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Abstract

The similarity of one-dimensional data is usu-
ally measured by the longest common subsequence
(LCS) algorithms. However, these algorithms can-
not be directly extended to solve the two or higher
dimensional data. The two-dimensional largest
common substructure (TLCS) problem was there-
fore proposed to compute the similarity of two-
dimensional data. In 2016, Chan et al. [6] de-
fined eight different versions of the TLCS prob-
lem, and four of them were shown to be valid for
pattern matching, while the other four are invalid.
In addition, Chan et al. showed that two versions
of them are NP-hard, and left a conjecture that
the other two are also NP-hard. In this paper, we
prove that the remaining two versions of the TLCS
problem are NP-hard, showing the correctness of
Chan’s conjecture. Moreover, we prove that the
four valid versions are all APX -hard.

1 Introduction

The longest common subsequence (LCS) prob-
lem and its variants have been extensively stud-
ied in several decades [3, 12–15, 20]. However,
these LCS algorithms cannot be applied directly
in two or higher dimensional data (such as pic-
ture images). Therefore, finding the similarity of
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these data by LCS-like definitions becomes an-
other problem of interest.

In 1987, Chang et al. [8] represented a two-
dimensional picture by 2D strings. In 1989, Chang
et al. [7] proposed the 2D-string-LCS algorithm
to retrieve the largest similar subpicture in an im-
age database. In 1992, Lee and Hsu [18] proposed
another similarity retrieval definition with 2D C-
strings. In 2000, Guan et al. [11] proved that the
problems of finding the largest similar subpicture
with relations type-0 and type-1 of 2D strings are
NP-hard.

With another problem developing way, some
researchers [2, 5] directly study the relationship
of two matrices. They seemed not to know the
above research progress on the 2D strings. In
1998, Baeza-Yates [5] presented a method for com-
puting the edit distance of two matrices. And
in 2008, Amir et al. [2] gave another similar-
ity definition of two matrices, which is the two-
dimensional largest common substructure (TLCS)
problem. The matching rules of the TLCS prob-
lem given by Amir et al. are too strict to represent
the matrix similarity. In fact, Amir’s definition of
the TLCS problem is exactly the same as the type-
1 relation in 2D strings [8, 11]. However, Amir et
al. had no idea about the study of 2D strings.

In 2016, Chan et al. [6] extended the definition
for the TLCS to more general versions. They pre-
sented eight different versions in total, and four of
them were proved to be valid for pattern matching.
Two of the four valid versions have been proved
to be NP-hard. In this paper, we prove the NP-
hardness of the remaining two versions and the
APX -hardness of all four valid versions.

This paper is organized as follows. In Section
2, we give the preliminaries for our proof. In Sec-



tion 3, we prove the hardness for the valid versions
of TLCS. Finally, we give some future works and
discussions in Section 4.

2 Preliminaries

Suppose that A is a matrix of size rA× cA. We
use ai,j to denote the entry at the ith row and the
jth column of matrix A. Similarly, B is a matrix
of size rB × cB .

2.1 The Two-dimensional Largest
Common Substructure Problem

In 2016, Chan et al. [6] proposed eight match-
ing rules for two-dimensional largest common sub-
structure (TLCS) problem, and four of them were
shown to be valid. A common substructure U
of two matrices A and B is defined as U =
{(i, j, p, q)|ai,j = bp,q, and every two elements in U
obey the matching rules (given later)}. A common
substructure U is a largest common substructure if
|U | is maximized.

Definition 1. [6] Two-dimensional largest com-
mon substructure (TLCS) problem
Input: Matrix A and matrix B.
Output: The largest common substructure U .

Chan et al. partitioned the definitions into
three parts as P (corner, operator, side). Figure 1
shows examples for a corner and a side. The gray
blocks in matrix B are the valid positions of β.
The formal definitions for stipulating the match-
ing rules are given as follows.

Definition 2. [6] Logical operator for corner

• And (N): Both row and column relationships
are satisfied.

• Or (O): The row relationship or the column
relationship is satisfied.

