7 8 8 8
11 c 3 3 3 3 4 4 4 4 4 4 4 5 8 8 8 8 8 9 9

Figure 2: The CLCS lattice in layer k = 1 for
A=bddbcbaadbc, B=aacdadbdbabdadcbaadcc
and C = cb, where the red (gray) cells form
the changed regions (CR), the blue (dark) cells
with bold font form the unchanged region (UR)
which need to be checked in our algorithm, and
the white region represents the cell in UR which
needs not be checked.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a a c d a d b d b a b d a d c b a a d c c

0

1 b

2 d

3 d

4 b

5 c

6 b 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5

7 a 2 2 2 3 3 3 3 3 3 5 6 6 6 6 6

8 a 2 2 2 3 3 3 4 4 4 5 6 7 7 7 7
9 d 2 3 3 3 3 4 4 5 5 5 6 7 8 8 8

10 b 4 4 4 4 4 4 4 5 5 6 6 7 8 8 8
11 c 4 4 4 4 4 4 4 5 6 6 6 7 8 9 9

Figure 3: The CLCS lattice in layer k = 2 for
A=bddbcbaadbc, B=aacdadbdbabdadcbaadcc
and C = cb.

Lemma 1. [5] M(i, j, k1) ≤ M(i, j, k2) if k1 ≥ k2.

Lemma 2. M(i− 1, j − 1, k) = M(i− 1, j − 1, k− 1)

= M(i− 1, j − 1, k − 2) if M(i, j, k) = M(i, j, k − 1),

(i, j, k − 1) is a strong match point and (i, j, k) is a

simple match point.

Proof. By the definition of CLCS, we have M(i, j, k)

= M(i−1, j−1, k)+1 and M(i, j, k−1) = M(i−1, j−
1, k − 2)+1. If M(i, j, k) = M(i, j, k − 1), we get

M(i− 1, j − 1, k) = M(i− 1, j − 1, k − 2). (2)

By Lemma 1, we have

M(i−1, j−1, k) ≤M(i−1, j−1, k−1) ≤M(i−1, j−1, k−2).
(3)

By Equations 2 and 3, we have M(i − 1, j − 1, k) =

M(i− 1, j − 1, k − 1) = M(i− 1, j − 1, k − 2).

Theorem 1. If (i, j, k) is not a previous strong match

point, (i − 1, j − 1, k), (i − 1, j, k) and (i, j − 1, k) ∈
UR, then (i, j, k) ∈ UR. If (i, j, k) is a previous strong

match point, (i− 1, j − 1, k− 1) and (i− 1, j − 1, k) ∈
UR, then (i, j, k) ∈ UR.

Proof. For the first condition, we consider the follow-

ing three cases.

Case 1: Suppose (i, j, k) is a mismatch point (ai ̸= bj).

We have M(i, j, k − 1) = max{M(i − 1, j, k − 1),

M(i, j−1, k−1)} and M(i, j, k) = max{M(i−1, j, k),

M(i, j−1, k)}. In addition, (i−1, j, k) and (i, j−1, k)

∈ UR, then M(i − 1, j, k − 1) = M(i − 1, j, k) and

M(i, j− 1, k− 1) = M(i, j− 1, k). Thus, M(i, j, k− 1)

= M(i, j, k), and then (i, j, k) ∈ UR.

Case 2: Suppose (i, j, k) and (i, j, k − 1) are a strong

match point and a simple match point, respectively

(ai = bj = ck ̸= ck−1). It is always true that M(i, j, k)

= M(i, j, k−1) because both M(i, j, k) and M(i, j, k−
1) are equal to M(i− 1, j − 1, k − 1)+1.

Case 3: Suppose (i, j, k − 1) and (i, j, k) are both

simple match points (ck ̸= ai = bj ̸= ck−1). We

have M(i, j, k − 1) = M(i − 1, j − 1, k − 1) + 1 =

M(i− 1, j − 1, k) + 1 = M(i, j, k).

For the second condition, two cases have to be dis-

cussed as follows.