Definition 3. [6] Corner: Let two elements
ai1,j1 and ai2,j2 be in matrix A, where i1 6=
i2 and j1 6= j2. And let two elements bp1,q1

and bp2,q2 be in matrix B. A pair of elements
(i1, j1, p1, q1), (i2, j2, p2, q2) ∈ U obeys one of the
following two properties L and E.

• Less than (L):

– row relationship: p1 < p2 when i1 < i2.

– column relationship: q1 < q2 when j1 <
j2.

(a)

(b)

(c)

(d) (e)

Figure 1: Examples for illustrating the corner and
side definitions, where the gray blocks represent
the allowed area in matrix B. (a) The corner rela-
tion of ai1,j1 = α and ai2,j2 = β. (b) The allowed
positions of bp2,q2 = β for the corner relation with
logical operator N. (c) The allowed positions of
bp2,q2 = β for the corner relation with logical op-
erator O. (d) The side relation of ai1,j1 = α and
ai2,j2 = β. (e) The allowed positions of bp2,q2 = β
for the side relation.



Table 1: Summary of the various versions of the
TLCS problem. Here, it is assumed that (i1, j1)
and (i2, j2) are in matrix A. (i1, i2) indicates the
relation for (p1, p2) in B, while (j1, j2) indicates
the relation for (q1, q2) in B. [6]

Problem Operator
Corner Side

Symmetric
i1 < i2 j1 < j2 i1 < i2 j1 > j2 i1 < i2 j1 = j2 i1 = i2 j1 < j2

LNL

and

< < < > < < N
LNE < < < > ≤ ≤ N
ENL ≤ ≤ ≤ ≥ < < Y
ENE ≤ ≤ ≤ ≥ ≤ ≤ Y
LOL

or

< < < > < < Y
LOE < < < > ≤ ≤ Y
EOL ≤ ≤ ≤ ≥ < < N
EOE ≤ ≤ ≤ ≥ ≤ ≤ N

• Less than or equal to (E):

– row relationship: p1 ≤ p2 when i1 < i2.

– column relationship: q1 ≤ q2 when j1 <
j2.

Definition 4. [6] Side: Let two elements ai1,j1
and ai2,j2 be in matrix A where i1 = i2
or j1 = j2. And let two elements bp1,q1

and bp2,q2 be in matrix B. A pair of elements
(i1, j1, p1, q1), (i2, j2, p2, q2) ∈ U obeys one of the
two following properties L and E.

• Less than (L):

– row relationship: p1 < p2 when i1 < i2
and j1 = j2.

– column relationship: q1 < q2 when i1 =
i2 and j1 < j2.

• Less than or equal to (E):

– row relationship: p1 ≤ p2 when i1 < i2
and j1 = j2.

– column relationship: q1 ≤ q2 when i1 =
i2 and j1 < j2.

Based on the above definitions,
P (corner, operator, side) leads to eight dif-
ferent definitions. Note that operator is operated
on corner. Among them, Chan et al. showed that
P (ENE), P (ENL), P (LOL) and P (LOE) are
valid definitions. That is, an optimal solution of
two matrices A and B should also be an optimal
solution of matrices B and A. Chan et al. called
those definitions as symmetric. Table 1 shows the
TLCS problems with various definitions. Note
that the other four definitions are invalid.

Chan et al. proved that P (ENL) and P (ENE)
are NP-hard by reducing from the k-clique prob-
lem. Here we omit the detailed proof of Chan et
al.

In the following, we use CUENL, CUENE ,
CULOL and CULOE to represent the solutions of
the corresponding problems, respectively.

2.2 Approximability Classes

Definition 5. [1, 9, 10] NP optimization (NPO)
problem
An NPO problem F is represented by a 4-tuple
(
∮
F
, SolF , ojF , optF ), explained as follows.

(i)
∮
F

is the set of the instances of F , and
∮
F

is recognizable in polynomial time.

(ii) SolF (I) is the set of the feasible solutions
with instance I. And there exists a polynomial
function p such that ∀sol ∈ SolF (I), |sol| ≤
p(|I|).

(iii) ojF (I, sol) is called the objective func-
tion, for each instance I and each feasible so-
lution sol ∈ SolF (I).

(iv) optF ∈ {max,min} tells if F is a maxi-
mization or a minimization problem.

Solving an NPO problem F with a given in-
stance I means finding a feasible solution sol ∈
SolF (I) which maximizes ojF (I, sol) over all fea-
sible solutions sol if optF = max or minimizes
ojF (I, sol) if optF = min. Taking the TLCS prob-
lem as an example, let

∮
TLCS

be the set of all
possible pairs of matrices. Let I be an instance
of matrices A and B, with |A| = rA × cA and
|B| = rB × cB . For a solution sol of instance I,
there is a polynomial function p(x) = x, such that
|sol| ≤ rA × cA and |sol| ≤ rB × cB . We have
ojF (I, sol) = |sol| for instance I and any solution
sol ∈ Sol(I). Also, we have optTLCS = max, be-
cause we want to find the common substructure
with maximal size.

Given I ∈
∮
F

, we denote optF (I) as the opti-
mal solution set for I. The approximation ratio is

defined as RatF = max{ |optF (I)|
ojF (I,sol) ,

ojF (I,sol)
|optF (I)| }. It is

clear that the ratio is always greater than or equal
to 1. The closer to 1 the approximation ratio is,
the better performance the algorithm has. In the
following, we briefly explain the concept of APX
and L-reduction, which will be used for our proof
in Sections 3.1 and 3.3.

Definition 6. [19] Approximability (APX) prob-
lem
An NPO problem F is in APX if F can be approx-
imated within a constant c, that is , there exists a
polynomial-time algorithm D such that for all in-
stances I ∈

∮
F

, D(I) ∈ SolF and RatF (D(I)) ≤
c, where RatF (D(I)) is the approximation ratio of
F .



L-reduction was proposed by Papadimitriou
and Yannakakis [19] in 1991. In various proofs
of APX problems, L-reduction is the easiest and
the most restrictive one.

Definition 7. [19] L-reduction
Given two NPO problems F and G, and a
polynomial-time transformation f : F → G, f is
an L-reduction from F to G if there exist positive
constants δ and µ such that the following condi-
tions hold for every instance I of F .

(i) |optG(f(I))| ≤ δ · |optF (I)|,

(ii) For every feasible solution sol of f(I)
with objective value ojG(f(I), sol) = oj2,
we can find a solution, in polynomial time,
sol′ of I with ojF (I, sol′) = oj1 such that
|optF (I)− oj1| ≤ µ|optG(f(I))− oj2|.

2.3 The Maximum 3-Satisfiability
Problem

In 1999, Ausiello [4] proved that the maximum
3-satisifiability (MAX 3SAT-B) problem with B ≥
3 is APX -complete. We give the formal definition
of MAX 3SAT-3 as follows.

Definition 8. [4] Maximum 3-satisifiability
bounded by 3 (MAX 3SAT-3) problem
Input: A set of variables X, and a set of disjunc-
tive clauses C over the variables X, where each
clause consists of at most three variables, and each
variable occurs in at most B = 3 clauses.
Output: Truth assignment of X for the maximal
number of satisfied clauses.

For example, suppose that there is a set X =
{x1, x2, x3} and C = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3), the number of each variable
occurrences in C is bounded by 3. C is satisfied by
{x1, x2, x3}, and the number of satisfied clauses is
3.

2.4 The Maximum Bounded 3-
Dimensional Matching Problem

In 1991, Kann [16] defined the maximum
bounded 3-dimensional matching (MAX 3DM-B)
problem, which has the constraint that each sym-
bol appears at most B times in input. He also
proved that the MAX 3DM-B problem is MAX
SNP-complete with B ≥ 3, which is also APX -
hard, since MAX SNP-complete ⊆ APX -hard.
We give the formal definition of MAX 3DM-3 as
follows.

Definition 9. [16] Maximum 3-dimensional
matching bounded by 3 (MAX 3DM-3) problem
Input: A set M ⊆ X ×Y ×Z, where X, Y and Z
are disjoint finite sets. Each element of X, Y and
Z occurs in M at most B = 3 times.
Output: The maximal number of 3-dimensional
matching.