Case 4: If (i, j, k) is a simple match point (ai = bj =

ck−1 ̸= ck), we have M(i, j, k) = M(i− 1, j − 1, k)+1,

and M(i, j, k − 1) = M(i − 1, j − 1, k − 2)+1. Thus,

with M(i− 1, j − 1, k) = M(i− 1, j − 1, k− 2), we get

M(i, j, k) = M(i, j, k − 1).

Case 5: If (i, j, k) is a strong match point (ai = bj =

ck−1 = ck), we haveM(i, j, k) =M(i−1, j−1, k−1)+1,

and M(i, j, k − 1) = M(i − 1, j − 1, k − 2)+1. Thus,

with M(i− 1, j − 1, k− 1) = M(i− 1, j − 1, k− 2), we

get M(i, j, k) = M(i, j, k − 1).

Theorem 1 states the cases that (i, j, k) ∈ UR
and we need not compute it. The examples of
Theorem 1 are shown in Table 1.

In contrast to Theorem 1, the following corol-
lary describes those points that need to be cal-
culated, since we do not know whether those
M(i, j, k) ’s will be changed or not.

Corollary 1. We need to calculate M(i, j, k) if one

of the following two conditions is satisfied.

1. (i − 1, j − 1, k), (i − 1, j, k) or (i, j − 1, k) ∈ CR

when (i, j, k) is not a previous strong match point.

2. (i− 1, j − 1, k− 1) or (i− 1, j − 1, k) ∈ CR when

(i, j, k) is a previous strong match point.

For easy implementation of our algorithm, we
further simplify the above corollary as follows.

Corollary 2. M(i, j, k) needs to be calculated if one

of the following two conditions is satisfied.

1. (i− 1, j − 1, k), (i− 1, j, k) or (i, j − 1, k) ∈ CR.

2. (i−1, j−1, k−1) ∈ CR when (i, j, k) is a previous

strong match point.

Based on Corollary 2, we propose our algorithm
for calculating the CLCS length in Algorithm 1.
The initial L of sizemn is constructed from the tra-
ditional LCS problem for layer k = 0. Since some
positions may have the same value between two
consecutive layers, L is used to repeatedly record
the CLCS length of (i, j, k) in each layer k. When-
ever L[i][j] is to be changed on layer k, we record
the old value for layer k − 1 in L′[i][j]. For exam-
ple, when the computation is performed on layer
k = 1, M(4, 2, 1) = −∞ ≠ M(4, 2, 0) = 0, so L′[4][2]

records 0 and L[4][2] is updated to −∞. M(i, j, k)

is usually calculated from L, but M(i, j, k) is calcu-
lated from L′ when (i, j, k) is a strong match point
and (i− 1, j− 1, k) ∈ CR, since M(i− 1, j− 1, k− 1)

is now stored in L′[i][j].
CRi records all positions j of the changed region

in each current row i, while CRi is utilized in the
next row i+ 1. PCRk[i] records all positions j + 1

of the changed region if (i + 1, j + 1, k + 1) is a
previous strong match point (ai+1 = bj+1 = ck) in
each row i of layer k. Note that PCRk[i] is utilized
in position j + 1 of row i + 1 in layer k + 1, so its
position value is j + 1, not j.

Lines 7 and 8 initialize the boundary cells of L
in layer k to −∞ and line 9 initializes the changed
region of the starting row in layer k. Len =

M(i, j, k) is calculated by Equation 1 from L or
L′ (line 13) and compared with L[i][j]. If (i, j, k) ∈

Table 1: The examples of Theorem 1 for A=bddbcbaadbc, B=aacdadbdbabdadcbaadcc and C = cb in
Figures 2 and 3.

Case (i, j, k)∈UR Type UR for making decision

Case 1 (7, 8, 2) ai ̸= bj (6, 7, 2), (6, 8, 2), (7, 7, 2)

Case 2 (10, 16, 2) ai = bj = ck ̸= ck−1 (9, 15, 2), (9, 16, 2), (10, 15, 2)

Case 3 (7, 13, 2) ck ̸= ai = bj ̸= ck−1 (6, 12, 2), (6, 13, 2), (7, 12, 2)

Case 4 (11, 20, 2) ai = bj = ck−1 ̸= ck (10, 19, 2), (10, 19, 1)

Algorithm 1 Computing the length of CLCS.