For example, suppose that there is a set
M = {(x1, y1, z1), (x1, y3, z3), (x2, y3, z2),
(x3, y2, z4), (x1, y2, z2)}. x1 is the most
occurrence with 3 times. Then M ′ =
{(x1, y1, z1), (x2, y3, z2), (x3, y2, z4)} is the maxi-
mum 3-dimensional matching of M .

The 3-dimensional matching (3DM) problem
(without bound B) is the general version, which
determines if there exists a 3-dimensional match-
ing with size κ. In 1972, Karp presented some
NP-complete problems, including the 3DM prob-
lem [17].

3 Hardness for the TLCS Problems

In this section, we first prove that P (ENL) and
P (ENE) are APX -hard. After that, we prove
that P (LOL) and P (LOE) are both NP-hard.
Finally, we show that they are APX -hard.

3.1 APX -hardness for P (ENL) and
P (ENE)

In this section, we will prove that P (ENL) and
P (ENE) are APX -hard.

A picture can be represented by a matrix whose
elements are the objects in the picture. Let
ai1,j1 = α and ai2,j2 = β be two elements in matrix
A, and bp1,q1 = α and bp2,q2 = β be two elements
in matrix B. Chang et al. defined that the rela-
tions of type-0, type-1 and type-2 between (ai1,j1 ,
ai2,j2) and (bp1,q1 , bp2,q2) as follows [8].

• type-0: (i2 − i1) × (p2 − p1) ≥ 0 and (j2 −
j1)× (q2 − q1) ≥ 0.

• type-1: {(i2 − i1)× (p2 − p1) > 0 or i2 − i1 =
p2 − p1 = 0} and {(j2 − j1)× (q2 − q1) > 0 or
j2 − j1 = q2 − q1 = 0}.

• type-2: i2− i1 = p2−p1 and j2− j1 = q2−q1.

In 2000, Guan et al. [11] proved that the
maximum similar subpicture problems of type-0
and type-1 are NP-hard by reducing from the 3-
satisfiability (3SAT) problem, in which each clause



has exactly three literals. Note that type-0 is ex-
actly the same as P (ENE). In addition, P (ENL)
can also be proved to be NP-hard by reducing
from 3SAT.

In this paper, we use the same transforma-
tion to prove that P (ENL) and P (ENE) are
APX -hard. In our proof, we transform from
MAX 3SAT-3, instead of 3SAT, to P (ENL)
and P (ENE). Even though the transformation
sources are slightly different, the transformations
are completely same, described as follows. The
instance of MAX 3SAT-3 is represented by a set
of Boolean variables X = {x1, x2, · · · , xn}, and a
Boolean formula C = C1 ∧ C2 ∧ · · · ∧ Cm, where
each clause has the form Ct = (vt,1 ∨ vt,2 ∨ vt,3),
1 ≤ t ≤ m, vt,1 = xkt,1 or xkt,1 , vt,2 = xkt,2

or xkt,2 , vt,3 = xkt,3 or xkt,3 , 1 ≤ kt,1 6= kt,2 6=
kt,3 ≤ n, and each variable xk appears in at most
three clauses. Matrices A and B of P (ENL) and
P (ENE), where |A| = |B| = 2n × 3m, are con-
structed as follows [11].

ai,j =


ltu


if i = 2k − 1, j = 3(t− 1) + u,
where the uth variable of Ct is xk;
if i = 2k, j = 3(t− 1) + u,
where the uth variable of Ct is xk;
u = 1, 2, 3;

α otherwise.
(1)

bi,j =


ltu


if i = 2k, j = 3t+ 1− u,
where the uth literal of Ct is xk;
if i = 2k − 1, j = 3t+ 1− u,
where the uth literal of Ct is xk;
u = 1, 2, 3;

β otherwise.
(2)

We denote the above transformation as ΓENL.
Figure 2 shows an example of the above transfor-
mation. Every two rows of A or B correspond to
one variable of MAX 3SAT, but they are in reverse
order in A and B. Every three columns of A or B
correspond to one clasue of MAX 3SAT, but they
are in reverse order in A and B. Rows 1 and 2
correspond to x1 and x1 in matrix A, but they are
for x1 and x1 in matrix B. Columns 1, 2 and 3
correspond to the first, second and third literals in
matrix A, but they are for the third, second and
first literals in matrix B. For example, l21, l

2
2 and

l23 correspond to C2 = (x1 ∨ x3 ∨ x2).
In the transformation ΓENL, if ltu is selected

into the solution CUENL, then it means that its
corresponding element vt,u in Ct is assigned to be

X = {x1, x2, x3, x4}

C =

 (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x2)∧
(x1 ∨ x2 ∨ x4)


(a)

(b)

Figure 2: An example of the transformation ΓENL

for proving the APX -hardness of P (ENL). (a)
Instance sets X and C in MAX 3SAT-3. (b) Ma-
trices A and B of P (ENL), constructed from X
and C.

true. Any pair of elements lt1, lt2 and lt3 are never
in CUENL at the same time (proved in Lemma 1).
It implies that if one of the literals in Ct is true,
then Ct is true for MAX 3SAT-3. Accordingly,
|CUENL| ≤ m.

Lemma 1. Suppose that ai1,j1 = bp1,q1 = ltu and
ai2,j2 = bp2,q2 = ltu′ , where 1 ≤ u 6= u′ ≤ 3.
(ai1,j1 , bp1,q1) and (ai2,j2 , bp2,q2) cannot be both in
CUENL.

Proof. If u < u′, then j1 < j2 and q1 > q2 do
not obey the column relationship of corner for
P (ENL). Similarly, if u > u′, then j1 > j2 and
q1 < q2 do not obey the column relationship of
corner for P (ENL). Thus, the lemma holds.

Suppose that two elements ltu and lt
′

u′ corre-
spond to the same variable xk, one for xk and
the other for xk, where t 6= t′ and 1 ≤ u, u′ ≤ 3 .
They cannot be both in CUENL. It is proved in
the following lemma.

Lemma 2. Suppose that Ct and Ct′ have a com-
mon variable, t 6= t′, one is xk and the other is
xk, ai1,j1 = bp1,q1 = ltu, and ai2,j2 = bp2,q2 = lt

′

u′ .
(ai1,j1 , bp1,q1) and (ai2,j2 , bp2,q2) cannot be both in
CUENL.

Proof. If Ct contains xk and Ct′ contains xk, then
i1 < i2 and p1 > p2 do not obey the row rela-
tionship of corner for P (ENL). Similarly, if Ct



contains xk and Ct′contains xk, then i1 > i2 and
p1 < p2 do not obey the row relationship of corner
for P (ENL).

Except the conflict conditions mentioned in
Lemmas 1 and 2, any other pair of matchings can
be both in CUENL.

Theorem 1. The TLCS problem with P (ENL)
is APX -hard.

Proof. With Lemmas 1 and 2, the transforma-
tion ΓENL is correct. For instance I, let κ =
|optMAX 3SAT -3(I)|. We have optENL(f(I)) =
κ = |optMAX 3SAT -3(I)|. For each sol ∈
SolENL(f(I)) with |sol| = oj2, we can get cor-
responding sol′ ∈ SolMAX 3SAT -3(I) with |sol′| =
oj1 = oj2. |optMAX 3SAT -3(I) − oj1| = κ − oj1 =
κ−oj2 = |optENL(f(I))−oj2|. Hence, ΓENL is an
L-reduction from MAX 3SAT-3 to P (ENL) with
δ = 1 and µ = 1.

The proof for P (ENL) can be applied to
P (ENE), thus the following theorem can also be
obtained.

Theorem 2. The TLCS problem with P (ENE)
is APX -hard.

3.2 NP-hardness for P (LOL) and
P (LOE)

In this section, we prove that P (LOL) and
P (LOE) are NP-hard by reducing from the 3DM
problem. The transformation ΓLOL for P (LOL)
is described as follows. The input instance of 3DM
is represented by a set M = {M1,M2, · · · ,Mm} ⊆
X × Y × Z, where X, Y and Z are disjoint finite
sets, |M | = m, and |X|+ |Y |+ |Z| = n. Let Mt =
(xk, yk′ , zk′′) ∈ M , where 1 ≤ t ≤ m, xk ∈ X,
yk′ ∈ Y , zk′′ ∈ Z, 1 ≤ k ≤ |X|, 1 ≤ k′ ≤ |Y |
and 1 ≤ k′′ ≤ |Z|. The matrices A and B of
P (LOL) are constructed as follows, where |A| =
m× (2m+ n) and |B| = (m+ nm)× 5m.

ai,j =


ltu if i = t, and j = 2(t− 1) + u, u = 1, 2;
ltx if i = t, and j = 2m+ k;
lty if i = t, and j = 2m+ |X|+ k′;
ltz if i = t, and j = 2m+ |X|+ |Y |+ k′′;
α otherwise.