Input: A = a1a2 · · · am, B = b1b2 · · · bn and C =
c1c2 · · · cr

Output: Length of CLCS(A,B,C)
1: Construct arrays NextMatchA and NextMatchB

2: Construct lattice L of LCS(A, B)
3: for k := 1→ r do
4: LSk ← (NextMatchA[ck][LSk−1.i],

NextMatchB [ck][LSk−1.j])
5: if LSk is invalid then
6: return −∞
7: L[LSk.i− 1][LSk.j − 1..n] ← −∞
8: L[LSk.i..m][LSk.j − 1] ← −∞
9: CRLSk.i−1 ← {LSk.j, LSk.j + 1, · · · , n}

10: for i := LSk.i → m do
11: j ← LSk.j // Starting column of layer k
12: while not end of CRi−1 and

not end of PCRk−1[i− 1] do
13: Len ← Calculate M(i, j, k) from L

and L′ based on ai, bj and ck
14: if L[i][j] ̸= Len then //(i, j, k) ∈ CR
15: L′[i][j]← L[i][j]
16: L[i][j]← Len
17: Append j into CRi

18: if ai+1 = bj+1 = ck then
19: Append j + 1 into PCRk[i]

20: j++ // Continue to right position
21: else // (i, j, k) ∈ UR
22: j ← min{next available positions of

CRi−1 and PCRk−1[i− 1]}
23: return L[m][n]

CR (lines 14-19), L[i][j] needs to be updated. Po-
sition j is appended into CRi. If (i+1, j+1, k+1)

is a previous strong match point, position j + 1

is appended into PCRk[i] for layer k + 1. Then,
(i, j + 1, k) is calculated continuously. If (i, j, k) ∈
UR, then we go to the next available position of
CRi−1 and PCRk−1[i− 1] (lines 20-21).

Take A=cddbdbdbdbc, B=dbacbdcbbcbbcb and
C=cb as an example. Figures 1, 2 and 3 show
the content of lattices L in layers 0, 1 and 2, re-
spectively.

In the first iteration (k = 0), we initialize
M(i, j, 0) = L[i][j], so the content of lattice L′ is
empty. The detailed contents of CR, UR and

checked points in layers k = 1 and k = 2 are shown
in Table 2. A checked point (i, j, k) needs to be cal-
culated in our algorithm, but (i, j, k) may be in UR
or CR. In the second iteration (k = 1), the layer
start-point (5, 3, 1) is obtained, so L[4][2..21] and
L[5..11][2] are copied to L′[4][2..21] and L′[5..11][2],
respectively, and then L[4][2..21] and L[5..11][2] are
set to −∞.

Previous strong match points never occur when
k ≤ 1, so PCR0[i] are empty in each row i. Before
the starting row (i = 5) of layer 1, all positions
from 3 to 21 are put into CR4. After calculat-
ing, the changed positions of row 5 are recorded
in CR5, which are 6 through 14. In the follow-
ing rows, we calculate the position from starting
column (j = 3). If the point (i, j, 1) ∈ CR, then
we calculate (i, j + 1, 1) continuously. Otherwise,
we go to the next available position of CRi−1 and
PCR0[i − 1]. It is worth noting that position 15
is put into PCR1[10] in row 10 because (10, 14, 1)
∈ CR and (11, 15, 2) is a previous strong match
point (a11 = b15 = c1 = c).

It is obvious that Algorithm 1 requires only
O(mn) space, since L and L′ are reused in every
layer, and PCR can be reused every two layers
alternately. In the worst case, we have to calcu-
late the whole lattice in each layer when all points
(i, j, k) ∈ CR. So Algorithm 1 requires O(mnr)
time.

4 Experimental Results

This section shows the comparisons of time ef-
ficiency between our CLCS algorithm and the al-
gorithm of Chin et al. [4]. The testing envi-
ronment is a computer running 64-bit Windows
7 with 3.40GHZ CPU (Intel Core i7-2600) and
4GB RAM. The algorithms are implemented by
Microsoft Visual C++ 2015.