(3)

M =

 (x1, y1, z1),
(x1, y2, z1),
(x2, y2, z2)


(a)

(b)

Figure 3: An example of ΓLOL for proving the
NP-hardness of P (LOL). (a) An input set M
of the 3DM problem. (b) Matrices A and B of
P (LOL), constructed from M .

bi,j =



ltu
if i = t,
and j = 5(m− t) + 3 + u, u = 1, 2;

ltx
if i = m(1 + k)− (t− 1),
and j = 5(m− t) + 1;

lty
if i = m(1 + |X|+ k′)− (t− 1),
and j = 5(m− t) + 2;

ltz

if i = m(1 + |X|+ |Y |+ k′′)
−(t− 1),
and j = 5(m− t) + 3;

β otherwise.
(4)

Figure 3 shows an example of ΓLOL, where m =
3 and n = 6. Each row in matrix A and every
submatrix of size (m+nm)×5 = 21×5 in matrix
B correspond to one element Mt of M . ltx, lty and
ltz correspond to elements xk, yk′ and zk′′ of Mt. l

t
1

and lt2 are the expanded symbols generated from
Mt.

In matrix A of Figure 3, row t corresponds to
Mt, columns 1 to 6 are for lt1 and lt2, columns 7 and
8 are for x1 and x2, respectively, columns 9 and
10 are for y1 and y2, respectively. In matrix B,
columns 11 to 15 are for M1, columns 6 to 10 are
for M2 (reverse order). Rows 1 to 3 correspond to
lt1 and lt2. Rows 4 to 6 correspond to x1, in which
rows 4, 5 and 6 are for M3, M2 and M1 (reverse



order), respectively. Rows 7 to 9 correspond to x2,
in which rows 7, 8 and 9 are for M3, M2 and M1,
respectively. Rows 10 to 15 are for Y , and rows
16 to 21 are for Z.

Each symbol, except α and β, appears exactly
once in matrix A and once in matrix B. Obvi-
ously, |CULOL| ≤ 5m (including all symbols, but
excluding α and β). To obtain a tighter bound,
for one element Mt ∈ M , two possible matches
(lt1, l

t
2) or (ltx, l

t
y, l

t
z) can be made between A and

B. Thus, 2m ≤ |CULOL| ≤ 3m.
In the following, we will prove that |CULOL| =

2m+ κ if and only if there exists a 3-dimensional
matching with size κ in M . Moreover, if
|CULOL| = 2m + κ and (ltx, l

t
y, l

t
z) are three of

the common elements in CULOL, then Mt will be
picked as one match in the optimal solution of M .
The formal proof is accomplished by the following
lemmas.

Lemma 3. Suppose that ai1,j1 = bp1,q1 = ltu,
where u = 1, 2, and ai2,j2 = bp2,q2 = ltv, where
v = x, y, z. (ai1,j1 , bp1,q1) and (ai2,j2 , bp2,q2) can-
not be both in CULOL.

Proof. By the definitions in (3) and (4), it is clear
that i1 = i2, j1 < j2, p1 < p2 and q1 > q2. We
have that j1 < j2 and q1 > q2 do not obey the
column relationship of side (i1 = i2) in P (LOL).
Thus, (ai1,j1 , bp1,q1) and (ai2,j2 , bp2,q2) cannot be
both in CULOL.

Lemma 4. Suppose that Mt and Mt′ have a com-
mon element, ai1,j1 = bp1,q1 = ltv and ai2,j2 =

bp2,q2 = lt
′

v , where v = x, y, z and t 6= t′.
(ai1,j1 , bp1,q1) and (ai2,j2 , bp2,q2) cannot be both in
CULOL.