The published algorithms can be classified
roughly into the match-point based algorithm and
the DP based algorithm. The match-point based
algorithms only compute the positions of match
points, which are not suitable for small |Σ|, such as

Table 2: The detailed contents of changed region (CR), unchanged region (UR) and checked points for
each row in layers k = 1 and k = 2. A checked point (i, j, k) needs to be calculated in our algorithm, but
(i, j, k) may be in UR or CR. Symbol − denotes that no point belongs to the type in the row.

k i CRi (i, j, k) ∈ CR PCRk[i] Checked point (i, j, k) (i, j, k) ∈ UR

1 4 3..21 (4, 3..21, 1) − − −
1 5 6..14 (5, 6..14, 1) − (5, 3..5, 1), (5, 15..21, 1) −

1 6 6..14 (6, 6..14, 1) − (6, 3, 1), (6, 15, 1)
(6, 4..5, 1),
(6, 16..21, 1)

1 7 7..14 (7, 7..14, 1) − (7, 3, 1), (7, 6, 1), (7, 4..5, 1),
(7, 15, 1) (7, 16..21, 1)

1 8
3..4, (8, 3..4, 1), − (8, 5, 1), (8, 17, 1)

(8, 6, 1),
7..16 (8, 7..16, 1) (8, 18..21, 1)

1 9
3..5, (9, 3..5, 1), − (9, 6..7, 1), (9, 18, 1) (9, 19..21, 1)
8..17 (9, 8..17, 1)

1 10
3..5, (10, 3..5, 1),

15
(10, 6, 1), (10, 8, 1), (10, 7, 1),

9..18 (10, 9..18, 1) (10, 19, 1) (10, 20..21, 1)

1 11 9..14 (11, 9..14, 1) − (11, 3..6, 1), (11, 7..8, 1),
(11, 15..19, 1) (11, 20..21, 1)

2 5 7..21 (5, 7..21, 1) − − −
2 6 15 (6, 15, 2) − (6, 7..14, 2), (6, 16..21, 2) −

2 7 15 (7, 15, 2) − (7, 7, 2), (7, 16, 2)
(7, 8..14, 2),
(7, 17..21, 2)

2 8 − − − (8, 7, 2), (8, 15..16, 2)
(8, 8..14, 2),
(8, 17..21, 2)

2 9 7 (9, 7, 2) − (9, 8, 2) (9, 9..21, 2)

2 10 − − − (10, 7..8, 2) (10, 9..21, 2)

2 11 15..18 (11, 15..18, 2) − (11, 7, 2), (11, 19, 2)
(11, 8..14, 2),
(11, 20..21, 2)

the algorithms proposed by Deorowicz [5], Iliopou-
los and Rahman [12] and Becerra et al. [3]. These
algorithms become more efficient when |Σ| grows
up, due to decreasing match points. The DP based
algorithms include Chin et al. [4], Peng and Ting
[19], and Arslan and Eğecioğlu [2]. In DP based
algorithms, they compute the whole 3-dimensional
lattice and do not consider additional characteris-
tics of input sequences, so the required time de-
pends on only the lengths of input sequences, not
affected by |Σ|. On the other hand, our algorithm
is more efficient algorithm for sequences with high
similarity or small alphabet. The similarity of two
sequences A and B is defined as follows.

similarity(A,B) =
LCS(A,B)

min{|A|, |B|} . (4)

In the following experiments, we focus on
some influence factors of our algorithm and the
algorithm of Chin et al. [4], including se-
quence similarities, sequence lengths and alphabet
sizes. Each experiment is performed 100 times.
For consistent presentation of our algorithm,
we define the 6-tuple parameter, T (|A|, |B|, |C|,
|Σ|, algo, similarity), where |C| ∈ {2, 4, 8, 16}, |Σ| ∈
{2, 4, 20, 64, 256, 1000}, and algo is the implemented

algorithm. The similarity is defined in Equation 4
and symbol R means that the sequences are gen-
erated randomly.

The first experiment studies the influence of
various similarities on our algorithm, where |A|
= |B| = 1000, |C| ∈ {2, 4, 8, 16} and |Σ| ∈ {4, 20}.
Figures 4 and 5 show that the execution time
decreases when the similarity increases, and the
downtrend is steeper when |C| and |Σ| increase.
In summary, our algorithm has better efficiency
when the input sequences are similar.

The second experiment discusses the influence
of various alphabet sizes, where the sequences are
randomly generated. The execution time compar-
ison with various alphabet sizes between our al-
gorithm and the algorithm of Chin et al. [4] is
shown in Figure 6. Because Chin’s algorithm is
not affected by |Σ| obviously, we just take Chin’s
algorithm with |C| = 4 and 16 as benchmarks. Ac-
cording to the experimental results, the algorithm
by Chin et al. is stable for different sizes of Σ,
and the required time of our algorithm usually in-
creases when |Σ| becomes large. For the middle
size of |Σ|, such as |Σ| = 64 or 256, the match points
decrease, and then the changed region is enlarged.
Thus, the required time increases. However, it is

65 70 75 80 85 90 95

Similarity (%)

0.01

0.015

0.02

0.025

T
im

e
(s

ec
)

T(1000, 1000, *, 4, *, *)

Chin_r4
Chin_r2
Our_r16
Our_r8
Our_r4
Our_r2

Figure 4: The execution time comparison (in sec-
onds) of various similarity with |A| = |B| = 1000,
|Σ|= 4 and |C| ∈ {2, 4, 8, 16}. Our r2 and Chin r2

denote ours and Chin’s algorithm, respectively,
with |C| = 2.

45 50 55 60 65 70 75 80 85 90 95

Similarity (%)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
im

e
(s

ec
)

T(1000, 1000, *, 20, *, *)

Chin_r4
Chin_r2
Our_r16
Our_r8
Our_r4
Our_r2

Figure 5: The execution time comparison (in sec-
onds) of various similarity with |A| = |B| =
1000, |Σ| = 20 and |C| ∈ {2, 4, 8, 16}. Our r2 and
Chin r2 denote ours and Chin’s algorithm, respec-
tively, with |C| = 2.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 4 20 64 256 1000

T
im

e
(s

ec
)

|Σ|

T(2000, 2000, *, *, *, R)

Chin_r4

Chin_r16

Our_r2

Our_r4

Our_r8

Our_r16

Figure 6: The execution time comparison (in sec-
onds) of various |Σ| with |A| = |B| = 2000 and |C|
∈ {2, 4, 8, 16}. Our r4 and Chin r4 denote ours
and Chin’s algorithm, respectively, with |C| = 4.

2000 2500 3000 3500 4000 4500 5000

|B|

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
im

e
(s

ec
)

T(2000, *, 4, *, *, R)

Chin
Our_σ1000
Our_σ256
Our_σ64
Our_σ20
Our_σ4
Our_σ2

Figure 7: The execution time comparison (in sec-
onds) of various |Σ| with |A| = 2000, |B| ∈ {2000,
2500, 3000, 3500, 4000, 4500, 5000} and |C| = 4.
Chin denotes Chin’s algorithm, and Our σ20 de-
notes ours with |Σ| = 20.

hard to find feasible solutions for large |C| and very
big |Σ|, such as |Σ| = 1000. In this situation, the
algorithm usually terminates for layer with larger
k. So the execution time decreases suddenly with
|C| = 16 and |Σ| = 1000.

The third experiment tries to fix the length of
A = 2000 with |C| ∈ {4, 16} to observe the trend of
execution time between |Σ| ∈ {2, 4, 20, 64, 256, 1000}
and |B| ∈ {2000, 2500, 3000, 3500, 4000, 4500,
5000}. The experimental results are shown in Fig-
ures 7 and 8. The similarity is thought to increase
because the CLCS length increases with longer |B|
by Equation 4. However, the similarity increase is
small when |B| is enlarged, since the sequences are
generated randomly. Thus, the slope of execution
time is almost same with different |B|.

Then, in the fourth experiment, it is worthy
to discuss the influence of |C| with fixed |Σ| = 4
and |Σ| = 20 in our algorithm, whose experimental
results are shown in Figures 9 and 10. We can see
that the growth trend of execution time becomes
steeper while |C| increases because large |C| leads
to large changed region.