Proof. Assume that t < t′. By the definitions in
(3) and (4), it is clear that i1 < i2, j1 = j2, p1 > p2
and q1 > q2. We have that i1 < i2 and p1 > p2 do
not obey the row relationship of side (j1 = j2) in
P (LOL). A similar result can be obtained when
t > t′. Therefore, (ai1,j1 , bp1,q1) and (ai2,j2 , bp2,q2)
cannot be both in CULOL.

Except the conflict conditions in Lemmas 3 and
4, any other pair of matchings can be both in
CULOL.

Lemma 5. |CULOL| = 2m+κ if and only if there
exists a 3-dimensional matching with size κ.

Proof. If there exists a 3-dimensional matching
with size κ, it is obvious that in ΓLOL, 2(m −
κ) + 3κ = 2m + κ elements in matrix A can be
matched with elements in B.

With Lemma 3, we pick up either 2 or 3 ele-
ments from each row in A. If 3 elements are picked
up in one row of A, then ltx, lty and ltz are the tar-
gets. It means that Mt is picked up in the solution
of 3DM. If |CULOL| = 2m+κ, it means that κ rows
of A are picked up with 3 elements. With Lemma
4, the picked elements are all distinct in X, Y or
Z. Therefore, by ΓLOL, the matches we pick up
in matrices A and B of P (LOL) correspond to a
3-dimensional matching with size κ.

With Lemma 5, 3DM reduces to P (LOL), and
thus we have the following result.

Theorem 3. The TLCS problem with P (LOL) is
NP-hard.

Similarly, the reduction and Lemma 5 can also
be applied to P (LOE), thus we have the following
result.

Theorem 4. The TLCS problem with P (LOE) is
NP-hard.

3.3 APX -hardness for P (LOL) and
P (LOE)

In this section, we prove that P (LOL) and
P (LOE) are APX -hard. We use the same trans-
formation ΓLOL from the MAX 3DM-3 problem,
instead of the 3DM problem, to P (LOL) and
P (LOE).

If there is a matching (x, y, z) ∈ optMAX 3DM-3,
then at most 6 matches are not in optMAX 3DM-3.
For example, if (x, y, z) ∈ optMAX 3DM-3,
then (x, y1, z1), (x, y2, z2), (x1, y, z1), (x2, y, z2),
(x1, y1, z), (x2, y2, z) cannot be in optMAX 3DM-3.
It is clear that m ≤ (6 + 1)κ.

Theorem 5. The TLCS problem with P (LOL) is
APX -hard.

Proof. For instance I, let κ = |optMAX 3DM-3(I)|.
We have |optLOL(f(I))| = 2m+κ ≤ 14κ+κ = 15κ.
That is, |optLOL(f(I))| ≤ 15|optMAX 3DM-3(I)|.
Thus, δ = 15. For each sol ∈ SolLOL(f(I))
with |sol| = oj2, we can get corresponding sol′

∈ SolMAX 3DM-3(I) with |sol′| = oj1 ≤ 1
3oj2,

since three elements picked up in one row of A
of P (LOL) corresponds to one picked Mt of MAX
3DM-3. oj2 − oj1 = 2

3oj2 ≤ 2m = (2m + κ) − κ
implies |optMAX 3DM-3(I) − oj1| = k − oj1 ≤
(2m + κ) − oj2 = |optLOL(f(I)) − oj2|. Hence,
ΓLOL is an L-reduction from MAX 3DM-3 to
P (LOL) with δ = 15 and µ = 1.



Similarly, the same reduction and proof can also
be applied to P (LOE), thus we have the following
result.

Theorem 6. The TLCS problem with P (LOE) is
APX -hard.

4 Conclusion

In this paper, we prove that P (LOL) and
P (LOE) are NP-hard, showing the correctness
of Chan’s conjecture. In addition, we prove
that the four valid definitions P (ENL), P (ENE),
P (LOL) and P (LOE) are all APX -hard. In the
future, it is worthy to design approximation al-
gorithms for various TLCS problems. It is also
interesting to discover whether these problems are
APX -complete.
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