The match-point based algorithms are efficient
in big alphabet size because of decreased match
points, but the efficiency is worse than DP based
algorithms when alphabet size is small. Accord-
ing to the experimental results, our algorithm has
better efficiency than DP based algorithms with a
small alphabet size or highly similar sequences.

2000 2500 3000 3500 4000 4500 5000

|B|

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
(s

ec
)

T(2000, *, 16, *, *, R)

Chin
Our_σ1000
Our_σ256
Our_σ64
Our_σ20
Our_σ4
Our_σ2

Figure 8: The execution time comparison (in
seconds) of various |Σ| with |A| = 2000, |B| ∈
{2000, 2500, 3000, 3500, 4000, 4500, 5000} and |C|
= 16.

2000 2500 3000 3500 4000 4500 5000

|B|

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e
(s

ec
)

T(2000, *, *, 4, Ours, R)

Chin_r16
Chin_r4
Our_r16
Our_r8
Our_r4
Our_r2

Figure 9: The execution time (in seconds) of vari-
ous |C| with |A| = 2000, |Σ| = 4 and |B| ∈ {2000,
2500, 3000, 3500, 4000, 4500 , 5000}. Our r2 de-
notes our algorithm with |C| = 2.

2000 2500 3000 3500 4000 4500 5000

|B|

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e
(s

ec
)

T(2000, *, *, 20, Ours, R)

Chin_r16
Chin_r4
Our_r16
Our_r8
Our_r4
Our_r2

Figure 10: The execution time (in seconds) of vari-
ous |C| with |A| = 2000, |Σ| = 20 and |B| ∈ {2000,
2500, 3000, 3500, 4000, 4500, 5000}.

5 Conclusion

In this paper, we propose an efficient algorithm
for solving the CLCS problem in O(mnr) time and
O(mn) space, where m, n, and r are the lengths
of A, B, and C, respectively. We observed that
the values of most CLCS lattice cells are identical
in two consecutive layers k and k − 1, so the val-
ues in layer k − 1 can be used directly in layer k.
That is, the calculation of most lattice cells can be
omitted. According to the experiment described
by Deorowicz and Obstój [7], Chin et al. is the
fastest algorithm when |Σ| ≤ 5. Besides, the per-
formance of Chin’s algorithm is better than most
of algorithms. By the experiment results, we ob-
serve that the execution time of our algorithm is
about 25% to 50% of Chin et al. [4] when |Σ| ≤
20. So, our algorithm has better performance than
most of algorithms when |Σ| is small. However,
our algorithm requires more time than Chin’s al-
gorithm when |Σ| is large. Besides, the influence
of alphabet size is larger than sequence similarity
in our algorithm.

In our algorithm, the execution time increases
when |Σ| increases because fewer match points
may result in larger changed region. Although the
match points decrease when |Σ| increases, there is
no evident relationship between match points and
alphabet size. So, studying the relationship be-
tween match points and alphabet size is worthy in
the future. In addition, we still have to maintain
the information of mismatch points in our algo-
rithm. It reduces the execution efficiency. It is
worth to apply more suitable data structures on
the calculations of match points, thus the algo-
rithm may be further improved in the future.

Acknowledgement

This research work was partially supported by
the National Science Council of Taiwan under con-
tract MOST 104-2221-E-110-018-MY3.

References

[1] H.-Y. Ann, C.-B. Yang, C.-T. Tseng, and
C.-Y. Hor, “Fast algorithms for comput-
ing the constrained LCS of run-length en-
coded strings,” Theoretical Computer Science,
Vol. 432, pp. 1–9, 2012.

[2] A. N. Arslan and O. Ömer Eğecioğlu, “Al-
gorithms for the constrained longest common

subsequence problems,” International Journal

of Foundations of Computer Science, Vol. 16,
No. 6, pp. 1099–1109, 2005.

[3] D. Becerra, W. Soto, L. Nino, and
Y. Pinzón, “An algorithm for constrained
LCS,” ACS/IEEE International Conference on

Computer Systems and Applications, Ham-

mamet, Tunisia, pp. 237–246, May, 2010.
[4] F. Y. L. Chin, A. D. Santis, A. L. Ferrara,

N. L. Ho, and S. K. Kim, “A simple algorithm
for the constrained sequence problems,” Infor-

mation Processing Letters, Vol. 90(4), pp. 175–
179, 2004.

[5] S. Deorowicz, “Fast algorithm for constrained
longest common subsequence problem.,” The-

oretical and Applied Informatics, Vol. 19, No. 2,
pp. 91–102, 2007.

[6] S. Deorowicz, “Bit-parallel algorithm for
the constrained longest common subsequence
problem,” Fundamenta Informaticae, Vol. 99,
pp. 409–433, 2010.

[7] S. Deorowicz and J. Obstój, “Constrained
longest common subsequence computing al-
gorithms in practice,” Computing and Infor-

matics, Vol. 29, pp. 427–445, 2010.
[8] D. He and A. N. Arslan, “A space-efficient

algorithm for the constrained pairwise se-
quence alignment problem,” Genome Infor-

matics, Vol. 16, No. 2, pp. 237–246, 2005.
[9] D. S. Hirschberg, “A linear space algo-

rithm for computing maximal common sub-
sequences,” Communications of the ACM,
Vol. 18, No. 6, pp. 341–343, 1975.

[10] K.-S. Huang, C.-B. Yang, K.-T. Tseng, H.-
Y. Ann, and Y.-H. Peng, “Efficient algo-
rithms for finding interleaving relationship
between sequences,” Information Processing

Letters, Vol. 105, pp. 188–193, 2008.
[11] J. W. Hunt and T. G. Szymanski, “A fast

algorithm for computing longest common
subsequences,” Communications of the ACM,
Vol. 20, No. 5, pp. 350–353, 1977.

[12] C. S. Iliopoulos and M. S. Rahman, “New effi-
cient algorithms for the LCS and constrained
LCS problems,” Information Processing Letters,
Vol. 106, No. 1, pp. 13–18, 2008.

[13] J. B. Kruskal, “An overview of sequence com-
parison: the warps, string edits, and macro-
molecules,” SIAM Review, Vol. 25, No. 2,
pp. 201–237, 1977.

[14] N. Nakatsu, Y. Kambayashi, and S. Yajima,
“A longest common subsequence algorithm
suitable for similar text strings,” Acta Infor-

matica, Vol. 18, pp. 171–179, 1982.

[15] D. B. Needleman and C. D. Wunsch, “A gen-
eral method applicable to the search for simi-
larities in the amino acid sequence of two pro-
teins,” Journal of Molecular Biology, Vol. 48,
pp. 443–453, 1970.

[16] C.-L. Peng, “An approach for solving the con-
strained longest common subsequence prob-
lem,” Master’s Thesis, Department of Com-
puter Science and Engineering, National Sun
Yat-sen University, Kaohsiung, Taiwan, 2003.

[17] Y.-H. Peng, C.-B. Yang, K.-S. Huang, C.-
T. Tseng, and C.-Y. Hor, “Efficient sparse
dynamic programming for the merged LCS
problem with block constraints,” International

Journal of Innovative Computing, Information

and Control, Vol. 6, pp. 1935–1947, 2010.
[18] Y.-H. Peng, C.-B. Yang, K.-S. Huang, and

K.-T. Tseng, “An algorithm and applications
to sequence alignment with weighted con-
straints,” International Journal of Foundations

of Computer Science, Vol. 21, pp. 51–59, 2010.
[19] Z. S. Peng and H. F. Ting, “Time and space

efficient algorithms for constrained sequence
alignment,” Implementation and Application of

Automata. CIAA 2004. Lecture Notes in Com-

puter Science, Vol. 3317, pp. 237–246, 2005.
[20] A. M. Rahman and M. S. Rahman, “Effec-

tive sparse dynamic programming algorithms
for merged and block merged LCS problems,”
Journal of Computers, Vol. 9, No. 8, pp. 1743–
1754, 2014.

[21] Y. T. Tsai, “The constrained longest common
subsequence problem,” Information Processing

Letters, Vol. 88, pp. 173–176, 2003.
[22] R. Wagner and M. Fischer, “The string-

to-string correction problem,” Journal of the

ACM, Vol. 21, No. 1, pp. 168–173, 1974.

